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ABSTRACT

This study considers a two-layer fluid with constant density in each layer connected by a layer of contin-

uously varying density for flows past topography in which hydraulic jumpswith lee vortices are expected based

on shallow-water theory. Numerical integrations of the Navier–Stokes equations at a Reynolds number high

enough for a direct numerical simulation of turbulent flow allow an examination of the internal mechanics of

the turbulent leeside hydraulic jump and how this mechanics is related to lee vortices. Analysis of the sta-

tistically steady state shows that the original source of lee-vortex vertical vorticity is through the leeside

descent of baroclinically produced spanwise vorticity associated with the hydraulic jump. This spanwise

vorticity is tilted to the vertical at the spanwise extremities of the leeside hydraulic jump. Turbulent energy

dissipation in flow through the hydraulic jump allows this leeside vertical vorticity to diffuse and extend

downstream. The present simulations also suggest a geometrical interpretation of lee-vortex potential-

vorticity creation, a concept central to interpretations of lee vortices based on the shallow-water equations.

1. Introduction

This two-part study is motivated by the desire to

develop a better understanding of the physical relation

between the shallow-water equations (SWE) and the

Navier–Stokes equations (NSE) in their representations

of two-layer stratified flow past topography. In a fluid

composed of two layers of different, but constant, den-

sities, all the vorticity is concentrated at the interface

between the two layers; this view of vorticity is compli-

cated in cases where the generally horizontally oriented

density interface forms a discontinuity in its vertical

displacement (i.e., a ‘‘hydraulic jump’’), such as can

occur in the SWE (Rotunno and Smolarkiewicz 1995).

In this two-part study, we examine numerical solutions

of the three-dimensional NSE for a two-layer fluid,

with a thin connecting layer of continuous density vari-

ation, flowing past topography for situations in which

solutions to the SWE indicate hydraulic jumps.

Hydraulic jumps play a critical role in solutions to the

SWE exhibiting lee vortices (counterrotating eddies

immediately downstream of a mountain barrier), as

shown in Fig. 1 (from Epifanio 2014). These solutions

are classified into two distinct types: one where the in-

terfacial height remains above the obstacle (Figs. 1a,b),

and the other, where the density interface is pierced by

the obstacle (Figs. 1c,d). In the former case, two oppo-

sitely signed bands of vertical vorticity extend down-

stream from the spanwise termination points of a leeside

hydraulic jump (Fig. 1b); in the latter case, these bands

extend downstream from hydraulic jumps on the flanks

of the obstacle where it pierces the interfacial layer

(Fig. 1d). Owing to the added complexity of the nu-

merical solution to the SWE for the case where the

obstacle pierces the interface (e.g., Schär and Smith

1993, their appendix B), the present two-part study is

restricted to the case where the interface remains above

the obstacle as in Figs. 1a and 1b. The pierced-layer case

is briefly discussed in section 3c.

In the representation of two-layer flow in the SWE,

the vertical vorticity z is that of the lower layer (of

thickness h) and is only nonzero if the potential vorticity

z/h is nonzero, which, in the flows over frictionless to-

pography under consideration, can only occur when

there is internal energy dissipation. In the case of

the interfacial layer remaining above the obstacle, the

solution to SWE has z/h 5 0 until the flow passes

through the horizontal discontinuity in the interfacial-

layer height (the hydraulic jump); energy dissipation in

the flow through the hydraulic jump produces a dipole of

z/h and thus (because h . 0) oppositely signed bands of

z extending downstream from the spanwise extremities

of the hydraulic jump (Fig. 1b). Hence the conclusion

from the SWE is that lee vortices are produced byCorresponding author: Richard Rotunno, rotunno@ucar.edu
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dissipative processes associated with the hydraulic jump

(Schär and Smith 1993, section 2d).

The critical role of hydraulic jumps in the SWE

for lee-vortex formation motivates the present study.

Rotunno and Bryan (2018, hereafter Part I) examined

the flow past a two-dimensional (no spanwise variation)

obstacle for cases in which the SWE produce a leeside

hydraulic jump. The solutions to the NSE for this flow

indicate the hydraulic jump is a leeside wave in the

thin density-transition layer that overturns backward

(against the ambient flow) toward the obstacle leading

to a time- and spanwise-mean rotary motion and tur-

bulence; the spanwise vorticity for the mean rotary

motion is supplied by baroclinic vorticity production in

the thin interfacial layer as it descends on the leeside of

the obstacle and flows into the wave (Fig. 11 of Part I).

Here in Part II we examine direct numerical solutions of

the NSE to study the same two-layer fluid as in Part I,

but for flow past a three-dimensional obstacle (limited

spanwise extent). These solutions allow an analysis of

the origin of lee-vortex vorticity and its relation to the

continuous-fluid version of the hydraulic jump in a fully

resolved turbulent flow.

In section 2a, we briefly review the experimental setup

for the numerical solutions of the NSE which, except for

the three-dimensional obstacle, is identical to that in

Part I (where the differences between hydraulic jumps

in the traditional water–air system and the atmospheric

FIG. 1. Lee vortices in free-slip shallow-water flow. Shown are (a) streamlines and (b) vertical vorticity for a case

in which the fluid layer completely covers the obstacle, with supercritical flow along the lee slope. (c),(d) As in

(a) and (b), but for a case in which the obstacle pierces the fluid surface, causing the flow to split on the upstream

face. Heavy solid lines in all panels show the positions of hydraulic jumps. The blank region in (c) shows the part of

the obstacle above water level. After Schär and Smith (1993). [Figure and caption taken from Epifanio (2014).]
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case are discussed). In section 2b we present the results.

