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ABSTRACT

Laboratory observations of the leeside hydraulic jump indicate it consists of a statistically stationary tur-

bulent motion in an overturning wave. From the point of view of the shallow-water equations (SWE), the

hydraulic jump is a discontinuity in fluid-layer depth and velocity at which kinetic energy is dissipated. To

provide a deeper understanding of the leeside hydraulic jump, three-dimensional numerical solutions of the

Navier–Stokes equations (NSE) are carried out alongside SWE solutions for nearly identical physical initial-

value problems. Starting from a constant-height layer flowing over a two-dimensional obstacle at constant

speed, it is demonstrated that the SWE solutions form a leeside discontinuity owing to the collision of

upstream-moving characteristic curves launched from the obstacle. Consistent with the SWE solution, the

NSE solution indicates the leeside hydraulic jump begins as a steepening of the initially horizontal density

interface. Subsequently, the NSE solution indicates overturning of the density interface and a transition to

turbulence. Analysis of the initial-value problem in these solutions shows that the tendency to form either the

leeside height–velocity discontinuity in the SWE or the overturning density interface in the exact NSE is a

feature of the inviscid, nonturbulent fluid dynamics. Dissipative turbulent processes associated with the

leeside hydraulic jump are a consequence of the inviscid fluid dynamics that initiate and maintain the locally

unstable conditions.

1. Introduction

In a laboratory study of single- and two-layer fluid

flow past a submerged obstacle, Long (1954) showed

that, under certain conditions, a hydraulic jump occurs

on the lee side. Figure 8 of Long (1954) indicates the

leeside hydraulic jump takes the form of the turbulent

‘‘reverse roller’’ (Fig. 1), well known to hydraulic engi-

neers (Tschantz and Wright 2011). From a theoretical

point of view, the shallow-water equations (SWE)

provide a tractable mathematical description of the

single- and two-layer fluid flow past an obstacle (Long

1954; Houghton and Kasahara 1968). The hydraulic

jump is represented in the SWE as a discontinuity in

fluid-layer depth and velocity at which kinetic energy is

dissipated (e.g., Baines 1995, section 2.3.1). As noted by

the latter (Baines 1995, p. 37), ‘‘The mechanisms for this

energy dissipation depend on the detailed internal dy-

namics of the jump.’’ The internal dynamics of the leeside

jump was the focus of Rotunno and Smolarkiewicz (1995),

who used physical reasoning and a two-dimensional

nonhydrostatic model to deduce the mechanism of

reverse-roller–hydraulic-jump formation (see their

Fig. 3). However, the two dimensionality of their model

precluded the development of the three-dimensional

turbulence associated with the reverse roller. In the

present article, we analyze three-dimensional numerical

simulations that capture the formation of the reverse roller

and the subsequent transition to turbulence.

A motivating question for this research is the extent

to which the detailed internal dynamics of the hydraulic

jump contributes to the understanding of the down-

stream flow. For a classic hydraulic jump in a single-

layer fluid (Rayleigh 1914), energy is dissipated in that

layer; however, in a two-layer fluid, energy may be dis-

sipated in the upper or lower fluid (Baines 1995, section

3.5). Klemp et al. (1997, section 5) argued that in a

Boussinesq, two-layer system, a jump propagating into a

quiescent fluid has most of its dissipation downstream of

the jump at the interface between the lower and upper

fluids (e.g., Wood and Simpson 1984, their Fig. 1a); in

this case, the upper-layer velocity is locally reduced, and

the lower-layer velocity is locally increased (Klemp et al.

1997, their Figs. 4 and 15). If, on the other hand, there isCorresponding author: Richard Rotunno, rotunno@ucar.edu
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considerable ambient shear of the opposite sense to that

produced baroclinically by the inclined interface of the

jump, that interface will roll upstream into the ambient

flow (Wood and Simpson 1984, their Fig. 9) creating local

convective instability, leading to dissipation in the lower

layer, much like a breaking wave in a non-Boussinesq

single-layer fluid (Klemp et al. 1997, their Figs. 5 and 16).

Klemp et al. (1997, section 6) hypothesized that the

Boussinesq leeside hydraulic jump is of the latter type

(dissipation in the lower layer); the present Navier–Stokes

equations (NSE) simulations support this hypothesis.

