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ABSTRACT

Observations andmodels of nocturnal katabatic winds indicate strong low-level stability with much weaker

stability aloft.When such winds encounter an embedded depression in an otherwise smooth sloping plane, the

flow responds in a manner that is largely describable by the inviscid fluid dynamics of stratified flow. Building

on earlier work, the present study presents a series of numerical simulations based on the simplest nontrivial

idealization relevant to the observations: the height-independent flow of a two-layer stratified fluid past a two-

dimensional valley. Stratified flow past a valley has received much less attention than the related problem of

stratified flow past a hill. Hence, the present paper gives a detailed review of existing theory and fills a few gaps

along the way. The theory is used as an interpretive guide to an extensive set of numerical simulations. The

solutions exhibit a variety of behaviors that depend on the nondimensional input parameters. These behaviors

range from complete flow through the valley to valley-flow stagnation to situations involving internal wave

breaking, lee waves, and quasi-stationary waves in the valley. A diagram is presented that organizes the

solutions into flow regimes as a function of the nondimensional input parameters.

1. Introduction

This theoretical study is motivated by observations of,

and numerical simulations related to, stratified flow over

the Arizona Meteor Crater (Lehner et al. 2016a,b).

Figure 1 (Lehner et al. 2016a, their Fig. 2) summarizes the

major flow features during a downslope-windstorm-type

flow with a warm intrusion. As shown by the upstream

temperature profileT(z) in Fig. 1b, a very strong ground-

based stable layer develops during the night; the gentle

slope of the terrain surrounding the crater (Fig. 1a)

induces a katabatic slope flow u(z) that encounters the

crater. Although these upstream profiles are the result of

radiation and turbulence, the numerical simulations in

Lehner et al. (2016b) indicate the response of the flow to

the presence of the crater can largely be described by the

dynamics of inviscid adiabatic stratified flow past a two-

dimensional crater, or valley (viscous boundary layer

separation and diabatic heating played secondary roles).

Motivated by the latter insight, the present paper takes

the idealization of Lehner et al. (2016b) a step further by

considering slope-flow-relevant upstream profiles ofT(z)

and u(z) over level ground containing a valley to study

the essentially inviscid, adiabatic flow response.

The general knowledge on stratified flow past a valley

is discussed and summarized in Baines (1995, hereafter

B95, section 5.14). As described in B95, a basic question

regarding such flows is ‘‘Under what conditions will air

be swept from, or rather stagnate in, the valley?’’ B95

considers the canonical case of a uniformly stratified

(constant Brunt–Väisälä frequency N), constant flow U

of infinite depth past a valley of depth H. Under these

conditions, B95 asks the reader to imagine two hypo-

thetical evolutions: In the first thought experiment, one

pictures an established steady flow (U, N) over level

ground that gradually develops a valley [H5H(t),

where t is time]. The gradual deepening of the valley

allows one to conceive of a succession of steady-state

solutions to Long’s equation (Long 1953), which are

determined by NH/U; eventually a threshold would be

reached in which the horizontal velocity u5 0 at some

point in the valley (B95, his Fig. 5.53). Numerical solu-

tions for flow over periodic valleys (Kimura and Manins

1988) suggest that further increases of NH/U lead to
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wave breaking, flow deceleration, and eventual flow

stagnation within the valley (B95, his Fig. 5.55). In the

second thought experiment, B95 imagines an initial state

given by a valley filled with stagnant, heavy fluid with

constant flow U above [B95, his (5.14.2)]. B95 describes

the hypothetical development scenario: ‘‘Immediately

following the commencement of motion, the fluid in the

valley moves downstream so that its upper boundary or

‘‘interface’’ tilts upward in the downstream direction’’

(p. 337). The buoyancy would then act (on a time scale

N21) to oppose the interface tilt; comparing the buoy-

ancy time scale to the advective time scale (L/U, where

L is the valley width), B95 argues that the outcome of

the thought experiment is determined by the ratio of

time scales and concludes if NL/U � 1, the heavy fluid

will remain in the valley. These arguments will be re-

visited in light of the present numerical experiments.

In the physical situation of the Meteor Crater there is a

gently sloping terrain with an embedded crater; after sunset,

surface-based longwave radiational cooling creates a strong

low-level stratification and a slope flow. Based on this ob-

served evolution,we imagine an idealization similar toB95’s

second scenario, but one in which a preexisting stratification

is approximated by two layers, with the first defined by a

constant N between the ground and the inversion depth

z5D and the second one defined as unstratified for z.D.

The subsequent slope flow is approximated by the sudden

onset of a constant velocity U in the x direction.1 The

physical problem is illustrated in Fig. 2a.

Here we report on a series of numerical experiments

based on the initial conditions shown in Fig. 2a. Di-

mensional analysis indicates the experimental outcomes

can depend on at most three nondimensional parame-

ters, which we choose as the nondimensional valley

depth and width,NH/U andNL/U, respectively, and the

Froude number FD 5pU/2ND, which gives the ratio of

upstreamflow speed to that of the fastest internal gravity

wave in the layer D. The present numerical solutions

indicate flow stagnation in the valley occurs when both

NL/U and NjHj/U are large. In the hydrostatic limit

(NL/U � 1), the main solution dependence is found to

be on NH/U and FD. With NH/U,21, the solutions

have some degree of flow stagnation in the valley for any

FD; in the range 21,NH/U, 0, solutions are found in

which there is no stagnation along the valley floor. These

solutions take a variety of forms ranging from steady

symmetric flow about the valley center (describable by

Long’s equation) to internal wave breaking, depending

on the combination (FD, NH/U).

