module_ra_gsfcsw.F
References to this file elsewhere.
1 !Comment the following out to turn off aerosol-radiation
2 !feedback between MOSAIC and GSFCSW. wig, 21-Feb-2005
3 #ifdef WRF_CHEM
4 #define AER_RA_FEEDBACK
5 #endif
6
7 MODULE module_ra_gsfcsw
8
9 REAL, PARAMETER, PRIVATE :: thresh=1.e-9
10 REAL, SAVE :: center_lat
11
12 ! Assign co2 and trace gases amount (units are parts/part by volumn)
13
14 REAL, PARAMETER, PRIVATE :: co2 = 300.e-6
15
16 CONTAINS
17
18 !------------------------------------------------------------------
19 ! urban related variable are added to arguments of gsfcswrad
20 !------------------------------------------------------------------
21 SUBROUTINE GSFCSWRAD(rthraten,gsw,xlat,xlong &
22 ,dz8w,rho_phy &
23 ,alb,t3d,qv3d,qc3d,qr3d &
24 ,qi3d,qs3d,qg3d &
25 ,p3d,p8w3d,pi3d,cldfra3d &
26 ,gmt,cp,g,julday,xtime,declin,solcon &
27 ,radfrq,degrad,taucldi,taucldc,warm_rain &
28 ,tauaer300,tauaer400,tauaer600,tauaer999 & ! jcb
29 ,gaer300,gaer400,gaer600,gaer999 & ! jcb
30 ,waer300,waer400,waer600,waer999 & ! jcb
31 ,f_qv,f_qc,f_qr,f_qi,f_qs,f_qg &
32 ,ids,ide, jds,jde, kds,kde &
33 ,ims,ime, jms,jme, kms,kme &
34 ,its,ite, jts,jte, kts,kte &
35 ,cosz_urb2d,omg_urb2d ) !Optional urban
36 !------------------------------------------------------------------
37 IMPLICIT NONE
38 !------------------------------------------------------------------
39 INTEGER, PARAMETER :: np = 75
40
41 INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
42 ims,ime, jms,jme, kms,kme, &
43 its,ite, jts,jte, kts,kte
44 LOGICAL, INTENT(IN ) :: warm_rain
45
46 INTEGER, INTENT(IN ) :: JULDAY
47
48
49 REAL, INTENT(IN ) :: RADFRQ,DEGRAD, &
50 XTIME,DECLIN,SOLCON
51 !
52 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
53 INTENT(IN ) :: P3D, &
54 P8W3D, &
55 pi3D, &
56 T3D, &
57 dz8w, &
58 rho_phy, &
59 CLDFRA3D
60
61
62 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
63 INTENT(INOUT) :: RTHRATEN
64 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
65 INTENT(INOUT) :: taucldi, &
66 taucldc
67 !
68 REAL, DIMENSION( ims:ime, jms:jme ), &
69 INTENT(IN ) :: XLAT, &
70 XLONG, &
71 ALB
72 !
73 REAL, DIMENSION( ims:ime, jms:jme ), &
74 INTENT(INOUT) :: GSW
75 !
76 REAL, INTENT(IN ) :: GMT,CP,G
77 !
78
79 !
80 ! Optional
81 !
82 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), OPTIONAL , &
83 INTENT(IN ) :: tauaer300,tauaer400,tauaer600,tauaer999, & ! jcb
84 gaer300,gaer400,gaer600,gaer999, & ! jcb
85 waer300,waer400,waer600,waer999 ! jcb
86
87 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), &
88 OPTIONAL, &
89 INTENT(IN ) :: &
90 QV3D, &
91 QC3D, &
92 QR3D, &
93 QI3D, &
94 QS3D, &
95 QG3D
96
97 LOGICAL, OPTIONAL, INTENT(IN ) :: F_QV,F_QC,F_QR,F_QI,F_QS,F_QG
98
99 ! LOCAL VARS
100
101 REAL, DIMENSION( its:ite ) :: &
102 ts, &
103 cosz, &
104 rsuvbm, &
105 rsuvdf, &
106 rsirbm, &
107 rsirdf, &
108 p400, &
109 p700
110
111 INTEGER, DIMENSION( its:ite ) :: &
112 ict, &
113 icb
114
115 REAL, DIMENSION( its:ite, kts-1:kte, 2 ) :: taucld
116
117 REAL, DIMENSION( its:ite, kts-1:kte+1 ) :: flx, &
118 flxd
119 !