Our analysis of the lee vortices found in the NSE in

terms of vorticity and Ertel potential vorticity is given in

section 3 and concluding remarks in section 4.

2. Two-layer flow past a submerged obstacle in
the NSE

a. Numerical setup

The numerical setup for the present numerical ex-

periment is described in Part I; the only changes here are

the spanwise-varying topography and a spanwise dou-

bling of the integration domain keeping the same grid

resolution (Dx 5 Dy 5 Dz 5 20m). For this study, the

obstacle height H(x, y) is specified following (7) and (8)

of Epifanio and Rotunno (2005) with parameters h0 5
1000m (maximum obstacle height), L 5 500m (a hori-

zontal scale) and b 5 3 (which determines the spanwise

extent of the obstacle; b 5 1 produces a circular

obstacle). Figure 2 shows the obstacle and integration

domain in a three-dimensional perspective. As in Part I,

the domain in the along-flow (x) direction extends

15.36 km with ‘‘open’’ boundary conditions applied at

both ends, while the domain in the vertical (z) direction

extends from the height of the zero-stress topography

z 5 H(x, y) to z 5 3.84 km where there is a zero-stress,

rigid lid. The domain in the spanwise (y) direction ex-

tends 7.68 km with periodicity assumed at the lateral

boundaries.

The initial potential-temperature profile is given by

(9) of Part I and is shown in the plane y 5 3.84 km in

Fig. 2; the profile is similar to the two-layer idealization

of the SWE except for the finite-thickness transition

layer connecting the lower-fluid to the upper-fluid con-

stant potential temperatures. The initial velocity field (u,

y, w) 5 (U, 0, 0), in the Cartesian coordinates (x, y, z),

quickly adjusts to potential flow past the obstacle. As

discussed in Part I, the initial-condition parameters for

the potential-temperature profile, the mountain height

and the upstream velocity, U 5 5ms21, are chosen

based on shallow-water-theory predictions for a sta-

tionary leeside hydraulic jump.

As described in Part I, the numerical simulations

performed for this study are in the category of direct

numerical simulations (DNSs) in which no subgrid tur-

bulence parameterization is used. Using a constant ki-

nematic viscosity and thermometric conductivity (n 5
k 5 1m2 s21), one can estimate the Reynolds number

(Uh0/n) to be approximately 5000—small compared to

the real atmosphere, but large enough to capture tur-

bulence motions without approximation. A spectrum

analysis (not shown) of the vertical velocity in the zone

of high turbulent kinetic energy (Fig. 7b of Part I) in-

dicates that the energy in the largest turbulent scale is

at a wavelength of approximately 1000m and that the

spectrum roughly follows a 25/3 decrease with scale

down to the smallest resolved turbulent scale which is

approximately 100m. The ratio of the grid length (20m)

to the largest turbulent scale is therefore 0.02, which is

within the recommended upper limit of 153 (Reynolds

number)23/4 ’ 0.025 for accurate DNS of free-shear

layers (Moin and Mahesh 1998, p. 554).

b. Results

Figure 3 shows a time sequence of the flow (u, w)

and potential temperature u in a vertical (x–z) cross

section taken along the flow on the obstacle centerline

(y 5 0). Figure 4 shows the same fields except in a hor-

izontal (x–y) cross section at z 5 0.4 km. Figures 3a and

4a show the flow at time t 5 1min after initialization so

that the rapid adjustment to potential flow around the

obstacle is in evidence. Consistent with shallow-water

theory andwith the flow past a two-dimensional obstacle

(Fig. 3 of Part I), the flow in this regime exhibits a leeside

steepening of the isentropes (Fig. 3b) that continues to

isentrope overturning and local flow reversal (Figs. 3c,

4b). As in the 2D case in Fig. 3 of Part I, warm air is

extruded downward and mixes with the cooler lower-

level air; however, in the present case, the initial warm-

air bubble is much smaller and mixes more rapidly. The

flow adjusts to a sequence of such episodes of warm-air

extrusion into, and mixing with, the lower-layer cool air

as illustrated in Figs. 3d and 3e.

Figures 5 and 6 show a windowed-in view of the cen-

terline x–z cross sections of u, flow vectors, and spanwise

FIG. 2. Domain, topography, and initial conditions (at y 5
13.84 km) for the present numerical solutions. Isolines of potential

temperature u in intervals of 1K starting with 289K (green contour

lines, with the 293K contour in red) and vectors representing the

initial velocity (u, y, w) 5 (5, 0, 0) m s21 are shown. The domain

extends 15.36 km in the along-flow (x), 7.68 km in the spanwise (y),

and 3.84 km in the vertical (z) direction.
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vorticity h 5 ›zu 2 ›xw (top panels) along with x–y

sections of u, flow vectors, and vertical vorticity z 5
›xy 2 ›yu at z 5 0.4 km.

Figure 5a shows a snapshot of the flow at t5 11min;

the flow shown in the upper panel is qualitatively

similar to that expected from the simulations past a

2D obstacle shown in Fig. 5 of Part I in which h , 0,

baroclinically generated along the descending isen-

tropes, induces a rotary motion with reversed flow.