In section 2 we review the basic theory for flows such

as the one schematized in Fig. 2. The numerical exper-

iments are described in section 3, and the theoretical

constructs reviewed in section 2 are then used in section

4 as a guide to the interpretation of the numerical so-

lutions and the construction of regime diagrams. We

summarize the results in section 5.

2. Theory

a. Basic equations

Although the numerical model used in this study solves

the fully compressible, variable-density, nonhydrostatic

equations of atmospheric motion, in the current appli-

cation the solutions will be close to those of the shallow,

Boussinesq, anelastic equation set of Ogura and Phillips

(1962). The equations for momentum, energy, and con-

tinuity are, respectively,

Du

Dt
52=(c

p
u
0
P0)1 bk , (1a)

Db

Dt
52N2w, and (1b)

›
x
u1 ›

z
w5 0, (1c)

with D/Dt [ ›t 1 u›x 1 w›z, where u 5 ui 1 wk is the

two-dimensional (x–z) velocity; b5 gu0/u0 is the

FIG. 1. (a) Schematic diagram of the airflow and (b) thermal structure of flow upstream and in the Arizona Meteor Crater (after

Lehner et al. 2016a).

1 Or, alternatively, the ground with embedded valley suddenly

accelerates in the x direction to the speed 2U.
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buoyancy; and cpu0P
0 is the pressure variable (m2s22). The

potential temperature u5 u0 1 u(z)1 u0(x, z, t), where u0
is constant, N2 5 gu21

0 du/dz, and g is the acceleration due

to gravity. The quantityP5 ( p/ps)
R/cp 5P(z)1P0, where

P0 is the perturbation away from the hydrostatic base state

P(z), p is the pressure, ps is the base-state surface pressure,

cp is the specific heat at constant pressure, and R is the gas

constant for dry air.

b. Linear theory

First, the linear theory of motion for the upstream flow

is reviewed following B95 (chapter 4.2). Equations (1a)–

(1c) are linearized by lettingD/Dt ’ ›t 1U›x, whereU is

taken as a constant for simplicity. With the definition of

the streamfunction c [where (u, w)5 (›zc, 2›xc)], the

governing equations may be combined into the single

equation:

(›
t
1U›

x
)2(›

xx
1 ›

zz
)c1N2c

xx
5 0. (2)

The particular case of a constant-N, finite-depth layer

D1 d(x, t), where d � D, describes the flow upstream

of the valley (Fig. 2). In this case, the solution to (2) for a

disturbance of wavenumber k in the layer 0# z#D is

c(x, z, t)5 sinmzeik(x2ct), c5U6
N

(k2 1m2)1/2
, (3)

wherem is the eigenvalue (vertical wavenumber), given

by the solution to

k sinmD1m cosmD5 0. (4)

Condition (4) guarantees the continuity of c and ›zc

at z5D with the solution for z$D, which is

c(x, z, t)5 sinmDe2k(z2D)eik(x2ct). The group velocity

cg 5 ›k(kc) can be derived from (3) as

c
g
5U6

Nm2

(k2 1m2)3/2
(5)

(B95, p. 176). The second term on the rhs of (5) is the

intrinsic group velocity. Inspection of (5) indicates that

the fastest intrinsic group velocity occurs in the long-

wave limit (k2 � m2), in which

c
g
/ c5U6

N

m
. (6)

From (6), the fastest intrinsic group and phase velocities

occur for the smallestm, which (4) in the longwave limit

gives as m5p/2D. Hence the condition for zero up-

stream propagation of wave energy is cg 5 0 or

pU

2ND
5F

D
5 1, (7)

FIG. 2. Schematic diagram of the flow studied here as visualized by the isentropes (red contour

lines) for three situations: (a) the initial state before motion is impulsively started; (b) the initial

motionU creates a potential flow that attempts to displace downstream the initial cold air in the

valley, and the tilted isentropes create positive y-directed vorticity h; and (c) an example of

a steady-state solution in which the cold air has been swept away and flow symmetric about the

valley center remains. In (c), the displacement d(x) of the uppermost isentrope is indicated.
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at which point the flow is said to be critical; accordingly, a

flow is said to be supercritical for FD . 1 and subcritical

for FD , 1.

When the lower boundary has the topographical feature

h(x), the lower boundary condition is c[x, z5h(x)]5 0,

which is linearized as c(x, 0)52Uh(x). The standard

analysis (B95, see the appendix) considers the Fourier

transform in x of the steady version of (2); the solution in

the present case is

ĉ(k, z)52Uĥ(k)
k sinm(D2 z)1m cosm(D2 z)

k sinmD1m cosmD
, (8)

where a hat denotes the Fourier transform. In this

equation, k is the continuously varying transform pa-

rameter, and m5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2/U2 2 k2

p
for 0, jkj,N/U; for

jkj.N/U, m5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 2N2/U2

p
and sin(. . .) and cos(. . .)

are replaced by sinh(. . .) and cosh(. . .), respectively, in

(8). If the upstream flow is subcritical (FD , 1), it can be

shown there exist values of k that bring the denominator

of (8) to zero; upon taking the inverse Fourier transform

of (8), the zeroes in the denominator correspond to lee

waves in the physical (x) coordinate.

c. Nonlinear theory: Long’s equation

The steady form of the two-dimensional nonlinear

equations in (1a)–(1c) can be written as

h5
dE

dc
1 z

db

dc
, (9)

where h5 ›zu2 ›xw5=2c and E5 (u2 1w2)/21
cpu0P

0 2 bz; (9) is known as Long’s equation and is de-

scribed in various texts (e.g., Yih 1965, chapter 3). In the

present case with upstream profiles given by constant U

over the entire fluid depth and constantN over the finite-

depthD,E5E0 2 (1/2)(Nc/U)2 and b5 b0 1N2c/U for

0#c#UD andE5E0 2 (1/2)(ND)2, and b5b0 1N2D

for UD#c, where E0 and b0 are constants; substituting

these into the rhs of (9) and using the definition of h gives

=2c5

8><
>:
2
N2

U2
c1

N2

U
z for 0#c#UD

0 for UD#c .