120 REAL, DIMENSION( its:ite, kts-1:kte ) :: O3
121 !
122 REAL, DIMENSION( its:ite, kts-1:kte, 11 ) :: &
123 taual, &
124 ssaal, &
125 asyal
126
127 REAL, DIMENSION( its:ite, kts-1:kte, 2 ) :: &
128 reff, &
129 cwc
130 REAL, DIMENSION( its: ite, kts-1:kte+1 ) :: &
131 P8W2D
132 REAL, DIMENSION( its: ite, kts-1:kte ) :: &
133 TTEN2D, &
134 SH2D, &
135 P2D, &
136 T2D, &
137 fcld2D
138 real, DIMENSION( its:ite , kts:kte+1 ) :: phyd
139 real, DIMENSION( its:ite , kts:kte ) :: phydmid
140
141 REAL, DIMENSION( np, 5 ) :: pres, &
142 ozone
143 REAL, DIMENSION( np ) :: p
144
145 LOGICAL :: cldwater,overcast, predicate
146 !
147 INTEGER :: i,j,K,NK,ib,kk,mix,mkx
148
149 ! iprof = 1 : mid-latitude summer profile
150 ! = 2 : mid-latitude winter profile
151 ! = 3 : sub-arctic summer profile
152 ! = 4 : sub-arctic winter profile
153 ! = 5 : tropical profile
154 !
155
156 INTEGER :: iprof, &
157 is_summer, &
158 ie_summer, &
159 lattmp
160
161
162 !
163 REAL :: XLAT0,XLONG0
164 REAL :: fac,latrmp
165 REAL :: xt24,tloctm,hrang,xxlat
166
167 !URBAN
168 REAL, OPTIONAL, DIMENSION( ims:ime, jms:jme ), INTENT(OUT) :: COSZ_URB2D !urban
169 REAL, OPTIONAL, DIMENSION( ims:ime, jms:jme ), INTENT(OUT) :: OMG_URB2D !urban
170
171 real, dimension(11) :: midbands ! jcb
172 data midbands/.2,.235,.27,.2875,.3025,.305,.3625,.55,1.92,1.745,6.135/ ! jcb
173 real :: ang,slope ! jcb
174 character(len=200) :: msg !wig
175 !
176 !--------------------------------------------------------------------------------
177 ! data set 1
178 ! mid-latitude summer (75 levels) : p(mb) o3(g/g)
179 ! surface temp = 294.0
180 !
181 data (pres(i,1),i=1,np)/ &
182 0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
183 0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
184 0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
185 0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
186 0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
187 4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
188 31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
189 157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
190 299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
191 442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
192 585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
193 727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
194 870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
195 1013.0000/
196 !
197 data (ozone(i,1),i=1,np)/ &
198 0.1793E-06, 0.2228E-06, 0.2665E-06, 0.3104E-06, 0.3545E-06, &
199 0.3989E-06, 0.4435E-06, 0.4883E-06, 0.5333E-06, 0.5786E-06, &
200 0.6241E-06, 0.6698E-06, 0.7157E-06, 0.7622E-06, 0.8557E-06, &
201 0.1150E-05, 0.1462E-05, 0.1793E-05, 0.2143E-05, 0.2512E-05, &
202 0.2902E-05, 0.3313E-05, 0.4016E-05, 0.5193E-05, 0.6698E-05, &
203 0.8483E-05, 0.9378E-05, 0.9792E-05, 0.1002E-04, 0.1014E-04, &
204 0.9312E-05, 0.7834E-05, 0.6448E-05, 0.5159E-05, 0.3390E-05, &
205 0.1937E-05, 0.1205E-05, 0.8778E-06, 0.6935E-06, 0.5112E-06, &
206 0.3877E-06, 0.3262E-06, 0.2770E-06, 0.2266E-06, 0.2020E-06, &
207 0.1845E-06, 0.1679E-06, 0.1519E-06, 0.1415E-06, 0.1317E-06, &
208 0.1225E-06, 0.1137E-06, 0.1055E-06, 0.1001E-06, 0.9487E-07, &
209 0.9016E-07, 0.8641E-07, 0.8276E-07, 0.7930E-07, 0.7635E-07, &
210 0.7347E-07, 0.7065E-07, 0.6821E-07, 0.6593E-07, 0.6368E-07, &
211 0.6148E-07, 0.5998E-07, 0.5859E-07, 0.5720E-07, 0.5582E-07, &
212 0.5457E-07, 0.5339E-07, 0.5224E-07, 0.5110E-07, 0.4999E-07/
213
214 !--------------------------------------------------------------------------------
215 ! data set 2
216 ! mid-latitude winter (75 levels) : p(mb) o3(g/g)
217 ! surface temp = 272.2
218 !