The physical setup for the present NSE solutions is

designed to closely parallel the physical content of the two-

layer SWE; the main difference is that a continuous tran-

sition (instead of a discontinuity) in potential temperature

separates the lower and upper layers in the NSE initial

condition. Although both the present SWE and NSE treat

flow over a two-dimensional ridge, the computational do-

main for the NSE is three-dimensional, as required for the

simulation of turbulent motion. Moreover, the NSE are

solved for a Reynolds number of approximately 5000,

which, although low for the real atmosphere, is high enough

for the production of turbulent motion. Hence, the present

simulations are in the category of direct numerical simula-

tions (DNS) of turbulence. It will be shown that these

simulations give a credible version of the mean and turbu-

lent internal dynamics of the atmospheric (i.e., Boussinesq)

hydraulic jump.

In a related study, Epifanio and Qian (2008, hereafter

EQ08) performed a large-eddy simulation (LES) of a

breaking two-dimensional mountain wave in an infinitely

deep atmosphere characterized by constant wind U and

static stability N2. EQ08 showed that the wake due to the

breaking mountain wave is due to eddies modifying the

structure of themountain wave and that energy dissipation

is essential for allowing this modified mountain-wave

structure to persist downstream. Despite the very differ-

ent vertical distribution of N2(z) used here (in analogy

with the two-layer SWE), the present results concerning

the structure of the leeside wave-breaking region are

qualitatively similar to those found in EQ08. As the pres-

ent NSE calculations are specifically designed to explore

the internal dynamics of the Boussinesq, two-layer, SWE

leeside hydraulic jump, the similarity of the present results

to those of EQ08 support the identification of leeside wave

breaking in a continuously stratified flow with the leeside

hydraulic jump in a two-layer fluid.

Another, related motivation for the present study is that

SWE simulations of vortices in the lee of three-dimensional

obstacles are indifferent to the motion internal to the hy-

draulic jump and depend only on its energy-dissipation

property (Schär and Smith 1993, their Fig. 2), whereasNSE

simulations suggest a definite connection between the

obstacle-scale fluid motion and the lee vortices (Rotunno

et al. 1999, their Fig. 2). In R. Rotunno and G. H. Bryan

(2018, unpublished manuscript, hereafter Part II), we

present NSE simulations of the same two-layer flow past a

three-dimensional obstacle. The analysis of these simula-

tions provides a framework for reconciling differing in-

terpretations of lee-vortex formation.

In section 2, we use the two-layer SWE to examine the

initial evolution of the flow past an obstacle immersed in

the lower layer. In section 3, we describe the physical

setup of the NSE, which closely parallels that of the

SWE solutions in section 2. Also described in section 3 is

the numerical setup that allows for three-dimensional

turbulent motion in the context of flow over a two-

dimensional obstacle. Our analysis of the NSE solution

is given in section 3c, which occupies the bulk of this

paper. The conclusions are summarized in section 4.

2. Two-layer flow past a submerged obstacle in the
SWE

a. Numerical integration of an initial-value problem

The two-layer, one-dimensional SWE in the limit

where the lower layer is much thinner than the total

depth of the two-fluid system may be written as

›
t
u1 u›

x
u1 g0›

x
h1 g0›

x
H5 0, (1)

›
t
h1 ›

x
(uh)5 0 (2)

(Baines 1995, p. 95 and section 3.1), where u(x, t) and

h(x, t) are, respectively, the lower-layer velocity and

depth and H(x) gives the shape of the obstacle; the

along-flow coordinate is denoted by x and time by t. The

reduced gravity g0 5 (12 rU /rL)g, where g is the accel-

eration due to gravity and rU and rL denote the densities

of the upper and lower fluids, respectively. For this

study, the obstacle is specified by

H(x)5

8>><
>>:

H
m
cos2

�
p

2

jx2 x
c
j

a

�
for

jx2 x
c
j

a
# 1

0 otherwise

, (3)

where Hm is the maximum height, xc is the center, and

a is thehalfwidthof theobstacle.Weconsider the initial-value

FIG. 1. Schematic diagram of the flow in a ‘‘reverse roller.’’
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problem, u(x, 0)5U and h(x, 0)5 h0 2H(x), where h0 is

the initial height of the layer (Fig. 2a).

For the numerical solution of (1) and (2), the x de-

rivatives are discretized using centered differences on a

staggered grid. The time derivatives are also approxi-

mated by a centered difference, and the leapfrog

method is used to advance the solution. For the present

calculation, we take U 5 5m s21, h0 5 1500m, Hm 5
1000m, a 5 1500m, and g0 5 0.34ms22. The computa-

tional domain is24# x# 4 kmwith a grid intervalDx5
4m. Although open boundary conditions are used, no

signal reaches the domain boundaries over the time of

integration. According to theory, the nondimensional

numbers U=
ffiffiffiffiffiffiffiffiffi
g0h0

p
5 0:22 and Hm/h0 5 0:67 indicate a

stationary leeside hydraulic jump at steady state

(Houghton and Kasahara 1968, their Fig. 3). Figure 2a

shows h(x, t) at various times as the flow evolves toward

the discontinuity predicted by the steady-state theory. The

integration is carried out (with a time step Dt 5 0.05 s)

until a discontinuity forms at t ’ 100 s (Ut/a ’ 0.33).