(10)

The solution to (10) with boundary conditions

c[x, z5h(x)]5 0 and jcj,‘ for z/‘ provides the

fully nonlinear steady-state solution over the valley. The

free boundary D1 d(x, z) (see, for example, Fig. 2c) is

located where c5UD and must be solved for to insure

that all boundary conditions are satisfied. Solutions to

Long’s equation are valid so long as no closed streamlines

appear [i.e., all streamlines are assumed to originate up-

streamwith known values ofE(c) and b(c)]. Overturning

streamlines in the solutions indicate the possibility of

static instability, which affects their realizability.

For the present purposes, it suffices to take advantage

of the significant simplification attaching to the as-

sumption of hydrostatic flow in which =2c ’ ›zzc. The

solution to (10) in this case is

c(x,z)5

8><
>:
Uz2Udcos

N

U
(D1d2z) for 0#c#UD

Uz2Ud for UD#c ;

(11)

the free boundary d(x) is obtained by application of the

lower boundary condition c5 0 at z5 h(x) in (11),

which gives the equation

h5 d cos
N

U
(D1 d2 h) ; (12)

with h given, d can be found through numerical tech-

niques. This solution in (11) and (12) was first derived by

Smith (1985, hereafter S85) in his explanation of

downslope windstorms and further explored in Durran

and Klemp (1987) and Baines and Granek (1990). Here

we focus on solution features for the case of a valley

(h, 0).

Figure 3 is a modified version of S85’s Fig. 2 in which

(12) is solved for Nd/U as a function of Nh/U with

ND/U5np/6 (n 5 0, 1, 2, . . .) specified as a param-

eter. Equation (7) indicates ND/U5p/2FD, implying

FD 5 3/n. We have kept only the solution curves that

pass through the origin as the idea is to follow a curve

into the valley starting from h5 0. For n, 3, the up-

stream flow is supercritical; following any one of the

curves n5 0, 1, and 2 from the initial state (h, d)5 (0, 0)

into, then back out of, the valley shows that the flow

returns to its original state. On the other hand, for n. 3,

the upstream flow is subcritical; for cases n 5 4–8 (or

more generally, 1.FD . 1/3), the solution curves show

d increasing and allow for the possibility of the flow not

returning to its original state, for, if the flow reaches the

minimum h, it may continue out of the valley following

the upper branch with continued increasing d. The case

n5 3 is exactly critical and one can surmise that a flow

would follow either the subcritical or the supercritical

branch depending on any slight variation in the up-

stream condition, but, strictly speaking, the solution

behavior is indeterminate. The case n5 9 is also a spe-

cial case in that there are no solution curves passing

through the origin for h, 0. We will return below to the

case n5 10.

Durran and Klemp (1987) showed (12) can be used to

derive
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›
x
h5 (12F22)›

x
d , (13)

where

F22 5
12 coslf

12 ld sinlf
, (14)

with f5 (D1 d2 h) and l5N/U. Equation (13) has a

form analogous to the equivalent expression in single-

layer shallow-water theory in which the height of the

displacement of the free surface (analogous to d) is re-

lated to the topographical variation h(x), and the local

Froude number F is analogous to the shallow-water

version F5 u2/gf, where u is the layer velocity. For the

supercritical case, Fig. 3 shows h} d, which implies

F . 1 for all x including the valley bottom, where

›xh5 0, and by (13), ›xd5 0, and thus the solution is

symmetric [d(x52‘)5 d(x51‘)]. For the subcritical

cases, Fig. 3 together with (13) shows that F 5 1 at the

minimum h since ›xd 6¼ 0 at that point. Equation (16) of

Durran and Klemp (1987) shows that ›xd. 0 at the

valley center, and therefore the solution is not sym-

metric [d(x52‘) 6¼ d(x51‘)]. As an aside, we note

that the actual shallow-water equations have no critical-

flow transitions for either subcritical or supercritical flow

approaching a valley (B95, p. 39).

Figure 4 shows example solutions u(z) for the points

marked by the crosses on the curves n 5 2, 4, and 6 in

Fig. 3. In the supercritical case (Fig. 4a), the layer thins

and the flow accelerates throughout. For the subcritical

cases (Figs. 4b–d), the layer thickens and continuity

requires a net flow deceleration. The case n5 4 (Fig. 4b)

shows the entire layer decelerated. In contrast, the two

cases with n5 6 (Figs. 4c,d) indicate flow acceleration at

the surface with deceleration at higher levels. Using

(11), it is a simple exercise to show that the minimum

velocity in the lower layer reaches zero when Nd/U5 1,

independent of Nh/U; this limit is shown as the dashed

line in Fig. 3. Reversed flow (or, equivalently, ›zb, 0)

occurs for solutions withNd/U. 1, and the solutions are

likely statically unstable.

Figure 5, also based on (12), is a partial reconstruction

of Fig. 4 of Baines and Granek (1990), in which solution

regimes are identified as a function of FD and H/D (the

nondimensional valley bottom). For FD . 1 (or n, 3 in

Fig. 3), there are no critical-flow transitions for anyH/D.