The reversed flow splits the layer vertically and

elevates the upper isentropes which then baroclini-

cally produce h . 0 above the reversed flow. The

bottom panel of Fig. 5a shows the isentropes that

extend below z 5 0.4 km and the flow that advects

u into two local maxima collocated with the two

members of the dipole in z. We note that at this

time there is no turbulence in evidence and that,

therefore, the flow that results from this initial-value

problem produces lee vortices in the absence of tur-

bulent dissipation. Figure 5b shows that turbulent

FIG. 3. Isolines of the potential temperature u along the flow through the obstacle centerline

(y 5 0) in intervals of 1 K starting with 289K (green contour lines, with the 293K contour in

red) and vectors representing (u, w) for t 5 (a) 1, (b) 8, (c) 11, (d) 50, and (e) 60min.
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motions follow subsequently as the extruded warm

air becomes cut off from its leeside source (top

panel) and the initial z/u anomalies drift downstream

(bottom panel).

Figures 6a and 6b show the next episode of extruded

warm air with baroclinic production of h , 0 and

subsequent mixing (top panels) and the associated

formation and downstream drift of a z dipole (bottom

panels). At this stage the wake turbulence from the

previous episode leads to a much less orderly flow.

Episodes like those illustrated in the previous two

figures continue throughout the simulation. After

approximately 60min, the flow settles into a fully

developed statistically steady turbulent flow shown

in Fig. 7a.

Figure 7b shows the turbulent kinetic energy (tke)

based on the 60–120-min average of 1-min output

data.1 The top panels in Fig. 7 showing the centerline

flow and tke are qualitatively consistent with Fig. 7 of

Part I in the 2D-obstacle case. The bottom panels of

Fig. 7 show that the most intense turbulence is well

correlated with the time-averaged vertical vorticity

downstream of the location where tke and z are gen-

erated (near x ’ 21.0 km).

3. Analysis

a. Vorticity

Analysis of lee-vortex formation in a continuously

stratified fluid by Schär and Durran (1997, p. 544) con-

firms that baroclinic generation and tilting as proposed

by Smolarkiewicz andRotunno (1989) andRotunno and

Smolarkiewicz (1991) account for these vortices during

the start-up phase, which lasts for approximately one

advective time scale (4L/U ’ 6.67min in the present

case). This first period is called the ‘‘inviscid phase’’

(analogous to the results shown in Figs. 3a–c and 5a)

while the second and much longer period analyzed by

Schär and Durran (1997) is called the ‘‘dissipative

phase’’ (analogous to the present results shown in

Figs. 3d and 3e and Figs. 6 and 7). In this latter phase,

Schär and Durran (1997) analyze the lee vortices in

terms of the Ertel potential vorticity, which in its

Boussinesq form is

PV5v � =u (1)

wherev5 (j, h, z) is the vorticity vector. As argued in

Rotunno et al. (1999), analysis of the lee vortices

solely in terms of PV leaves unanswered the question

of how v is created in the steady-state flow as fluid

parcels traverse the obstacle from upstream where

v5 0. This section provides an answer to this question

for the case at hand based on the present numerical

simulations.

To isolate the essential source(s) of the vertical

vorticity of the lee eddies, it is convenient to work with

the flux form of the vector vorticity equation (section 5

of Haynes and McIntyre 1987) which has the property

that the flux of vorticity in its own direction is zero.

Consequently, the vertical flux of vertical vorticity is

identically zero and the present analysis reduces to

FIG. 4. Vectors representing (u, y) at z5 0.4 km for t5 (a) 1 and

(b) 11min along with vertical vorticity z (color shading) and iso-

lines of potential temperature u as in Fig. 3.

1 Clearly a longer averaging period and/ormore frequent outputs

would be required to produce more spatially homogeneous distri-

butions of these fields.
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determining the horizontal fluxes of vertical vorticity

into and out of an area surrounding a lee vortex.

Following Rotunno et al. [1999, their (2.14)], the time-

averaged, flux-form equation for the vertical component

of vorticity in a statistically steady flow is

›
x
Z

zx
1 ›

y
Z

zy
5 0 (2)

where (Zzx, Zzy)5 (u z2w j2 n=2y, y z2wh1 n=2u)

and the overbar indicates the (60–120min) time aver-

age. The viscous terms are small and will be neglected in

the following. Because there is no net vertical vorticity

(i.e., circulation) created on a level circuit enclosing the

entire disturbed flow, we focus here on the flow in the

half-space y , 0.

The flow in the square shown in the bottom panel of

Fig. 7a is chosen for detailed study since z5 0 on

its upstream side at x 5 21.3 km and flank side at

y 5 21.5 km, and therefore, all the vertical vorticity in

the squaremust flow through its borders at y5 0 and x5
0.2 km. The vertical vorticity flux vector (Zzx,Zzy) in this

square is shown in Fig. 8a. This figure shows a vertical

vorticity flux into the square along y 5 0 and out of the

square along x5 0.2 km. Integrating (2) over the area of

the square at z 5 0.4 km gives

ðy50

y521:5

Z
zx
j
x50:2

dy52

ðx50:2

x521:3

Z
zy
j
y50

dx (3)

since the fluxes are zero on the other two sides and the

limits are given in kilometers. Numerical evaluation of

the rhs yields a value of 28.65m2 s22 while the integral

on the lhs yields 32.86m2 s22. Recognizing the noisy

fields near the right side of the square, we consider a

square with a variable right-side position x̂ so that in-

tegration of (2) over the area of the square gives

ðy50

y521:5

Z
zx
j
x5x̂

dy52

ðx5x̂

x521:3

Z
zy
j
y50

dx ; (4)

the average of (4) from x̂520:2 to 0.2 gives

ðy50

y521:5

hZ
zx
i dy52

�ðx5x̂

x521:3

Z
zy
j
y50

dx

�
(5)

FIG. 5. (top) Windowed-in view of centerline u and flow vectors as in Fig. 3 with the addition of the spanwise

vorticity h in color shading and (bottom) u (green contours), flow vectors, and vertical vorticity z at z5 0.4 km for

t 5 (a) 11 and (b) 17min. The horizontal line in the top panels shows the z5 0.4 km level displayed in the bottom

panels.
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where the angle brackets indicate the average. With this

adjustment, the integral on the lhs of (5) then yields a

value of 28.35m2 s22 while the integral on the rhs is

29.21m2 s22 which indicates that the equality (5) holds

to an accuracy of ;3%.