b. Solution analysis by the method of characteristics

The approach to a discontinuity in the solution of (1) and

(2) underlines the inviscid dynamics of hydraulic-jump

formation. To gain a little more insight into the inviscid

dynamics, (1) and (2) can be written in the characteristic

form,

d

dt
ðu6 2

ffiffiffiffiffiffiffi
g0h

p Þ52g0›
x
H , (4)

on the respective characteristic curves given by

dx6

dt
5u6

ffiffiffiffiffiffiffi
g0h

p
(5)

(Whitham 1974, p. 122). The equations in character-

istic form can be integrated to yield the solution

(u, h)(Whitham 1974, section 5.4); however, here we use

the numerical solution of (1) and (2) to construct the

characteristic curves that we believe provide a deeper

understanding of the solution. Figure 2b shows the

characteristic curves for the downstream- and upstream-

moving characteristics [x1(t) and x2(t), respectively]. In

general, the intersection points of the respective char-

acteristic curves at time t give the unique solution (u, h)

[since u6 2
ffiffiffiffiffiffiffi
g0h

p
are known on the characteristics by (4)].

Figure 2b shows, however, that at the point indicated

by the asterisk, the upstream-moving characteristics

FIG. 2. (a) Time sequence of layer thickness h(x, t) from the solution of the SWE. Input parameters are the initial

layer depth h0, obstacle height Hm, half-width a, flow speed U, and reduced gravity g0. The solution is for

U=
ffiffiffiffiffiffiffi
g0h

p
5 0:22 and Hm/h0 5 0:67, where, according to Houghton and Kasahara (1968, their Fig. 3), a stationary

hydraulic jump is expected on the lee side of the obstacle. (b) Characteristics curves x1(t) (blue) and x2(t) (red) for

the solution shown in (a). The asteriskmarks the collision point of the x2 characteristics, signifying the formation of

a discontinuity.
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converge, indicating an overdetermined solution, implying

the formation of a discontinuity. These conclusions are

consistent with the analysis of the formation of moving

leeside discontinuities given in Baines (1995, section 2.3).

To proceed with the integration beyond the time of dis-

continuity formation, (1) and (2) continue to hold on either

side of the discontinuity; however, at the discontinuity,

a condition must be imposed that is consistent with the

principles of mass and momentum conservation. The dis-

continuity under these imposed conditions represents the

hydraulic jump (Stoker 1957, section 10.6). As discussed in

Klemp et al. (1997, section 6), in a Boussinesq, two-layer

system, there is choice of jump condition to be made de-

pending on the jump’s internal dynamics, and therefore,

the SWE for a Boussinesq, two-layer system cannot be

considered a closed system without further information on

the internal dynamics of the jump.

3. Two-layer flow past a submerged obstacle in the
NSE

a. Numerical setup

To simulate the flow within the hydraulic jump, one

needs to solve equations that are less restrictive than the

SWE. In this section, we describe numerical solutions using

Cloud Model 1 (CM1; Bryan and Fritsch 2002). CM1 is a

general-purpose nonhydrostatic cloud model written in

terrain-following coordinates. Although the fully com-

pressible, non-Boussinesq equations are solved, the atmo-

sphere is nearly incompressible and Boussinesq under the

conditions of the present study. Thus, for ease of in-

terpretation, we write the incompressible governing equa-

tions for momentum, energy, and mass, respectively, as

›
t
u1 u � =u52=P1 bk1 n=2u , (6)

›
t
u1 u � =u5 k=2u , (7)

= � u5 0, (8)

where u is the velocity vector and u is the potential tem-

perature. The Boussinesq pressure variable P5 cpu00~p,

where u00 is a constant, ~p5p2p00(z), p00(z)5p00(0)2
gz/(cpu00), where p is the Exner function, cp is the heat

capacity of dry air at constant pressure, g is the acceleration

due to gravity, and (x, y, z) define the Cartesian co-

ordinates used in our analysis. The buoyancy variable

b5 g(u2 u00)/u00, n is the viscosity, and k is the thermal

diffusivity. We will refer to (6)–(8) as the NSE.