However, for 1/3,FD , 1 (9. n. 3 in Fig. 3), solutions

are possible forH/D in the region bounded on the left by

the solid blue line, which is the locus of points at which

h is a minimum in Fig. 3, or by (13),F 5 1; at this point, a

critical-flow transition is possible as discussed above.

For FD , 1/3, Fig. 4 of Baines and Granek (1990) has

increasingly complex states described; for simplicity,

Fig. 5 shows only the states that lie in the interval

1/5,FD , 1/3. In this region, the solutions indicate flow

acceleration (d, 0) consistent with the n5 10 curve in

Fig. 3; however, at FD & 0:26, the solutions have

regions of overturning streamlines and are susceptible

to instability. Finally, the red line is where

NH/U521 [FD 52(p/2)H/D]. Solutions to the left of

this line (NH/U,21) are expected to have flow stag-

nation in the valley based on heuristic arguments, an

example of which is given next.

d. Nonlinear theory: Heuristic theory for valley-flow
stagnation

We pursue the thought experiment in the framework

of B95 (p. 337). Shortly after the initial impulsive ac-

celeration, the terrain-following potential flow acts to

displace the air in the valley downstream, as illustrated

in Fig. 2b. Baroclinic effects start to produce the y-directed

vorticity h according to

Dh

Dt
52›

x
b (15)

[in consequence of (1a) and (1c)]. Based on the ini-

tial tendency of the flow to scour out the cold air

in the valley shown in Fig. 2b, we estimate

2›xb ’ 2[(b0 1N2H)2 b0]/L52N2H/L. The time to

advect the cold air out of the valley is ’L/U, and

using these we have the following from (15):

FIG. 3. Solution of (12), following Fig. 2 of S85 but showing

a wider range of Nh/U and only the curves that pass through the

origin. We follow S85 and plot solutions for ND/U5np/6, in-

dicating the Froude number FD 5 (pU/2ND)5 3/n, which defines

flow criticality (FD 5 1) as the case n5 3. Solutions above the

horizontal dashed line exhibit reversed flow and thus are techni-

cally invalid.
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U

L
h ’ 2N2H

L
, (16)

which implies h. 0 since H, 0. Figure 2 illustrates the

initial production of h. 0, which induces low-level

motion in opposition to the mean flow.

To estimate h5 ›zu2 ›xw, we look for the rotary

motion in the valley (Fig. 2b) that brings u to zero on the

valley floor; hence, ›zu ’ U/jHj for the first term of h;

for the second term, the imagined rotary motion is

taken to be the exact opposite of the initial flow:

namely, w ’ 22UH/L. 0 for x, 0 (valley center) and

w ’ 2UH/L, 0 for x. 0 so that 2›xw ’ 24UH/L2 at

x5 0; substitution into (16) gives the condition for

stagnation as

NjHj
U

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 (2H/L)2

q 5 1. (17)

If (2H/L)2 � 1, we recover NjHj/U5 1, the condition

corresponding to the red line in Fig. 5. In the opposite

limit (2H/L)2 � 1, the condition for stagnation is

NL/2U5 1, similar to the result stated in B95 (p. 339).

Using (17) and adjusting the sign, one can show

F
D
52

p

2

H

D

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 (2H/L)2

q , (18)

which implies that nonhydrostatic effects act against

flow stagnation since finite H/L reduces the slope (less

negative) of the red line in Fig. 5.

3. Numerical experiments

The present numerical experiments are carried out

with Cloud Model 1 (CM1; Bryan and Fritsch 2002).

Two-dimensional (y independent) flows are simu-

lated on a domain that is 45 km in the x (along flow)

direction and 6 km in the z (vertical) direction with

the valley centered in the domain. In the x direction,

we use a stretched grid that ranges in grid size from

30m in the center to 150m near the boundaries. The

FIG. 4. Examples of the u(z) for the solutions indicated by the crosses in Fig. 3: (a) supercritical (lower layer thins,

flow accelerates throughout the layer); (b) subcritical (lower layer thickens, flow decelerates throughout the layer);

and (c),(d) subcritical (lower layer thickens, flow accelerates along the surface, decelerates near midlayer depth).

One may think of (c) as the flow descending into the valley and (d) as the flow ascending out of the valley.
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horizontal grid spacing is constant in the innermost

3000m (Dxji 5 30m), beyond which it is stretched

to Dxjo 5 150m at the lateral boundaries, with

Dxjl 5Dxji 1 2(l2 1)(Dxjm 2Dxji)/(n2 1), where l is

the grid point index outside of the constant grid-

spacing region, n (5232) is the number of grid points

in the stretched part, and Dxjm 5 0:5(Dxji 1Dxjo). We

also employ grid stretching in the vertical that varies

from a grid size of 2m near the surface to 150m

above approximately 3 km. The vertical grid spacing is

constant below zB 5 30m (DzjB 5 2m) and above

zT 5 3070m (DzjT 5 150m), with a total domain depth of

6070m. The vertical grid spacing in the stretched middle

layer is Dzjk 5DzjB 1 2(k2 1)(Dzjm 2DzjB)/(nM 2 1),

where k is the grid-level index in the stretched layer,

nM (515) and nB (540) are the number of grid levels

in the middle and bottom layers, respectively, and

Dzjm 5 0:5(DzjT 1DzjB).
Open boundary conditions are applied at the upwind

and downwind boundaries, respectively. The valley is

represented by aWitch of Agnesi profile embedded in a

plain given by

h(x)5
H

11 (2x/L)2
, (19)

where H(,0) is the valley depth and L/2 is the valley

half-width. A Rayleigh damping layer is applied above

z 5 4 km. Coefficients of viscosity and heat transfer are

set to zero. No planetary boundary layer (PBL) or other

turbulence parameterization is used.