To make progress in the interpretation of (2),

we decompose the flow into time-mean and fluctuating

components given by x5x1 x0 where x0 5 0. With this

decomposition, (Zzx, Zzy)5 (Zzx, Zzy)1 (Z0
zx, Z

0
zy), where

(Zzx, Zzy)5 (u z2w j, y z2wh) and (Z0
zx, Z

0
zy)5

(u0z0 2w0j0, y0z0 2w0h0). With these definitions, (2)

becomes

›
x
Z

zx
1 ›

y
Z

zy
52(›

x
Z0

xz 1 ›
y
Z0

zy) . (6)

Note that the rhs is equivalent to ›xFy 2 ›yFx where

Fi 52›u0
iu

0
j/›xj is (minus) the divergence of the Reynolds

stress.2

Our analysis of (6) (not shown) indicates that the

Reynolds stress terms are relatively small at the level of

the square (z5 0.4 km, Fig. 7a) as well as at the level of

maximum tke (z5 0.2 km, Fig. 7b) and themain balance

is between the terms on the lhs. This conclusion is

consistent with the finding of Epifanio and Qian (2008,

their section 5a) in a large-eddy simulation of a large-

amplitude mountain wave that the direct effects of

the Reynolds stress on the mean-flow modification

are negligible. Furthermore, our analysis indicates that

(Zzx, Zzy) can be approximated by (u z, 2wh); Fig. 8b

shows close quantitative agreement of the exact and

approximate forms of the vertical-vorticity flux and

motivates the evaluation of the following approximate

form of (3),

ðy50

y521:5

hu zi dy’
ðx50:2

x521:3

(wh)j
y50

dx. (7)

Figure 9 shows the integrands in (5) and (7); the

cross-stream flux of vertical vorticity (Fig. 9a) is

closely followed by its approximation while the down-

stream flux is more variable (Fig. 9b). Numerical eval-

uation of (7) yields a rhs value of 33.66m2 s22 while the

lhs yields 30.25m2 s22 which indicates that (7) holds to

an accuracy of ;10%. From the foregoing analysis we

FIG. 6. As in Fig. 5, but for t 5 (a) 23 and (b) 29min.

2 The indices 1, 2, and 3 for i or j correspond to the Cartesian

coordinates (x, y, z) and velocity components (u, y, w).
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conclude the z exiting on the downstream side of the

square is almost entirely due to the cross-stream flux at

y 5 0 approximated by 2wh.

From Part I (section 2c) the equation for h in statis-

tically steady flow can by be written as

›
x
Z

yx
1 ›

z
Z

yz
52›

x
b2 (›

x
Z0

yx 1 ›
z
Z0

yz) , (8)

where b 5 gu/u00, (Zyx, Zyz)5 (uh2 y j1 n=2w,

wh2 y z2 n=2u) and viscous effects are small as shown

below.3 Consistent with (6), the eddy-correlation term is

equivalent to ›zFx 2 ›xFz. Figure 10 shows the terms in

(8) along y 5 0 and the flow vectors; the only place

where there is significant baroclinic generation is within

the leeside descent region. In the region upstream of the

location where h reaches a minimum (marked by hm) in

Fig. 10, the flow is essentially laminar, hence (8) may be

written along y 5 0 as

u›
x
h1w›

z
h52›

x
b . (9)

Equation (9) can be expressed as usdh/ds52›xb where

s is the distance and us is the speed along a streamline;

this equation may be formally integrated to give

h5
Ð
s
2›xbds/us, along a streamline from an upstream

point where h 5 0. Choosing the streamline that goes

down through the zone where 2›xb , 20.5 3 1023 s22

in Fig. 10, one can estimate that ds ’ 500m and us ’
5ms21 and therefore h ’2›xbds/us ’20.05 s21, which

is close to the values shown in Fig. 7a.

As one can see in the top panel of Fig. 7a, the field of

h becomes more diffuse with distance downstream;

thus wh is nearly zero at z 5 0.4 km and therefore

cannot cancel out the positive contributions from the

downward transport of h, 0 in the integral on the rhs

of (5). In the turbulent layer below z ’ 0.4 km, Fig. 10

shows that the main balance in (8) is between mean

and turbulence transport of h. For clarity, Fig. 11

shows the x-averaged values of the terms in (8) which

indicates that the time-mean downstream transport

of negative h (,0) is balanced by turbulent diffu-

sion (.0). A similar analysis of (6) downstream of the

FIG. 7. (a) As in Fig. 5, but for the 60–120-min average and (b) the tke averaged over the same period; note that the

horizontal section is shown at z 5 0.2 km. The square in bottom panel of (a) shows the analysis region for Fig. 8.

3 Note that Zyz 52Zzy as a consequence of the antisymmetry of

the vorticity flux tensor Zij (Haynes and McIntyre 1987).
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square shown in Fig. 7a (not shown) indicates a bal-

ance of time-mean downstream advection and turbu-

lent diffusion of z.

In summary, the analysis leading to (7) shows that

the vertical vorticity z of the lee vortices is directly re-

lated to the time-mean downward transport of nega-

tive spanwise vorticity wh. 0 while the analysis of

the flow using (9) and Fig. 10 show that the downward-

transported negative h is baroclinically generated.