219 data (pres(i,2),i=1,np)/ &
220 0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
221 0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
222 0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
223 0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
224 0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
225 4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
226 31.5105, 44.2001, 62.0000, 85.9000, 109.8000, 133.7000, &
227 157.6000, 181.5000, 205.4000, 229.3000, 253.2000, 277.1000, &
228 301.0000, 324.9000, 348.8000, 372.7000, 396.6000, 420.5000, &
229 444.4000, 468.3000, 492.2000, 516.1000, 540.0000, 563.9000, &
230 587.8000, 611.7000, 635.6000, 659.5000, 683.4000, 707.3000, &
231 731.2000, 755.1000, 779.0000, 802.9000, 826.8000, 850.7000, &
232 874.6000, 898.5000, 922.4000, 946.3000, 970.2000, 994.1000, &
233 1018.0000/
234 !
235 data (ozone(i,2),i=1,np)/ &
236 0.2353E-06, 0.3054E-06, 0.3771E-06, 0.4498E-06, 0.5236E-06, &
237 0.5984E-06, 0.6742E-06, 0.7511E-06, 0.8290E-06, 0.9080E-06, &
238 0.9881E-06, 0.1069E-05, 0.1152E-05, 0.1319E-05, 0.1725E-05, &
239 0.2145E-05, 0.2581E-05, 0.3031E-05, 0.3497E-05, 0.3980E-05, &
240 0.4478E-05, 0.5300E-05, 0.6725E-05, 0.8415E-05, 0.1035E-04, &
241 0.1141E-04, 0.1155E-04, 0.1143E-04, 0.1093E-04, 0.1060E-04, &
242 0.9720E-05, 0.8849E-05, 0.7424E-05, 0.6023E-05, 0.4310E-05, &
243 0.2820E-05, 0.1990E-05, 0.1518E-05, 0.1206E-05, 0.9370E-06, &
244 0.7177E-06, 0.5450E-06, 0.4131E-06, 0.3277E-06, 0.2563E-06, &
245 0.2120E-06, 0.1711E-06, 0.1524E-06, 0.1344E-06, 0.1199E-06, &
246 0.1066E-06, 0.9516E-07, 0.8858E-07, 0.8219E-07, 0.7598E-07, &
247 0.6992E-07, 0.6403E-07, 0.5887E-07, 0.5712E-07, 0.5540E-07, &
248 0.5370E-07, 0.5214E-07, 0.5069E-07, 0.4926E-07, 0.4785E-07, &
249 0.4713E-07, 0.4694E-07, 0.4676E-07, 0.4658E-07, 0.4641E-07, &
250 0.4634E-07, 0.4627E-07, 0.4619E-07, 0.4612E-07, 0.4605E-07/
251
252
253 !--------------------------------------------------------------------------------
254 ! data set 3
255 ! sub-arctic summer (75 levels) : p(mb) o3(g/g)
256 ! surface temp = 287.0
257 !
258 data (pres(i,3),i=1,np)/ &
259 0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
260 0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
261 0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
262 0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
263 0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
264 4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
265 31.5105, 44.2001, 62.0000, 85.7000, 109.4000, 133.1000, &
266 156.8000, 180.5000, 204.2000, 227.9000, 251.6000, 275.3000, &
267 299.0000, 322.7000, 346.4000, 370.1000, 393.8000, 417.5000, &
268 441.2000, 464.9000, 488.6000, 512.3000, 536.0000, 559.7000, &
269 583.4000, 607.1000, 630.8000, 654.5000, 678.2000, 701.9000, &
270 725.6000, 749.3000, 773.0000, 796.7000, 820.4000, 844.1000, &
271 867.8000, 891.5000, 915.2000, 938.9000, 962.6000, 986.3000, &
272 1010.0000/
273 !