The simulations are initialized with a constant wind

speed U throughout the domain and constant N within

the lowest layer below z5D and a weakly stratified

layer above (N2 5 1025 s22). The height D is defined

with respect to the top of the basin at z5 0. The simu-

lations are summarized in Table 1; all are done with

valley depths of H 5 210, 220, 250, 2100, 2150,

and 2200m and a valley width L 5 500m. Several

simulations were repeated withL5 250, 1000, 2000, and

4000m. The simulations are run for 1 h with a time step

of 0.1 s, and the analysis is based on 5-min-averaged

output. CM1 uses a Runge–Kutta time integration

method, and a fifth-order-weighted essentially non-

oscillatory (WENO) advection scheme was used in this

study. The integration is horizontally explicit and

vertically implicit. We used an acoustic time step of

0.1/8 s (50.0125 s).

As described above, the flow is impulsively started,

and, given the effective incompressibility of this flow and

finite time (N21) for baroclinic effects to have an effect,

the initial flow is a terrain-following potential flow. The

subsequent displacement of the isentropes (as in Fig. 2b)

initiates the evolution toward the steady-state solution

(e.g., Fig. 2c), which depends on the input parameters

U, N, H, D, and L. To provide the context for our in-

terpretation of the numerical solutions, the next section

briefly reviews the relevant theoretical concepts.

4. Results and discussion

We have examined each numerical solution in the

present set of experiments (Table 1) and subjectively

identified nine categories. Examples of the various so-

lution types are shown in Fig. 6, and every solution in the

present series is represented in Fig. 7 according to its

category. While some of these flows can be located on

the Long’s solution diagram shown in Fig. 3, most fall

outside the plotting coordinates. For this reason, we use a

regime diagram based on Fig. 5 that can accommodate a

wider range in parameter space. In the following, each

solution in Fig. 6 is described in relation to the theoretical

results reviewed in section 2.

Figure 6a is an example of the supercritical-flow so-

lution (open red triangle in Fig. 7) found in Long’s

equation (cf. Fig. 4a). The position of this flow on Fig. 3

FIG. 5. Solution of (12), following Fig. 4 of Baines and Granek

(1990), but only for FD . 0:2 and with the n of Fig. 3 given on the

left-side ordinate. For FD . 1, the flow is supercritical without the

possibility of critical-flow transition (0# n, 3 in Fig. 3). For

1.FD $ 1/3, the blue curve represents the minimum h corre-

sponding to the solutions 3,n# 9 in Fig. 3. Solutions are possible

for FD , 1/3 (n. 9), but, below a certain value, they exhibit static

instability (dashed line). Parameters in the space to the left of the

red line [FD 52(p/2)H/D] have valley-flow stagnation according

to heuristic arguments.
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TABLE 1. Parameter values for the numerical simulations: (left)–(right) the Brunt–Väisälä frequency N (s21), wind speed U (m s21),

depth of the inversion layerD (m),maximumvalley depthH (m), and valleywidthL (m), as well as nondimensional numbersFD,2NH/U,

2H/D, and NL/U. Several simulations were run with multiple valley widths L5 2503 2j m, where j 5 0, 1, 2, 3, and 4. In all cases

u0 5 290K in the calculation of N.

N U D 2H L FD 2
NH

U
2
H

D

NL

U
N U D 2H L FD 2

NH

U
2
H

D

NL

U

0.028 5.0 400 10 500 0.70 0.06 0.03 2.8 0.056 10.0 300 20 500 0.93 0.11 0.07 2.8

0.028 5.0 400 20 500 0.70 0.11 0.05 2.8 0.056 10.0 300 50 500 0.93 0.28 0.17 2.8

0.028 5.0 400 50 500 0.70 0.28 0.13 2.8 0.056 10.0 300 100 500 0.93 0.56 0.33 2.8

0.028 5.0 400 100 500 0.70 0.56 0.25 2.8 0.056 10.0 300 150 500 0.93 0.84 0.50 2.8

0.028 5.0 400 150 500 0.70 0.84 0.38 2.8 0.056 10.0 300 200 500 0.93 1.12 0.67 2.8

0.028 5.0 400 200 500 0.70 1.12 0.50 2.8 0.070 1.0 50 10 500 0.45 0.70 0.20 35.0

0.056 2.5 50 10 250 3 2j 1.40 0.22 0.20 5.6 3 2j 0.070 1.0 50 20 500 0.45 1.40 0.40 35.0

0.056 2.5 50 20 250 3 2j 1.40 0.45 0.40 5.6 3 2j 0.070 1.0 50 50 500 0.45 3.50 1.00 35.0

0.056 2.5 50 50 250 3 2j 1.40 1.12 1.00 5.6 3 2j 0.070 1.0 50 100 500 0.45 7.00 2.00 35.0

0.056 2.5 50 100 250 3 2j 1.40 2.24 2.00 5.6 3 2j 0.070 2.5 50 10 250 3 2j 1.12 0.28 0.20 7.0 3 2j

0.056 1.0 75 10 500 0.37 0.56 0.13 28.0 0.070 2.5 50 20 250 3 2j 1.12 0.56 0.40 7.0 3 2j