Therefore the vertical vorticity of the lee vortices zmust

originate through the inviscid, adiabatic process of bar-

oclinic generation of spanwise vorticity h in the leeside

descending stratified flow. Turbulent diffusion of h

downstream is important as it reduces contributions

from negative values ofwh that would, in the absence of

turbulent diffusion, bring the integral on the rhs of (5) to

zero, and therefore, the leeside vertical vorticity z would

not extend downstream. This conclusion is consistent

with that from Rotunno et al. (1999, section 5) based

on a simulation of lee vortices in a continuously strati-

fied fluid with parameterized turbulent diffusion.

Before leaving this section, the conclusion from the

analysis of (6) that the Reynolds stress terms are small

allows a simple computation of the terms in the advec-

tive form of the vertical vorticity equation in terms of the

time-mean fields, namely,

u � =z5 j›
x
w1h›

y
w1 z›

z
w (10)

where the first two terms on the rhs are called the

‘‘tilting’’ terms and the last term on the rhs is called the

‘‘stretching’’ term. Figure 12 shows the tilting and

stretching terms at z 5 0.2 and z 5 0.4 km for the sta-

tistically steady flow; the stretching term is dominant at

z 5 0.4 km while the tilting term is negative; at z 5
0.2 km, the tilting term is positive and dominant while

the stretching term is small. These outcomes are ex-

pected based on the analysis of Epifanio and Durran

(2002) of a leeside breaking mountain wave (identi-

fied as a hydraulic jump) in a continuously stratified

flow. Their analysis of fluid-parcel trajectories passing

FIG. 8. Vertical vorticity z (shading) and vertical vorticity flux

vectors (Zzx, Zzy) at z 5 0.4 km in the analysis square shown in

Fig. 7a based on (a) the exact form (2) and (b) the approximate

form (u z, 2wh).

FIG. 9. (a) Cross-stream flux of vertical vorticity Zzyjy50 and

(b) averaged downstream flux of vertical vorticity hZzxi using the

exact form (black lines) and the approximate form (green lines)

corresponding to the integrands in (7).
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through the leeside vertical vorticity maxima indicate

that during the parcel’s leeside descent, it acquires

horizontal vorticity through baroclinicity which is sub-

sequently tilted to become vertical vorticity which is, in

turn, stretched at the across-stream end points of the

hydraulic jump (Epifanio and Durran 2002, p. 1174).

The next section will provide further information on the

structure of the vorticity distribution in the present

simulated hydraulic jump.

b. Potential vorticity

With the present direct numerical solutions of the

NSE, we are in position to make a connection between

the foregoing analysis of the lee-vortex v and PV.

Following Epifanio andQian (2008, section 5b), we look

at the potential vorticity (1) defined as

PV5v � =u . (11)

We note that the potential vorticity as defined in

(11) is the quantity whose conservation equation re-

sults from the curl of the time-averaged momentum

equation and the gradient of the time-averaged po-

tential-temperature equation. Figure 13 shows PV at

z 5 0.4 km in the same window as the bottom panel

of Fig. 7a. As expected from the SWE solutions

(Fig. 1b), there is a dipole of PV associated with the

lee vortices.

The evolution equation for PV is

›
t
PV1= � J5 0 (12)

where the PV-flux vector is defined as

J5uPV1=u3F2vQ . (13)

[Epifanio and Qian 2008, their Eq. (24)]; in this defini-

tion F is (minus) the divergence of eddy-momentum flux

and Q is (minus) the divergence of the eddy-heat flux.

As with the equation for z, the y component of J is a

central element in understanding the origin of the PV

dipole. For steady-state flow, (12) reduces to = � J 5 0

and therefore a cross stream flux Jy , 0 at y 5 0 is re-

quired to maintain a PV dipole downstreamwith PV. 0

for y, 0. At y5 0, we expect by symmetry that y5 0 and

the equation for u is

u›
x
u1w›

z
u5Q . (14)

Under these conditions we have at y 5 0

J
y
5 (F

x
2wh)›

z
u2 (F

z
1 uh)›

x
u . (15)

Figure 14a shows that Jy(y 5 0) reaches a negative

minimum along the axis of the maximum downward

excursion of the leeside isentropes. Figures 14b and

14c show the frictional and heating contributions to

Jy, J
F
y , and JQy . Although these two components both

contribute to the magnitude of Jy, the structure JQy
seems to best explain that of Jy. Figure 14 taken to-

gether with (15) suggests a close connection with the

analysis of the z from Fig. 9, which is the importance

of time-mean transport of h. In the following we

explore this connection from a geometrical point

of view.

FIG. 10. Budget for h at y5 0 with the time-mean transport term,

2›xZyx 2 ›zZyz, in blue-to-red color shading; the eddy-flux term,

2›xZ
0
yx 2 ›zZ

0
yz, in the color contours (20.002,20.001, and20.005

in blue and 0.0005, 0.001, and 0.002 in red); and the baroclinic term,

2›xb, indicated by the single dashed black contour line of 20.5 3
1023 s22. The hm on the leeside of the obstacle indicates the loca-

tion of the negative minimum of h. The red line corresponds to the

location of the square shown in the bottom panel of Fig. 7a. The

rectangle indicates the window for the x-averaged terms shown

in Fig. 11.

