ATMOSPHERIC BOUNDARY LAYER SIMULATION AND SUBGRID-SCALE DYNAMICS

1. An Introduction to Outdoor LES

2. Observations and SGS Model Equations

3. LES Applications

FUTURE PETASCALE COMPUTING

What's petascale computing?

- Next generation of massively parallel supercomputers
- Petaflop \implies 1,000 trillion operations per second
- Employ $\mathcal{O}(10^5 10^6)$ processors!
- Cost \sim \$200 M, power consumption 10-20 MW
- One of the first peta-machines will be "Blue Waters" in 2011 see http://www.ncsa.uiuc.edu/BlueWaters/
- Sustained performance of 1-2 petaflops

CAN WE MAKE AN LES/DNS OF THE PBL EXECUTE ON A LARGE NUMBER OF PROCESSORS?

LES EQUATIONS FOR DRY ATMOSPHERIC PBL

Subgrid-scale momentum and scalar fluxes

$$\begin{array}{rcl} \mathbf{T} & = & \overline{u_i \, u_j} \, - \, \overline{u_i} \, \overline{u_j} \\ \mathbf{B} & = & \overline{u_i \, b} \, - \, \overline{u_i} \, \overline{b} \end{array}$$

Incompressible Boussinesq flow

$$\nabla \cdot \overline{\mathbf{u}} = 0 \implies \nabla^2 \pi = s$$

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 \, p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

MASSIVELY PARALLEL ALGORITHM FOR BOUSSINESQ BOUNDARY LAYERS

Algorithm Constraints:

- Utilize 2-D domain decomposition
- Employ a mixed pseudospectral finite-difference scheme
- Incompressible flow must solve $\nabla^2 \, p = s$

Highlights:

- Employ local MPI matrix transposes to evaluate derivatives and solve for the pressure: $f(x, y_s: y_e, z_s: z_e) \Leftrightarrow f^T(y, x_s: x_e, z_s: z_e)$ $\hat{s}(k_y, k_{xs}: k_{xe}, z_s: z_e) \Leftrightarrow \hat{s}^T(z, k_{xs}: k_{xe}, k_{ys}: k_{ye})$
- No ALLTOALLV global communication, use SENDRECV
- Use MPI I/O, single large direct-access like file

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC

SCALING OF PARALLEL PSEUDOSPECTRAL ALGORITHM WITH 2-D DOMAIN DECOMPOSITION

Cray XT4, NERSC

FREE CONVECTION 512³ W-FIELD

PARTICLE TRACING IN X-Y PLANE 1024³ SIMULATION

TEMPORAL EVOLUTION OF VORTICES IDENTIFIED BY LOW (NEGATIVE) PRESSURE

3800 m

z = 24 m

Dust devil image courtesy NASA

DO LES STATISTICS CONVERGE WITH MESH REFINEMENT?

- LES DOMAIN: $(X_L, Y_L, Z_L) = (5120, 5120, 2048)$ m
- $\bullet \ \sim \text{FREE CONVECTION}$
- STRONG INVERSION

Gridpoints	$\triangle x = \triangle y \text{ (m)}$	riangle z (m)	$z_i/ riangle z$	CPU (hrs)
32^{3}	160	64	17.5	0.3
64^{3}	80	32	34.9	3.5
128^{3}	40	16	70.2	58.6
256^{3}	20	8	137.0	971.0
512^{3}	10	4	272.0	11970.0
1024^{3}	5	2	536.7	${\sim}400000.0$

DO LES STATISTICS CONVERGE WITH MESH REFINEMENT?

IMPACT OF GRID RESOLUTION ON SKEWNESS

IMPACT OF GRID RESOLUTION ON SKEWNESS

CONTRIBUTION OF SGS TO SKEWNESS

The total skewness is

$$S_w = \frac{\langle w^3 \rangle}{\langle w^2 \rangle^{3/2}}$$

Introduce SGS third and second order moments

$$\phi = \overline{w^3} - \overline{w}^3 \equiv \overline{www} - \overline{w}\overline{w} \\ \psi = \overline{w^2} - \overline{w}^2 \equiv \overline{ww} - \overline{w}\overline{w}$$

Total skewness in terms of resolved and SGS fields

VERTICAL VELOCITY MOMENTS

HOW ABOUT SIMPLE TERRAIN?

LES FOR FLOW OVER HILLS AND WAVES

Orography in LES:

- Approaches are:
 - Cast equations in surface fitted coordinates $x_i \Rightarrow \xi_i$
 - Unstructured meshes, Immersed boundaries, Wavelet techniques
- Including orography in "LES" is a research topic
 - High-Re with " z_o " boundary conditions
 - Filtering when the mesh varies considerably, e.g., commutation errors, ...
 - SGS models in complex flows

Co-located scheme

SURFACE FITTED CO-LOCATED METHOD

Attributes:

- Simple compact stencil
- Use contra-variant "flux" velocities U_i in formulating the LES equations
- Trick is to use "momentum-interpolation" of the right-hand sides Zang *et al.*(1994), Sullivan *et al.*(2000), Sullivan *et al.*(2008)
- Maintains strong velocity-pressure coupling

Outline of the equations:

$$\frac{\partial U_i}{\partial \xi_i} = 0$$
$$\frac{\partial}{\partial t} \left(\frac{u_i}{J}\right) + \frac{\partial}{\partial \xi_j} U_j u_i = \mathcal{R}_i$$
$$\frac{\partial}{\partial \xi_i} \left[\frac{1}{J} \frac{\partial \xi_i}{\partial x_j} \frac{\partial \xi_m}{\partial x_j} \frac{\partial p^*}{\partial \xi_m}\right] = \mathcal{S}$$

General elliptic equation

WHAT CAN USE IT FOR?

OBSERVATIONS OF WINDS AND WAVES

Air-Sea Interaction Tower near Martha's Vineyard during CBLAST

FLIP deployed off the California coast during MBL II

WAVE-WIND LES EXPERIMENTS

1200 m

4.0

MBL II (FLIP) OBSERVATIONS

Data from S. Miller

PHASE AVERAGED PRESSURE FIELD FOR VARYING WAVE AGE

MOMENTUM FLUX U'W' **IN** X - Y **PLANES** (Z = 20m)

QUADRANT ANALYSIS OF MOMENTUM FLUX

QUADRANT ANALYSIS OF U'W' **FROM CBLAST-LOW**

NEUTRAL DRAG COEFFICIENT $C_{D,10}$ **FROM CBLAST LOW**

Wave-driven winds

TOGA-COARE parameterization

References

- [Sullivan et al.(2008)] Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams. Large eddy simulations and observations of atmospheric marine boundary layers above non-equilibrium surface waves. J. Atmos. Sci., 65:1225–1245, 2008.
- [Sullivan et al.(2007)] Sullivan, P. P., J. C. McWilliams, and W. K. Melville. Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593:405–452, 2007.
- [Sullivan and Patton(2008)] Sullivan, P. P. and E. G. Patton. A highly parallel algorithm for turbulence simulations in planetary boundary layers: Results with meshes up to 1024^3 . In 18th Amer. Meteorol. Soc. Symp. on Boundary Layer and Turbulence. Stockholm, Sweden, 2008.

WAVE AGE, WIND-WAVE ALIGNMENT DEFINITIONS

NON-EQUILIBRIUM WINDS AND WAVES (CBLAST)