0.056 1.0 75 20 500 0.37 1.12 0.27 28.0 0.070 2.5 50 50 250 3 2j 1.12 1.40 1.00 7.0 3 2j

0.056 1.0 75 50 500 0.37 2.80 0.67 28.0 0.070 2.5 50 100 250 3 2j 1.12 2.80 2.00 7.0 3 2j

0.056 1.0 75 100 500 0.37 5.60 1.33 28.0 0.070 5.0 50 10 250 3 2j 2.24 0.14 0.20 3.5 3 2j

0.056 1.0 75 150 500 0.37 8.40 2.00 28.0 0.070 5.0 50 20 250 3 2j 2.24 0.28 0.40 3.5 3 2j

0.056 1.0 100 10 250 3 2j 0.28 0.56 0.10 14.0 3 2j 0.070 5.0 50 50 250 3 2j 2.24 0.70 1.00 3.5 3 2j

0.056 1.0 100 20 250 3 2j 0.28 1.12 0.20 14.0 3 2j 0.070 5.0 50 100 250 3 2j 2.24 1.40 2.00 3.5 3 2j

0.056 1.0 100 50 250 3 2j 0.28 2.80 0.50 14.0 3 2j 0.070 1.0 90 10 500 0.25 0.70 0.11 35.0

0.056 1.0 100 100 250 3 2j 0.28 5.60 1.00 14.0 3 2j 0.070 1.0 90 20 500 0.25 1.40 0.22 35.0

0.056 1.0 100 150 250 3 2j 0.28 8.40 1.50 14.0 3 2j 0.070 1.0 90 50 500 0.25 3.50 0.56 35.0

0.056 1.0 100 200 250 3 2j 0.28 11.20 2.00 14.0 3 2j 0.070 1.0 90 100 500 0.25 7.00 1.11 35.0

0.056 2.5 100 10 250 3 2j 0.70 0.22 0.10 5.6 3 2j 0.070 1.0 90 150 500 0.25 10.50 1.67 35.0

0.056 2.5 100 20 250 3 2j 0.70 0.45 0.20 5.6 3 2j 0.070 5.0 100 10 250 3 2j 1.12 0.14 0.10 3.5 3 2j

0.056 2.5 100 50 250 3 2j 0.70 1.12 0.50 5.6 3 2j 0.070 5.0 100 20 250 3 2j 1.12 0.28 0.20 3.5 3 2j

0.056 2.5 100 100 250 3 2j 0.70 2.24 1.00 5.6 3 2j 0.070 5.0 100 50 250 3 2j 1.12 0.70 0.50 3.5 3 2j

0.056 2.5 100 150 250 3 2j 0.70 3.36 1.50 5.6 3 2j 0.070 5.0 100 100 250 3 2j 1.12 1.40 1.00 3.5 3 2j

0.056 2.5 100 200 250 3 2j 0.70 4.48 2.00 5.6 3 2j 0.070 5.0 100 150 250 3 2j 1.12 2.10 1.50 3.5 3 2j

0.056 5.0 100 10 250 3 2j 1.40 0.11 0.10 2.8 3 2j 0.070 5.0 100 200 250 3 2j 1.12 2.80 2.00 3.5 3 2j

0.056 5.0 100 20 250 3 2j 1.40 0.22 0.20 2.8 3 2j 0.070 10.0 100 10 500 2.24 0.07 0.10 3.5

0.056 5.0 100 50 250 3 2j 1.40 0.56 0.50 2.8 3 2j 0.070 10.0 100 20 500 2.24 0.14 0.20 3.5

0.056 5.0 100 100 250 3 2j 1.40 1.12 1.00 2.8 3 2j 0.070 10.0 100 50 500 2.24 0.35 0.50 3.5

0.056 5.0 100 150 250 3 2j 1.40 1.68 1.50 2.8 3 2j 0.070 10.0 100 100 500 2.24 0.70 1.00 3.5

0.056 5.0 100 200 250 3 2j 1.40 2.24 2.00 2.8 3 2j 0.070 10.0 100 150 500 2.24 1.05 1.50 3.5

0.056 5.0 140 10 500 1.00 0.11 0.07 5.6 0.070 10.0 100 200 500 2.24 1.40 2.00 3.5

0.056 5.0 140 20 500 1.00 0.22 0.14 5.6 0.070 5.0 113 10 500 0.99 0.14 0.09 7.0

0.056 5.0 140 50 500 1.00 0.56 0.36 5.6 0.070 5.0 113 20 500 0.99 0.28 0.18 7.0

0.056 5.0 140 100 500 1.00 1.12 0.71 5.6 0.070 5.0 113 50 500 0.99 0.70 0.44 7.0

0.056 5.0 140 150 500 1.00 1.68 1.07 5.6 0.070 5.0 113 100 500 0.99 1.40 0.88 7.0

0.056 5.0 140 200 500 1.00 2.24 1.43 5.6 0.070 5.0 113 150 500 0.99 2.10 1.33 7.0

0.056 5.0 150 10 500 0.93 0.11 0.07 5.6 0.070 5.0 113 200 500 0.99 2.80 1.77 7.0

0.056 5.0 150 20 500 0.93 0.22 0.13 5.6 0.070 5.0 200 10 500 0.56 0.14 0.05 7.0

0.056 5.0 150 50 500 0.93 0.56 0.33 5.6 0.070 5.0 200 20 500 0.56 0.28 0.10 7.0

0.056 5.0 150 100 500 0.93 1.12 0.67 5.6 0.070 5.0 200 50 500 0.56 0.70 0.25 7.0

0.056 5.0 150 150 500 0.93 1.68 1.00 5.6 0.070 5.0 200 100 500 0.56 1.40 0.50 7.0