FIG. 11. Budget for h at y 5 0 averaged from x 5 20.5 to x 5
0.5 km as a function of z showing the transport due to the time-

mean fields, 2›x(uh2 y j)2 ›z(wh2 y z); the time-mean eddy

term, 2›x(u0 h0 2 y0 j0)2 ›z(w0 h0 2 y0 z0); the baroclinic term,

2›xb; and the viscous term, n(›xx 1 ›zz)h, where n 5 1m2 s21.
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The definition PV in (1) is a measure of the degree to

which v intersects surfaces of constant u, or in other

words, the degree to which u varies along a vortex line,

namely,

PV5 jvjdu
dl

, (16)

where dl is an infinitesimal distance along a vortex line.

The following three-dimensional analysis makes exten-

sive use of (16), but using v and u.

Figure 15 shows a series of vortex lines that go through

the locations of minimum h at y 5 0 (see the top panel

of Fig. 7a); the color of the vortex line indicates the local

value of u. Vertical (x–z) cross sections of u (shaded) for

z , 1.25 km in the planes at y 5 0 and y 5 1.9 km allow

one to see the location and u of three of the vortex lines

as they enter the display domain at y 5 1.9 km and z ’
1 km (the height of the undisturbed layer of strong

potential-temperature increase shown in Fig. 2) and

then descend for y. 0 (implying z, 0) and then ascend

for y , 0 (implying z. 0). All four of these vortex lines

display little variation of u along their lengths and thus,

according to (16), PV’ 0.

In contrast, Fig. 16 shows a vortex line that passes

through the PV extrema of Fig. 13. In this case, u in-

creases along the vortex line (PV. 0) for y , 0 and

decreases along the vortex line (PV, 0) for y. 0. Note

that, as with the vortex lines of Fig. 15, this vortex line

passes close to location of minimum h at y 5 0, which

indicates the basic baroclinic source of h is common to

FIG. 12. Tilting and stretching terms in the advective form of the vertical vorticity Eq. (10) at (a),(b) z 5 0.4 km

and (c),(d) z 5 0.2 km. Contours are plotted in increments of 1 3 1024 s22 (zero line not shown, negative values

denoted by dashed lines) while the color shading shows the time-averaged vertical vorticity. The thick blue line in

(c) and (d) shows the outline of the obstacle at z 5 0.2 km.
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vortex lines with and without significant PV. Note also

that the vortex line in this case forms a loop that con-

nects the lower distribution of h, 0 to the upper dis-

tribution where h. 0 shown in the upper panel of

Fig. 7a. Also shown for comparison is a vortex line

from Fig. 15.

Figure 17 shows the vortex lines from Fig. 16 together

with the isosurface u5 289K. Figure 17a suggests the

following interpretation. The baroclinically produced

h, 0, which forms the lower portion of these vortex

lines, induces the spanwise rotary motion that continu-

ally transports the isosurface of u back toward the ob-

stacle, thus wrapping the isosurface around the lower

portion of the vortex line and thereby producing a u

gradient along it. The vortex line thus descends through

the u surface for y . 0 and ascends through it for y , 0

(Fig. 17b)which, according to (16), implies a dipole in PV.

The vortex lines shown in Fig. 15 are consistent with

those found in the inviscid, adiabatic linear theory of

Smolarkiewicz and Rotunno (1989, their Fig. 2b); how-

ever, the one in Fig. 16 is not. As demonstrated above,

this vortex line loops more or less vertically through an

isentropic surface and thus has significant gradients of

potential temperature along its length and therefore

significant potential vorticity. To understand the origin

of this looping vortex line, we examine the vortex lines

and isosurfaces of u at the time when the leeside re-

versed flow first forms (Fig. 3b).

Figure 18 shows several vortex lines passing through

y 5 0 at t 5 8min together with u(x, 0, z) and u(x, y 5
1.9 km, z). Each vortex line has little variation of u along

its length and so by (16), PV 5 0. Figure 19 shows the

same vortex lines together with the isosurface u5 289K.

These figures together suggest that the looping, potential-

vorticity-bearing vortex line seen in the steady-state

configuration (Figs. 16, 17) has its origin in the inviscid,

adiabatic, but nonlinear, fluid dynamics of wave over-

turning, which in turn, lead to local static instability and

turbulence. PV generation occurs subsequently as the

crest of the wave moves through the loop and reconnects

through turbulent mixing with fluid in the wave trough.

As discussed in relation to Figs. 3c and 3d, this process

of wave formation and overturning occurs repeatedly

through the simulation and thus the vortex-loop structure

FIG. 13. PV as defined in (11) at z 5 0.4 km along with the vectors

(u, y) and the isoline of u5 289K (green contour).

FIG. 14. Cross-stream flux of PV at y 5 0 for (a) Jy, (b) J
F
y (the

frictional part of Jy), and (c) JQy (the heat-transfer part of Jy).

Vectors and isentropes are as in the top panel of Fig. 7a.
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emerges in the time average of the statistically stationary

solution.

c. The case where an obstacle pierces the two-layer-
fluid interface in the SWE

Epifanio and Rotunno (2005) consider the case

where the fluid is stably stratified below the height of

the obstacle crest with much weaker stratification

above; this case is the continuous-fluid analog to the

pierced-layer case in the SWE (Figs. 1c,d). Figure 20

(Epifanio 2014) depicts the evolution of lee vortices in

this flow started from rest; the flow regime is one in

which the upstream flow below the obstacle crest is

blocked and must flow around, rather than over, the

obstacle. Figure 20 shows the vortex lines on an

evolving isentropic surface with centers of leeside

vertical vorticity forming as the isentropes and vortex

lines bend downward on the leeside flanks of the ob-

stacle. We note that in this case the vortex lines as-

sociated with the return flow loop over it and begin

and terminate at the terrain. These experiments show

that lee vortices can also form for cases in which the

obstacle extends above the stratified layer with PV 5
0. PV is subsequently created by diffusive effects as

the evolving isentropes of each vortex wrap in a

spiraling motion. While the evolution of this flow

differs from that of the present case of flow of the

stratified layer over the obstacle, the conclusion is the

same: lee vortices can form under conditions of PV 5
0; PV is created subsequently as a result of the motions

engendered by the vorticity distributions created by the

inviscid, adiabatic processes in a density-stratified fluid.