To emulate the physical problem represented by the

two-layer SWE in the NSE, we consider the following

base-state potential temperature:

u
0
(z)5

8<
:

u
L

for 0# z#h
0
2 d

u
L
1 0:5(u

U
2 u

L
)(z2 h

0
1 d)/d for h

0
2 d# z# h

0
1 d

u
U

for h
0
1 d# z#D

, (9)

where uL and uU are, respectively, the lower- and upper-

layer potential temperatures. The variables h0 and 2d

are the respective midpoint height and thickness of the

transition layer, which is used given the difficulty treat-

ing discontinuities in a finite-difference model; thus, a

third (transition) layer is unavoidable;1D is the height of

the domain. Following the SWE calculation, we let h0 5
1500m; we let d5 500m to ensure a well-resolved layer;

a case with d 5 50m, although not as well resolved, will

also be discussed for comparison. In the present calcu-

lations, uL 5 288 and uU 5 298K so that the reduced

gravity g0 5 2g(uU 2 uL)/(uU 1 uL)’ 0:34. The velocity

is initialized with u5 (U, 0, 0) (which adjusts to poten-

tial flow over the obstacle within a few tens of seconds),

where U 5 5ms21 and the potential temperature is

initialized with u5 u0(z). The obstacle is specified by (3)

withHm 5 1000m and a5 1500m, as used for the SWE

calculation in Fig. 2. With these external parameters

specified, the nondimensional numbers U/
ffiffiffiffiffiffiffiffiffi
g0h0

p
5 0:22

and Hm/h0 5 0:67, as well as the advective time scale

a/U, are the same as for the SWE solution shown in

Fig. 2. For the present calculation n 5 k 5 1m2s21; using

Hm as a length scale, theReynolds numberUHm/n5 5000,

which, while low compared to the real atmosphere, is large

enough to allow turbulent flow.

‘‘Open’’ boundary conditions are used at the up-

stream and downstream boundaries (x 5 67.68 km).

Free-slip conditions are imposed at the impermeable

vertical boundaries located at z5H(x) and z5 3.84 km.

Periodic conditions are imposed at the spanwise

boundaries (y56 1.92 km). The grid spacing is uniform

with Dx 5 Dy 5 Dz 5 20m; the time step is Dt 5 0.1 s,

and the integrations are carried out until a statistical

steady state is achieved in the vicinity of the obstacle

(approximately 30min).An additional 30min of simulation

1We note that since the profile (9) implies that ›zu0 depends on

z, there will be a slow change of u0 produced by the diffusion term

in (7), which, however, produces negligible changes to u over the

integration period.
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is done to improve the analysis of the turbulence

statistics. The numerical methods used to integrate

the equations are the same as reported in Bryan and

Rotunno (2014, p. 454).

b. Results

Figure 3 contains an overview of the evolution of the

y-averaged (indicated by the angle brackets) flow and

potential temperature over the full domain. As pre-

dicted by the SWE solution (Fig. 2), the NSE solution

(Fig. 3b) indicates a steepening of the isentropes on the

lee slope. This steepening signals the beginning of lee-

side isentrope overturning, which, in turn, leads to a

counterclockwise-rotating warm anomaly breaking off

in the cool layer (Fig. 3c); likewise, cool air above the

warm anomaly breaks off into a clockwise-rotating cool

anomaly. These initial anomalies are followed by a

continuing sequence of such anomalies that give rise to

turbulence, which mixes out the anomalies over some

distance (Fig. 3d). The flow essentially reaches a statis-

tical steady state as a further 30min of integration shows

little change in the spanwise-averaged flow and potential

temperature distribution (Fig. 3e).2 Another feature

of interest is that, as predicted in the SWE solution

(Fig. 2a), the NSE solution (Figs. 3a,b) has a wave of

elevation propagating upstream. Since the NSE solution

is on a domain of finite depth, there is an acceleration of

the fluid above, in addition to the expected deceleration

of the fluid below, the transition layer; the velocity

magnitude on the center isentrope stays close to its ini-

tial value (5m s21).

The SWE solution (Fig. 2) has a discontinuity forming

atUt/a’ 0:33 while the NSE solution (Fig. 3) appears to

form much more slowly. Estimating from Fig. 3, the

dimensional time for the formation of a vertical isen-

trope as t’ 10min, the discontinuity forms atUt/a’ 2:0:

This slower development is almost certainly because the

thick transition layer, when tilted, produces smaller

baroclinity as compared to a sharp transition. Figure 4

shows selected times in the evolution of a case with a

thin transition layer (d 5 50m); the time for the for-

mation of a vertical isentrope is about 5min, and thus,

Ut/a’ 1:0; moreover, the sequence of eddies forming

and breaking off occurs at an accelerated pace. As ex-

pected, because of the less-well-resolved transition

layer, three-dimensional turbulent mixing is not as

thorough, as evidenced by the occurrence of two-

dimensional structures continuing to appear in the y

averages even at advanced times. Other than these flow

details, the structure of the statistically steady flow

downstream in this thin-layer simulation is qualitatively

similar to that in the thick-layer simulation (cf. Figs. 3e

and 4e).