274 data (ozone(i,3),i=1,np)/ &
275 0.1728E-06, 0.2131E-06, 0.2537E-06, 0.2944E-06, 0.3353E-06, &
276 0.3764E-06, 0.4176E-06, 0.4590E-06, 0.5006E-06, 0.5423E-06, &
277 0.5842E-06, 0.6263E-06, 0.6685E-06, 0.7112E-06, 0.7631E-06, &
278 0.1040E-05, 0.1340E-05, 0.1660E-05, 0.2001E-05, 0.2362E-05, &
279 0.2746E-05, 0.3153E-05, 0.3762E-05, 0.4988E-05, 0.6518E-05, &
280 0.8352E-05, 0.9328E-05, 0.9731E-05, 0.8985E-05, 0.7632E-05, &
281 0.6814E-05, 0.6384E-05, 0.5718E-05, 0.4728E-05, 0.4136E-05, &
282 0.3033E-05, 0.2000E-05, 0.1486E-05, 0.1121E-05, 0.8680E-06, &
283 0.6474E-06, 0.5164E-06, 0.3921E-06, 0.2996E-06, 0.2562E-06, &
284 0.2139E-06, 0.1723E-06, 0.1460E-06, 0.1360E-06, 0.1267E-06, &
285 0.1189E-06, 0.1114E-06, 0.1040E-06, 0.9678E-07, 0.8969E-07, &
286 0.8468E-07, 0.8025E-07, 0.7590E-07, 0.7250E-07, 0.6969E-07, &
287 0.6694E-07, 0.6429E-07, 0.6208E-07, 0.5991E-07, 0.5778E-07, &
288 0.5575E-07, 0.5403E-07, 0.5233E-07, 0.5067E-07, 0.4904E-07, &
289 0.4721E-07, 0.4535E-07, 0.4353E-07, 0.4173E-07, 0.3997E-07/
290
291
292 !--------------------------------------------------------------------------------
293 ! data set 3
294 ! sub-arctic winter (75 levels) : p(mb) o3(g/g)
295 ! surface temp = 257.1
296 !
297 data (pres(i,4),i=1,np)/ &
298 0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
299 0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
300 0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
301 0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
302 0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
303 4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
304 31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
305 157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
306 299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
307 442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
308 585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
309 727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
310 870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
311 1013.0000/
312 !
313 data (ozone(i,4),i=1,np)/ &
314 0.2683E-06, 0.3562E-06, 0.4464E-06, 0.5387E-06, 0.6333E-06, &
315 0.7301E-06, 0.8291E-06, 0.9306E-06, 0.1034E-05, 0.1140E-05, &
316 0.1249E-05, 0.1360E-05, 0.1474E-05, 0.1855E-05, 0.2357E-05, &
317 0.2866E-05, 0.3383E-05, 0.3906E-05, 0.4437E-05, 0.4975E-05, &
318 0.5513E-05, 0.6815E-05, 0.8157E-05, 0.1008E-04, 0.1200E-04, &
319 0.1242E-04, 0.1250E-04, 0.1157E-04, 0.1010E-04, 0.9063E-05, &
320 0.8836E-05, 0.8632E-05, 0.8391E-05, 0.7224E-05, 0.6054E-05, &
321 0.4503E-05, 0.3204E-05, 0.2278E-05, 0.1833E-05, 0.1433E-05, &
322 0.9996E-06, 0.7440E-06, 0.5471E-06, 0.3944E-06, 0.2852E-06, &
323 0.1977E-06, 0.1559E-06, 0.1333E-06, 0.1126E-06, 0.9441E-07, &
324 0.7678E-07, 0.7054E-07, 0.6684E-07, 0.6323E-07, 0.6028E-07, &
325 0.5746E-07, 0.5468E-07, 0.5227E-07, 0.5006E-07, 0.4789E-07, &
326 0.4576E-07, 0.4402E-07, 0.4230E-07, 0.4062E-07, 0.3897E-07, &
327 0.3793E-07, 0.3697E-07, 0.3602E-07, 0.3506E-07, 0.3413E-07, &
328 0.3326E-07, 0.3239E-07, 0.3153E-07, 0.3069E-07, 0.2987E-07/
329
330 !--------------------------------------------------------------------------------
331 ! data set 4
332 ! tropical (75 levels) : p(mb) o3(g/g)
333 ! surface temp = 300.0
334 !