We note that the ‘‘looping-over’’ structure of the

vortex lines has been commented on in Schär and

Durran (1997, their Fig. 12) and in Rotunno et al. (1999,

their Fig. 4) in their respective analyses of continuously

stratified flow. The structure of these solutions in the y–z

plane suggests that the lee vortices in these cases are

associated with blocking of the upstream flow [Fig. 4c

in Schär and Durran (1997) and Fig. 3a in Rotunno

et al. (1999)].

FIG. 15. Vortex lines that go through the strip of minimum h at

y5 0 shown in the top panel of Fig. 7a. Vertical (x–z) cross sections

of u (shaded) for z, 1.25 km in the planes y5 0 and y5 1.9 km are

shownwith the color scale in the upper left. Color of the vortex line

varies along their lengths according to the same color scale. These

vortex lines have only small variations of uwhich, according to (16),

indicates small values of PV along its length. The horizontal dis-

play domain is as in Fig. 13 (23 # x #11 km, 22 # y #12 km).

FIG. 16. As in Fig. 15, but for a vortex line that has a large

variation of u along its length indicating large PV where the vari-

ations are largest according to (16). Also included for comparison is

a vortex line from Fig. 15.

FIG. 17. Vortex lines from Fig. 16 together with the isosurface

u5 289K from a downstream viewpoint looking (a) down at an

angle to the flow and (b) from a lower level, more directly into

the flow.
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4. Discussion and conclusions

As a model for atmospheric motions, the shallow-

water equations (SWE) have two limitations that com-

plicate interpretation in terms of concepts based on the

full Navier–Stokes equations (NSE). First, the SWE treat

fluids with layers of constant density which implies a

discontinuity in the vertical derivative of density at the

interface between the layers. Second, these equations are

only valid for motions with horizontal length scales much

greater than vertical length scales.

The steepening of the height of the fluid layer h(x, t)

toward a discontinuity (interpreted as the hydraulic

jump; see Fig. 2 of Part I) in the SWE violates the

second limitation. The formation of a discontinuity

indicates a breakdown of some approximation to the

physics; to ‘‘save’’ the solution one typically allows the

discontinuity and then matches the solutions on either

side based on physical principles to obtain a ‘‘weak’’

solution (Whitham 1974, p. 26). In the case of a hy-

draulic jump, the conservation of mass and momen-

tum in the layer provide the matching conditions

(Whitham 1974, 458–460). Alternatively, Schär and

Smith (1993, their section 2e) formulate a diffusion

term that prevents a discontinuity while conserving mass

and momentum. With either method, energy is dissipated

through the zone of large height and velocity gradients,

which leads to the creation of shallow-water-equation

potential vorticity, z/h, and therefore, vorticity z, since

h. 0. Hence their conclusion that dissipation creates lee-

vortex vorticity (Schär and Smith 1993, their section 2d).

As with the two-dimensional case of Part I, the pres-

ent study of flow past a three-dimensional obstacle

produces a leeside spanwise rotary motion in the along-

stream-vertical plane but of limited spanwise extent and

therefore, we have shown, lee vortices. Ertel potential

vorticity (PV) is produced as a consequence of the dis-

sipative processes that result from the frictionless, adi-

abatic dynamics giving rise to leeside rotary motion/lee

vortices. Hence the view from the NSE is that the three-

dimensional flow associated with lee vortices leads to

PV production, not vice versa.

The reconciliation of these contrasting conclusions

from the SWE and the NSE concerning lee vortices and

potential vorticity production can be summarized as

follows. The internal dynamics of the hydraulic jump is

not accessible to the SWE since irreversible processes

must be parameterized at the leeside discontinuity

(identified with the physical hydraulic jump) (Schär and
Smith 1993, their section 2e). The potential vorticity in

the SWE, and therefore the vorticity, is created by the

parameterized dissipation at the discontinuity. Hence,

the view of lee-vortex formation from the SWE focuses

on the leeside vorticity downstream of the discontinuity/

hydraulic jump (Fig. 1b). Solutions to the NSE, on the

other hand, reveal the hydraulic jump’s internal dy-

namics is driven by frictionless, adiabatic processes that

result in the overturning of the thin transition layer

which leads to local static instability and turbulence

(Fig. 11 of Part I). With the present simulation using a

three-dimensional obstacle, the rotary motion/reversed

flow has a limited spanwise extent, which we have shown

is consistent with a leeside dipole in the vertical vortic-

ity. The latter turbulent motions give rise to energy

dissipation which, consistent with the SWE, generate

the potential vorticity that flows downstream from the

hydraulic jump.

FIG. 18. Vortex lines that go through the incipient wave-breaking

zone at y5 0 at t5 8min (Fig. 3b). Vertical (x–z) cross sections of u

(shaded) for z , 1.25 km in the planes y 5 0 and y 5 1.9 km are

shown with the color scale in the lower left. Color of the vortex line

varies along their lengths according to the same color scale. These

vortex lines have only small variations of u, which, according to

(16), indicates small values of PV along its length. The horizontal

display domain is as in Fig. 15.