One final test was motivated by the nonhydrostatic

effects our steep hill might have on the solution. Two-

dimensional simulations (not shown) with a5 15 000 km

indicated essentially the same tendencies as exhibited in

the early stages of Fig. 3. This outcome is consistent with

the shallow-water theory since the converging charac-

teristic curves (Fig. 2b) imply a contracting horizontal

scale, and thus a violation of the hydrostatic assumption,

independent of the obstacle’s horizontal scale.

Returning to the thick-layer simulation, Fig. 5 shows

a more detailed view of the initial development of the

y-averaged flow before the onset of turbulence (signaled

by the development of turbulent kinetic energy, defined

below). Figure 5a shows hui and the flow vectors hui and
hwi at t 5 1min; isentropes are advected downward on

the lee slope by the initial potential flow. In the next few

FIG. 3. Isolines of hui in intervals of 1K starting with 290K

(green contour lines, with the 294-K contour in red) and vectors

representing (hui, hwi) for t 5 (a) 1, (b) 11, (c) 15, (d) 30, and

(e) 60min. Angle brackets here and throughout indicate the y

average.

2 The total integration time of 60min corresponds to a non-

dimensional time Ut/a 5 12.
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minutes, there is continued steepening of the leeside

isentropes, consistent with the SWE solutions in Fig. 2.

At t5 11min, Fig. 5b indicates this steepening continues

to an overturning of the isentropes. Superimposed in

color shading is hhi, where h is the vorticity component

in the y direction. As the flow is statistically homoge-

neous in y, one can infer the y-averaged flow through the

inversion of hhi for hci, the streamfunction, through

solution of

(›
xx
1 ›

zz
)hci5 hhi , (10)

where (hui, hwi)5 (›z, 2›x)hci by virtue of (8). Quali-

tatively, one expects counterclockwise (clockwise) flow

around centers of negative (positive) hhi in the per-

spective of Fig. 5 and subsequent figures.

Note the development of negative hhi in the de-

scending flow and positive hhi in the reascending flow

is similar to that shown in Fig. 3 of Rotunno and

Smolarkiewicz (1995). Themain difference is that, in the

latter non-Boussinesq case, the positive vorticity is much

smaller in magnitude than the negative, whereas in the

present Boussinesq example, the two have nearly equal

magnitude. Hence, in the present Boussinesq case, the

flow in the incipient hydraulic jump is more of a vortex

dipole than a reverse-roller (negative hhi dominant)

flow that is a hallmark of the water–air system.

The further evolution of the flow toward a statistical

steady state is shown in Fig. 6. Prominent features of the

flow shown in Fig. 6a are the entrainment of warmer air

from the upper layer into the colder lower layer and the

reverse process of colder lower-layer air being mixed

with warmer upper-layer air. Negative hhi, produced on

the downward-sloping transition layer upstream, is

transported into the lower layer while positive hhi,
produced on the upward-sloping part of the split tran-

sition layer, is transported into the upper layer. In this

period, the flow transitions to fully three-dimensional

turbulence. A statistical steady state is reached by ap-

proximately t 5 30min (Fig. 6b).

Figure 7a shows the time- and y-averaged fields (in-

dicated by hci, where c is a generic variable) over the

period t 5 30260min, during which the flow is approx-

imately statistically stationary. The dipole structure in

the vorticity field, evident in the initial evolution (Fig. 5),

persists into the statistically steady state; the leading

edge of this structure defines the NSE analog of

FIG. 5. Isolines of hui and vectors as in Fig. 3 displayed on

a smaller domain, with shaded regions indicating the y vorticity

component hhi at t 5 (a) 1 and (b) 11min.

FIG. 4. As in Fig. 3, but with a thin inversion and for t5 (a) 7, (b) 10,

(c) 14, (d) 30, and (e) 60min.
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the hydraulic jump. Figure 7b shows the time- and

y-averaged turbulent kinetic energy:

tke5
hu02 1 y02 1w02i

2
, (11)

where a prime indicates a deviation from the time and y

average. The tke field indicates that the region enclosed

by the vortex dipole is turbulent with the most intense

turbulence associated with the lower shear layer.