0.056 5.0 150 200 500 0.93 2.24 1.33 5.6 0.070 5.0 200 150 500 0.56 2.10 0.75 7.0

0.056 5.0 200 10 250 3 2j 0.70 0.11 0.05 2.8 3 2j 0.070 5.0 300 10 500 0.37 0.14 0.03 7.0

0.056 5.0 200 20 250 3 2j 0.70 0.22 0.10 2.8 3 2j 0.070 5.0 300 20 500 0.37 0.28 0.07 7.0

0.056 5.0 200 50 250 3 2j 0.70 0.56 0.25 2.8 3 2j 0.070 5.0 300 50 500 0.37 0.70 0.17 7.0

0.056 5.0 200 100 250 3 2j 0.70 1.12 0.50 2.8 3 2j 0.100 5.0 50 10 500 1.57 0.20 0.20 10.0

0.056 5.0 200 150 250 3 2j 0.70 1.68 0.75 2.8 3 2j 0.100 5.0 50 20 500 1.57 0.40 0.40 10.0

0.056 5.0 200 200 250 3 2j 0.70 2.24 1.00 2.8 3 2j 0.100 5.0 50 50 500 1.57 1.00 1.00 10.0

0.056 5.0 300 10 250 3 2j 0.47 0.11 0.03 2.8 3 2j 0.100 5.0 50 100 500 1.57 2.00 2.00 10.0

0.056 5.0 300 20 250 3 2j 0.47 0.22 0.07 2.8 3 2j 0.100 5.0 100 10 500 0.79 0.20 0.10 10.0

0.056 5.0 300 50 250 3 2j 0.47 0.56 0.17 2.8 3 2j 0.100 5.0 100 20 500 0.79 0.40 0.20 10.0
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can be located by the indicated values of n5 1:3 and

NH/U520:28 and in Fig. 7c. Figure 6b is an example

of a flowwith supercritical conditions upstream, but with

NH/U,21 (Fig. 7c); there is flow stagnation in the

valley (filled red triangle in Fig. 7). This flow appears to

be most similar to those observed in the Meteor Crater

Experiment (cf. Fig. 1).

Figure 6c is an example of the subcritical-flow solution

found in Long’s equation (cf. Fig. 4c; open black circle

with cross in Fig. 7). The position of this flow on Fig. 3

can be located by the indicated values of n5 6:4 and

NH/U520:22 and in Fig. 7c. Going to a deeper valley

for the same FD and NL/U, Fig. 6d indicates strongly

accelerated flow at the valley bottom with nearly zero

flow just above the midlayer depth (open black circle

with cross in Fig. 7), similar to the Long’s solution shown

in Fig. 4d. In this case, one can use Fig. 3 to speculate

that valleys as deep as (or deeper than) the minimum h

for the same n can follow the upper branch of the so-

lution curves in Fig. 3 and thus may have flow reversal.

This interpretation is consistent with the fact that the

position of the solution in Fig. 7c is to the right of the red

stagnation line but to the left of the allowable Long’s

solution curve (blue line).

Figure 6e should have been an example of the

subcritical-flow solution found in Long’s equation

(Figs. 4b and 7c; open black triangle in Fig. 7). Un-

expectedly, however, the solution exhibits a number of

short waves that appear to be generated on the down-

wind valley wall and propagate slowly upstream. A

possible explanation is that the significant deceleration

over the entire lower layer implied in Long’s theory

(Fig. 4b) leads to a situation of nearly stagnant flow in

the valley, putting the flow at the threshold between flow

sweeping out of, or stagnating in, the valley. The shorter

wavelength of these waves also implies slower intrinsic

wave speeds by (3). Going to a deeper valley for the

same (subcritical) FD and NL/U makes NH/U522:24

and puts the solution to the left of the stagnation line in

Fig. 7c. The corresponding Fig. 6f indicates a layer of

stagnant flow in the valley with upstream-propagating

short waves now generated on the leading edge of the

stagnant cold air in the valley (filled black triangle in

Fig. 7).

Figure 6g is an example of a valley flow with standing

lee waves (open black circle in Fig. 7). In comparison

with Fig. 6c, all the parameters are the same, save for L,

which is reduced by a factor of 4 (Fig. 7a), and lee waves

become a more prominent feature of the solution.

Figure 6h is typical of solutions with nearly total

valley-flow stagnation (filled green diamond in Fig. 7), as

its position on Fig. 7d is well to the left of the stagnation

threshold line. The flow above the valley is disorganized

and weak.

Figure 6i is an example of the nonhydrostatic effect

anticipated in (18) (open black triangle with cross in

Fig. 7). In this case, the flow does not stagnate along the

valley floor even though NH/U521:4 (Fig. 7b). The

flow, however, retains features of the hydrostatic cases

in Figs. 6d and 6e, in which there are internal wave

breaking and a tendency to produce a regular series of

upstream-propagating waves.

Figures 6e, 6f, and 6i feature upstream-propagating

disturbances that we believe are linear waves, because

all three cases are subcritical; our guess is that the waves

are produced by the nonlinear flows in the valley.

Figure 6j is an example of the extremely complex

behavior that can be realized in this ostensibly simple

flow situation (filled black circle with cross in Fig. 7).