335 data (pres(i,5),i=1,np)/ &
336 0.0006244, 0.0008759, 0.0012286, 0.0017234, 0.0024174, &
337 0.0033909, 0.0047565, 0.0066720, 0.0093589, 0.0131278, &
338 0.0184145, 0.0258302, 0.0362323, 0.0508234, 0.0712906, &
339 0.1000000, 0.1402710, 0.1967600, 0.2759970, 0.3871430, &
340 0.5430, 0.7617, 1.0685, 1.4988, 2.1024, 2.9490, &
341 4.1366, 5.8025, 8.1392, 11.4170, 16.0147, 22.4640, &
342 31.5105, 44.2001, 62.0000, 85.7750, 109.5500, 133.3250, &
343 157.1000, 180.8750, 204.6500, 228.4250, 252.2000, 275.9750, &
344 299.7500, 323.5250, 347.3000, 371.0750, 394.8500, 418.6250, &
345 442.4000, 466.1750, 489.9500, 513.7250, 537.5000, 561.2750, &
346 585.0500, 608.8250, 632.6000, 656.3750, 680.1500, 703.9250, &
347 727.7000, 751.4750, 775.2500, 799.0250, 822.8000, 846.5750, &
348 870.3500, 894.1250, 917.9000, 941.6750, 965.4500, 989.2250, &
349 1013.0000/
350 !
351 data (ozone(i,5),i=1,np)/ &
352 0.1993E-06, 0.2521E-06, 0.3051E-06, 0.3585E-06, 0.4121E-06, &
353 0.4661E-06, 0.5203E-06, 0.5748E-06, 0.6296E-06, 0.6847E-06, &
354 0.7402E-06, 0.7959E-06, 0.8519E-06, 0.9096E-06, 0.1125E-05, &
355 0.1450E-05, 0.1794E-05, 0.2156E-05, 0.2538E-05, 0.2939E-05, &
356 0.3362E-05, 0.3785E-05, 0.4753E-05, 0.6005E-05, 0.7804E-05, &
357 0.9635E-05, 0.1023E-04, 0.1067E-04, 0.1177E-04, 0.1290E-04, &
358 0.1134E-04, 0.9223E-05, 0.6667E-05, 0.3644E-05, 0.1545E-05, &
359 0.5355E-06, 0.2523E-06, 0.2062E-06, 0.1734E-06, 0.1548E-06, &
360 0.1360E-06, 0.1204E-06, 0.1074E-06, 0.9707E-07, 0.8960E-07, &
361 0.8419E-07, 0.7962E-07, 0.7542E-07, 0.7290E-07, 0.7109E-07, &
362 0.6940E-07, 0.6786E-07, 0.6635E-07, 0.6500E-07, 0.6370E-07, &
363 0.6244E-07, 0.6132E-07, 0.6022E-07, 0.5914E-07, 0.5884E-07, &
364 0.5855E-07, 0.5823E-07, 0.5772E-07, 0.5703E-07, 0.5635E-07, &
365 0.5570E-07, 0.5492E-07, 0.5412E-07, 0.5335E-07, 0.5260E-07, &
366 0.5167E-07, 0.5063E-07, 0.4961E-07, 0.4860E-07, 0.4761E-07/
367
368 !--------------------------------------------------------------------------------
369
370 #ifdef AER_RA_FEEDBACK
371 IF ( .NOT. &
372 ( PRESENT(tauaer300) .AND. &
373 PRESENT(tauaer400) .AND. &
374 PRESENT(tauaer600) .AND. &
375 PRESENT(tauaer999) .AND. &
376 PRESENT(gaer300) .AND. &
377 PRESENT(gaer400) .AND. &
378 PRESENT(gaer600) .AND. &
379 PRESENT(gaer999) .AND. &
380 PRESENT(waer300) .AND. &
381 PRESENT(waer400) .AND. &
382 PRESENT(waer600) .AND. &
383 PRESENT(waer999) ) ) THEN
384 CALL wrf_error_fatal ( 'Warning: missing fields required for aerosol radiation' )
385 ENDIF
386 #endif
387 cldwater = .true.
388 overcast = .false.