Figure 7b indicates the layer-average tke ’ 10m2 s22

(near x 5 1 km), while Fig. 7a suggests hui ’ 10m s21;

the ratio tke=hui2 ’ 0:1, which is comparable to ob-

served values (Townsend 1976, their Fig. 6.6a). In-

spection of the time-dependent results (not shown)

indicates instabilities growing and advecting along this

lower shear layer with distance from the point where it

enters the cool air (near the base of the obstacle). The

instability leads to turbulence, which diffuses the vor-

ticity (see below) and mixes the warm air into the cool

layer. This split/dipole flow (Fig. 7a), as well as the dis-

tribution of tke (Fig. 7b), are similar to those found by

EQ08 (their Figs. 7–9).

We have carried out two further simulations (not

shown) with the grid spacing either halved or doubled;

the structure of the hui and tke fields is generally the

same, both qualitatively and quantitatively. Moreover,

spectra computed in the spanwise (homogeneous) di-

mension in the turbulent regions for simulations with 10-

and 20-m grid spacings have at least a decade of a k25/3

structure (k is the wavenumber), indicating a turbulent

flow with an energy cascade.

c. Analysis

As a consequence of the two-dimensionality of the

obstacle [see (3)], the initial evolution of the NSE so-

lution is two-dimensional (Fig. 5). Moreover, as the

initial-state in (9) is designed to approximate the two-

layer state treated by the SWE, the dynamics of SWE,

which is based on the hydrostatic (long wave) approxi-

mation, gives a qualitatively correct picture of the early

flow evolution; however, as the interface between the

lower and upper layers steepens and tends toward a

discontinuity, the long-wave approximation locally

breaks down. Although one can continue the SWE in-

tegrations by employing a ‘‘shock’’ condition at the lo-

cation of the discontinuity formation (Stoker 1957), in

the two-layer system, the choice of shock condition de-

pends on the internal dynamics of the shock/hydraulic

jump (Klemp et al. 1997, section 6), which cannot be

obtained without appeal to either laboratory observa-

tions and/or numerical integrations using a less ap-

proximate set of equations as done here. In this section,

we present an analysis of the leeside hydraulic jump in

the NSE from its formation through to its statistical

steady state.

FIG. 7. (a) As in Fig. 5, but for the t 5 30–60-min average and

(b) the turbulent kinetic energy averaged over the same period.

FIG. 6. As in Fig. 5, but for t 5 (a) 15 and (b) 30min.
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The evolution of the y-averaged motion in the present

case can be viewed through the equations for hhi, which
derives from the y component of the curl of (6):

›
t
hhi52›

x
hbi2= � hJhi , (12)

where

Jh 5 (uh2 yj2 n›
x
h,wh2 yz2 n›

z
h ) (13)

and (j, z) are the respective (x, z) components of the

vorticity vector (j, h, z). The first term on the rhs of (12)

represents baroclinic generation, and the second term is

the generalized transport term, with Jh representing the

advective plus viscous flux of h. Equations (12) and (7)

along with the inversion given in (10) together constitute

the main diagnostic tool used here.

The mathematical connection between the SWE- and

the NSE-based vorticity equation was reviewed in

Rotunno and Smolarkiewicz (1995, section 2c). Briefly,

in a two-layer nonturbulent fluid, all the terms in (12)

vanish except at the interface between the upper and

lower layers, at which h is produced baroclinically and

advected. Figure 2 of Rotunno and Smolarkiewicz

(1995) contains a schematic diagram of the vorticity

distribution implied in the SWE solution for a flow like

that shown in Fig. 2; note the leeside dominance of h, 0

produced where the interface ›xh, 0 (which implies

2›xb, 0).

Figure 8 shows terms in (12) with the baroclinic term

in black contours and the transport term in color shad-

ing. At t5 11min (Fig. 8a), the flow is not yet turbulent,

and the y-averaged fields are equal to the unaveraged

fields at any y location. Note first that baroclinic gen-

eration is negative on the descending isentropes over the

lee slope and that this generation is exactly cancelled3 by

transport to the local negative minimum h seen in

Fig. 5b. The rest of Fig. 8a describes the continuing

evolution of h through baroclinic generation and ad-

vection. A notable feature of this evolution is the re-

versed flow induced [via (10)] by the distribution of

h, 0 (Fig. 5b); this reversed flow overturns the transi-

tion layer and leads to its splitting into an upward-tilted

branch, which baroclinically produces positive h, in ad-

dition to the upstream, downward-tilted branch, which

produces negative h. The absence of turbulent diffusion

and weak viscous dissipation at this stage indicate no

permanent change to the flow downstream (EQ08,

p. 3152).