As indicated in Fig. 7c, the flow is well into the stag-

nant, subcritical regime. As expected for the sub-

critical case, there is the propensity for internal wave

breaking, but at the same time there is also flow stag-

nation in the valley. The result is the flow shown in

Fig. 6j, in which the lower branch of the approaching

stratified flow decouples from the flow above it,

undergoes a jumplike feature as it encounters the

stagnant cold pool, and continues downstream with a

series of apparently nonhydrostatic waves super-

imposed. While we have no definitive explanation for

the latter, we can offer the following speculation:

a hydraulic jump in a single layer is sometimes fol-

lowed by a train of waves that, according to Benjamin

and Lighthill (1954), allow momentum, energy, and

mass conservation across the jump [in the classical case

(Rayleigh 1914), there are no waves, momentum and

mass are conserved, and energy is dissipated]. It ap-

pears that the nonlinearity in the valley in this case

TABLE 1. (Continued)

N U D 2H L FD 2
NH

U
2
H

D

NL

U
N U D 2H L FD 2

NH

U
2
H

D

NL

U

0.056 5.0 300 100 250 3 2j 0.47 1.12 0.33 2.8 3 2j 0.100 5.0 100 50 500 0.79 1.00 0.50 10.0

0.056 5.0 300 150 250 3 2j 0.47 1.68 0.50 2.8 3 2j 0.100 5.0 100 100 500 0.79 2.00 1.00 10.0

0.056 5.0 300 200 250 3 2j 0.47 2.24 0.67 2.8 3 2j 0.100 5.0 100 150 500 0.79 3.00 1.50 10.0

0.056 10.0 300 10 500 0.93 0.06 0.03 2.8 0.100 5.0 100 200 500 0.79 4.00 1.00 10.0
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FIG. 6. Examples of solutions in the different flow regimes illustrated by cross sections of u/U (colors) and potential temperature (black

isolines). The simulation parameters and regime-indicator icons are shown in each panel. Each example is indicated in the regime diagram

in Fig. 7.
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splits the lower layer in two, with the lower part acting

like the single layer described by Benjamin and

Lighthill (1954).

Finally two general points about Fig. 7 can be made.

First, consistent with (18), flows without valley stagnation

can occur forNH/U,21 and for FD ranging from below

to above unity in cases of smaller NL/U. Second, flows

categorized as ‘‘subcritical/stagnation, upstreaming-moving

disturbances,’’ such as that in Fig. 6f, can occur for

FD . 1, which indicates an effect on the upstream

environment that would allow upstream wave propa-

gation in violation of (7).

5. Summary

The present study is motivated by the flow conditions

typical of the Arizona Meteor Crater (Fig. 1) and by the

related idealized modeling study by the authors (Lehner

et al. 2016b). It was found in the latter study that the

response of a thermally generated slope flow to the

FIG. 7. Regime diagram for the set of simulations listed in Table 1 following Fig. 5, but with an expanded range of

FD andH/D and for (a)NL/U# 5, (b) 5,NL/U# 10, (c) 10,NL/U# 30, and (d)NL/U. 30. The open symbols

define solutions with no flow stagnation; the filled symbols indicate stagnation either within or above the valley.

Symbols with3 running through them indicate solutions with a wind speed dipole over the valley with a maximum

at the surface and a minimum aloft; wave breaking can occur within the wind minimum. Red (black) symbols

indicate supercritical (subcritical) upstream conditions; the green symbols indicate nearly total valley-flow

stagnation.
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presence of an embedded two-dimensional crater (i.e., a

valley) can largely be understood in terms of the inviscid

fluid dynamics of stratified flow.

The observed andmodeled stratification suggests a two-

layer idealization with constant stratification in the lower

layer and zero stratification above; with the further ide-

alization of a height-independent ambient flow, we have

the simplest nontrivial relevant flow. The idealization,

shown schematically in Fig. 2, has three input parameters

(N, D, and U) characterizing the upstream flow and two

that describe the valley (H and L). Dimensional analysis

indicates that the solution for the steady-state flow can

depend on at most three nondimensional combinations of

the five dimensional inputs. Numerical results are pre-

sented in terms of NH/U, NL/U, FD 5pU/(2ND), and

H/D for a wide range of these parameters.

A significant advantage of the present flow idealization

is that there are well-developed linear and nonlinear

theories for the flow response to topography. A major

component of the present work is the review of these

theories and the further exploration of the nonlinear

theory for flow over a valley, which has receivedmuch less

emphasis in the literature with respect to a hill. The

nonlinear Long’s theory predicts accelerated flow in

the valley with no critical-flow transitions for FD . 1.

For FD , 1, the nonlinear theory allows critical-flow

transitions, but in many cases they cannot be realized,

as the predicted flow has internal flow reversal

(dashed line in Fig. 3) that invalidates the assumptions

on which the theory relies. Despite the technical in-

validity of the solutions in this range, the threshold

solution behavior suggests how to interpret the nu-

merical results that lie outside the theoretical range of

validity. Finally, new heuristic arguments are ad-

vanced to explain the conditions under which flow

stagnation is expected in the valley.

The results of the present numerical investigation are

summarized in the regime diagram Fig. 7 along with the

examples of each flow type in Fig. 6. The major results

are as follows:

d For FD . 1 and NH/U.21, symmetric valley flow

occurs over a wide range of NL/U, with no

upstream waves.
d For FD . 1 and NH/U,21, stagnant valley flow

occurs for NL/U* 10, with no upstream waves.
d For FD , 1 and NH/U.21, Long’s theory and simu-

lations indicate surface flow acceleration and midlayer

flow deceleration; however, for values of FD closer to

unity, upstream-propagating short waves are produced

in the valley.
d For FD , 1 and NH/U,21, valley-flow stagnation

and/or internal wave breaking occurs except for

NL/U, 5.
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