FIG. 19. Vortex lines from Fig. 18 together with the isosurface u 5
289K from a viewpoint looking down and across flow.
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In summary, the principal conclusions are as follows:

d Analysis of the NSE indicates the original source of

the vertical vorticity of the lee vortices is the descent

of negative spanwise vorticity, expressed analytically

in (7). The role of turbulent dissipation, emphasized in

the SWE, prevents the re-ascent of negative spanwise

vorticity that would limit the downwind transport of

vertical vorticity.
d Analysis of the NSE shows that leeside negative

spanwise vorticity is created baroclinically in the

descending leeside flow [Fig. 10 and (9)]. Figure 15

shows that tilting of the vortex lines with negative

spanwise vorticity produces the dipole of vertical

vorticity associated with the lee vortices. In the

SWE, and more generally, in typical formulations of

water-wave equations (Whitham 1974, chapter 10),

baroclinic vorticity generation does not appear ex-

plicitly, but rather, is implicit at the two-layer in-

terface (Rotunno and Smolarkiewicz 1995, their

section 2c).

d The leeside hydraulic jump is critical to lee-vortex

formation in SWE as it implies energy dissipation

and the creation of a potential-vorticity dipole. The

internal dynamics is not, however, accessible to the

SWE. According to the NSE, the hydraulic jump

is a backward overturning isentrope with the re-

versed flow induced by baroclinically generated

negative spanwise vorticity. The static instability

and mixing induced by the overturning isentrope

leads to energy dissipation and potential-vorticity

creation.
d Analysis of the NSE leads to a geometrical interpre-

tation of the potential-vorticity dipole associated with

the lee vortices in which the overturning isentropes

envelope the baroclinically produced spanwise vor-

ticity (Fig. 17); this process originates in the inviscid,

adiabatic, nonlinear dynamics leading to isentrope

overturning (Fig. 19).
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Grubi�sić (NCAR) for her comments on the first draft of

this manuscript. We gratefully acknowledge the high-

performance computing support from Cheyenne (doi:

10.5065/D6RX99HX) and the three-dimensional images

(Figs. 15–19) created with VAPOR (www.vapor.ucar.edu)

provided by NCAR’s Computational and Information

Systems Laboratory, sponsored by the National Science

Foundation. This material is based upon work supported

by the National Center for Atmospheric Research, which

is a major facility sponsored by the National Science

Foundation under Cooperative Agreement 1852977.

REFERENCES

Epifanio, C. C., 2014: Lee vortices. Encyclopedia of Atmospheric

Sciences, 2nd ed. G. North, F. Zhang, and J. Pyle, Eds., Vol. 4,

Elsevier, 84–94.

——, and D. R. Durran, 2002: Lee vortex formation in free-slip

stratified over ridges. Part II: Mechanisms of vorticity and PV

production in nonlinear viscous wakes. J. Atmos. Sci., 59,

1166–1181, https://doi.org/10.1175/1520-0469(2002)059,1166:

LVFIFS.2.0.CO;2.

——, and R. Rotunno, 2005: The dynamics of orographic wake

formation in flows with upstream blocking. J. Atmos. Sci., 62,

3127–3150, https://doi.org/10.1175/JAS3523.1.

——, and T. Qian, 2008: Wave–turbulence interactions in a

breakingmountain wave. J. Atmos. Sci., 65, 3139–3158, https://

doi.org/10.1175/2008JAS2517.1.

Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of

vorticity and potential vorticity in the presence of diabatic

heating and frictional or other forces. J.Atmos. Sci., 44, 828–841,

https://doi.org/10.1175/1520-0469(1987)044,0828:OTEOVA.
2.0.CO;2.

Moin, P., andK.Mahesh, 1998:Direct numerical simulation:A tool

in turbulence research. Annu. Rev. Fluid. Mech., 30, 539–578,

https://doi.org/10.1146/annurev.fluid.30.1.539.

FIG. 20. Evolution of an isentropic surface with vortex lines lying

in the surface for a flow with the stratified layer below the obstacle

top. Colors on the surface indicate the perturbation temperatures

(blues: negative; oranges: positive). In this case the vortex lines of

the evolving lee vortices loop over the reversed flow and terminate

at the lower surface. Figure 6 in Epifanio (2014) modified from

Epifanio and Rotunno (2005). Arrows added to indicate the sense

of the vortex lines.

MARCH 2020 ROTUNNO AND BRYAN 979

doi:10.5065/D6RX99HX
doi:10.5065/D6RX99HX
http://www.vapor.ucar.edu
https://doi.org/10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2
https://doi.org/10.1175/JAS3523.1
https://doi.org/10.1175/2008JAS2517.1
https://doi.org/10.1175/2008JAS2517.1
https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2
https://doi.org/10.1146/annurev.fluid.30.1.539


Rotunno, R., and P. K. Smolarkiewicz, 1991: Further results on lee

vortices in low Froude number flow. J. Atmos. Sci., 48,

2204–2211, https://doi.org/10.1175/1520-0469(1991)048,2204:

FROLVI.2.0.CO;2.

——, and ——, 1995: Vorticity generation in the shallow-water

equations as applied to hydraulic jumps. J. Atmos. Sci., 52,

320–330, https://doi.org/10.1175/1520-0469(1995)052,0320:

VGITSW.2.0.CO;2.

——, and G. H. Bryan, 2018: Numerical simulations of two-layer flow

past topography. Part I: The leeside hydraulic jump. J. Atmos.

Sci., 75, 1231–1241, https://doi.org/10.1175/JAS-D-17-0306.1.
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