In the statistically steady state, Fig. 8b shows that the

time- and y-averaged baroclinic generation and trans-

port upstream of the hydraulic jump continue to act just

as they did in the earlier evolution of the flow. However,

in and downstream of the hydraulic jump, these terms

are nearly zero, consistent with a statistically steady

state. To obtain a better understanding of how these

terms sum to zero, we consider that, assuming statistical

stationarity,

hJhi5 ðhuihhi1 hu0h0 2 y0j0i2 n›
x
hhi, hwihhi

1 hw0h0 2 y0z0i2 n›
z
hhiÞ, (14)

where hyi5 0 because of statistical homogeneity in the y

direction. Figure 9 shows the average from x 5 0 to x5
1 km (the box in Fig. 8b) of the individual contributions

to 2= � hJhi, as well as the time-averaged baroclinic

generation 2›xhbi. This figure makes it clear that the

main balance in (12) in the statistically steady state

is between the mean- and eddy-advection terms,

FIG. 8. Budget for hhi (a) at t 5 11min and (b) averaged over

t 5 30–60min, with the transport terms in color shading and

the baroclinic term in contour lines indicating values of

20:5, 0:5, 1:0, 2:0, 3:03 1023 s22, with the negative value indicated

by the dashed contour line. Note that before the onset of turbu-

lence in (a), hJhi5 Jh. The box in (b) indicates the domain over

which the time- and x-averaged contributions to (12) are given in

Fig. 9.

3 The thin layer of transport on the obstacle corresponds to the

vorticity produced by the free-slip condition (Epifanio 2007). This

vorticity has very little effect on the flow and is not included in this

description.
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with buoyancy and direct friction playing relatively

minor roles.

In the classical theory of the hydraulic jump (Rayleigh

1914), a single layer is envisioned to undergo a discon-

tinuous adjustment from supercritical (u=
ffiffiffiffiffiffi
gh

p
. 1) to

subcritical (u=
ffiffiffiffiffiffi
gh

p
, 1) flow. Mass and momentum are

conserved through the discontinuity, but energy is dis-

sipated. From the time- and y-averaged NSE [(6)–(8)],

the following energy equation can be formed:

hui � =B52
g

u
00

hz
c
iQ

t
1 hui � F , (15)

where

B5
1

2
hui � hui1 hPi2 hbihz

c
i , (16)

Q
t
52›

x
hu0u0i2 ›

z
hw0u0i , (17)

F5 ð2›
x
hu0u0i2 ›

z
hu0w0i,2›

x
hu0w0i

2 ›
z
hw0w0iÞ, (18)

where zc is the height of the streamline; direct viscous

effects on the mean variables are negligible and thus not

included in (17) and (18).4 The quantity B is the Ber-

noulli function composed of time- and y-averaged vari-

ables; (15) indicates the variation of B along time- and

y-averaged streamlines will occur as a consequence of

turbulent heat and/or momentum transfer. Figure 10a

shows that the sum of the terms on the rhs of (15) act

to decrease B along the flow and that the effect is

concentrated on the lower branch of the flow where the

tke is the strongest (Fig. 7b). To compute the heating

term (not shown), we estimate the displacement of

the streamlines that reach to the turbulent zone is

hzci’21000m; the heating term has both positive and

negative contributions but is generally smaller in mag-

nitude than the frictional term in (15). Dissipation in the

lower layer in associationwith a upstream-directedwave

overturning is consistent with the two-dimensional pa-

rameterized diffusion experiments of Klemp et al. (1997,

their Fig. 16). These results are also qualitatively very

similar to those shown in Figs. 11d and 11e of EQ08 in

the analysis of Bernoulli function decreases in the case

of a breaking mountain wave.

A related diagnostic quantity discussed in the litera-

ture (EQ08) is the turbulent cross-stream flux of po-

tential vorticity (v � =u):

JPVy 5 ›
z
huiF

x
2 ›

x
huiF

z
2 hhiQ

t
. (19)

Figure 7b shows that JPVy , 0 and is also maximized

along the lower branch of the split flow, again in manner

that is qualitatively similar to that found in EQ08 (their

Fig. 13a).

4. Summary and conclusions

Figure 11 summarizes the evolution of the flow lead-

ing to the statistically steady leeside hydraulic jump.

FIG. 10. Analysis of the time- and y-averaged (a) Bernoulli loss [rhs

of (15)] and (b) spanwise flux of potential vorticity JPVy in (10).

FIG. 9. Average from x5 0 to x5 1 kmof the contributions to the

rhs of (12) in the statistically steady state over thewindow indicated

by the box in Fig. 8b. The baroclinic production term is indicated

by the open squares; from (14), the individual contributions to

2= � hJhi are the mean transport (filled circles), eddy transport

(open circles), and the mean viscous term (filled squares).

4 It may be shown that F5 ð2hw0h0 2 y0z0i, hu0h0 2 y0j0iÞ so that

the turbulent diffusion of hh0i in Fig. 9 can be interpreted in terms

of the derivatives of the eddy momentum fluxes.
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Consistent with the time-dependent SWE solutions, the

time-dependent NSE solutions for the nearly identical

physical problem exhibit the same tendency for leeside

isentrope steepening (Fig. 11a). In contrast with the

SWE, the NSE can be integrated beyond this point to

reveal the internal dynamics of the leeside hydraulic

jump. Figure 11b illustrates that this internal dynamics

can be described by the baroclinic production of

spanwise vorticity h, 0 along the descending leeside

u surfaces; the advective transport of h, 0 toward the

steepening isentropes induces reversed flow, which leads

to isentropic overturning and a division of the initial

transition layer into two branches characterized by a

split flow–vorticity dipole with negative hhi below and

positive above. The overturning isentropes give rise to

static instability (›zu, 0), and the flow downstream of

this vorticity dipole eventually breaks into turbulence

motions. Figure 11c illustrates that in the statistically

steady state, the zone downstream of the split flow–

vortex dipole is characterized by a balance between

mean advection and turbulent diffusion of spanwise

vorticity. Comparing Figs. 11b and 11c shows that the

split flow–vortex dipole has its origin in the initially in-

viscid, adiabatic flow evolution and is maintained by

essentially the same baroclinic production/advection

mechanisms throughout the integration.

A few features of the foregoing description deserve

extra emphasis. First, negative baroclinic production of

vorticity along the descending leeside isentropes is the

basic driving mechanism for the lower shear layer; this

layer is unstable and has maximum turbulent kinetic

energy (Fig. 7b). The negative vorticity in this lower

layer induces via (10) the reversed/stagnant flow that

splits the layer, leading to the upward-tilted isentropes

at the leading edge of the jump (Fig. 7a). Hence, the

upper branch is a reaction to the main driving influence

of the lower-branch dynamics. The limited distance over

which positive vorticity is created baroclinically in the

upper branch (Fig. 7a) implies weaker positive vorticity,

upper-branch shear, and turbulence, as compared to the

lower branch. Second, the classical model of a hydraulic

jump (Rayleigh 1914), based on the shallow-water

equations, has a layer of uniform flow downstream,

while the present simulations and laboratory studies

[cited in Rotunno and Smolarkiewicz (1995)] indicate a

flowminimum near the top of the lower layer. Third, the

statistically stationary flow shown in Fig. 7a bears no

resemblance to downstream rotors, which have in the

past been associated with hydraulic jumps [see the re-

cent review in Strauss et al. (2016)] since there is

accelerated wind at the lower surface rather than a

stagnation point. Rather, the internal dynamics of the

hydraulic jumps simulated herein appears most similar

to that of a breaking mountain wave (cf. Fig. 7a with

Fig. 7 of EQ08) with respect to both the mean flow and,

as mentioned several times, the analysis of the associ-

ated turbulence.

In summary, the viewpoint promoted herein is that the

fundamental mechanisms for the formation of the leeside

hydraulic jump are encoded in the inviscid, adiabatic

equations of motion (shallow water or Navier–Stokes)

FIG. 11. (a) Schematic summary of the simulated flow associated

with the hydraulic jump for the initial evolution in which long-wave

theory predicts isentrope steepening. (b) As in (a), but for the early

(preturbulent) evolution in which baroclinicity produces negative

vorticity on the lee slope, followed by downward and leeward

transport. The implied formation of reversed flow sets up bar-

oclinicity of the opposite sign above, and thus, a vortex dipole is

formed. (c) As in (a), but for the statistical steady state in which

vorticity on the upstream side of the hydraulic jump remains

steady. On the downstream side, the vorticity distribution is gov-

erned by mean transport and turbulent diffusion. In all panels,

green and red isolines are, respectively, the bounding and central

isentropes of the transition layer.
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despite the common association between hydraulic

jumps and energy dissipation at steady state. The pres-

ent shallow-water equation simulations of the formation

of the leeside hydraulic jump highlight its origins as the

formation of a discontinuity that can be understood

through long-wave dynamics. Integrations of essentially

the same physical problem using the Navier–Stokes

equations reveals the internal dynamics of the long-

wave-theory-predicted discontinuity as the evolution

into a split-flow–vortex dipole; instability within this

structure leads to turbulence and energy dissipation.

The importance of understanding the chain of causality

is especially important in characterizing the causes of

lee-vortex formation in two-layer flow. The latter is the

subject of Part II.
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