389
390 mix=ite-its+1
391 mkx=kte-kts+1
392
393 is_summer=80
394 ie_summer=265
395
396 ! testing, need to change iprof, which is function of lat and julian day
397 ! iprof = 1 : mid-latitude summer profile
398 ! = 2 : mid-latitude winter profile
399 ! = 3 : sub-arctic summer profile
400 ! = 4 : sub-arctic winter profile
401 ! = 5 : tropical profile
402
403 IF (abs(center_lat) .le. 30. ) THEN ! tropic
404 iprof = 5
405 ELSE
406 IF (center_lat .gt. 0.) THEN
407 IF (center_lat .gt. 60. ) THEN ! arctic
408 IF (JULDAY .gt. is_summer .and. JULDAY .lt. ie_summer ) THEN
409 ! arctic summer
410 iprof = 3
411 ELSE
412 ! arctic winter
413 iprof = 4
414 ENDIF
415 ELSE ! midlatitude
416 IF (JULDAY .gt. is_summer .and. JULDAY .lt. ie_summer ) THEN
417 ! north midlatitude summer
418 iprof = 1
419 ELSE
420 ! north midlatitude winter
421 iprof = 2
422 ENDIF
423 ENDIF
424
425 ELSE
426 IF (center_lat .lt. -60. ) THEN ! antarctic
427 IF (JULDAY .lt. is_summer .or. JULDAY .gt. ie_summer ) THEN
428 ! antarctic summer
429 iprof = 3
430 ELSE
431 ! antarctic winter
432 iprof = 4
433 ENDIF
434 ELSE ! midlatitude
435 IF (JULDAY .lt. is_summer .or. JULDAY .gt. ie_summer ) THEN
436 ! south midlatitude summer
437 iprof = 1
438 ELSE
439 ! south midlatitude winter
440 iprof = 2
441 ENDIF
442 ENDIF
443
444 ENDIF
445 ENDIF
446
447
448 j_loop: DO J=jts,jte
449
450 DO K=kts,kte
451 DO I=its,ite
452 cwc(i,k,1) = 0.
453 cwc(i,k,2) = 0.
454 ENDDO
455 ENDDO
456
457 DO K=1,np
458 p(k)=pres(k,iprof)
459 ENDDO
460
461 do k = kts,kte+1
462 do i = its,ite
463 if(k.eq.kts)then
464 phyd(i,k)=p8w3d(i,kts,j)
465 else
466 phyd(i,k)=phyd(i,k-1) - g*rho_phy(i,k-1,j)*dz8w(i,k-1,j)
467 phydmid(i,k-1)=0.5*(phyd(i,k-1)+phyd(i,k))
468 endif
469 enddo
470 enddo
471
472 ! reverse vars
473 !
474 DO K=kts,kte+1
475 DO I=its,ite
476 NK=kme-K+kms
477 P8W2D(I,K)=phyd(I,NK)*0.01 ! P8w2D is in mb
478 ENDDO
479 ENDDO
480
481 DO I=its,ite
482 P8W2D(I,0)=.0
483 ENDDO
484 !
485 DO K=kts,kte
486 DO I=its,ite
487 NK=kme-1-K+kms
488 TTEN2D(I,K)=0.
489 T2D(I,K)=T3D(I,NK,J)
490
491 ! SH2D specific humidity
492 SH2D(I,K)=QV3D(I,NK,J)/(1.+QV3D(I,NK,J))
493 SH2D(I,K)=max(0.,SH2D(I,K))
494 cwc(I,K,2)=QC3D(I,NK,J)
495 cwc(I,K,2)=max(0.,cwc(I,K,2))
496
497 P2D(I,K)=phydmid(I,NK)*0.01 ! P2D is in mb
498 fcld2D(I,K)=CLDFRA3D(I,NK,J)
499 ENDDO
500 ENDDO
501
502 ! This logic is tortured because cannot test F_QI unless
503 ! it is present, and order of evaluation of expressions
504 ! is not specified in Fortran
505
506 IF ( PRESENT ( F_QI ) ) THEN
507 predicate = F_QI
508 ELSE
509 predicate = .FALSE.
510 ENDIF
511
512 IF (.NOT. warm_rain .AND. .NOT. predicate ) THEN
513 DO K=kts,kte
514 DO I=its,ite
515 IF (T2D(I,K) .lt. 273.15) THEN
516 cwc(I,K,1)=cwc(I,K,2)
517 cwc(I,K,2)=0.
518 ENDIF
519 ENDDO
520 ENDDO
521 ENDIF
522
523 DO I=its,ite
524 TTEN2D(I,0)=0.
525 T2D(I,0)=T2D(I,1)
526 ! SH2D specific humidity
527 SH2D(I,0)=0.5*SH2D(i,1)
528 cwc(I,0,2)=0.
529 cwc(I,0,1)=0.
530 P2D(I,0)=0.5*(P8W2D(I,0)+P8W2D(I,1))
531 fcld2D(I,0)=0.
532 ENDDO
533 !
534 IF ( PRESENT( F_QI ) .AND. PRESENT( qi3d) ) THEN
535 IF ( (F_QI) ) THEN
536 DO K=kts,kte
537 DO I=its,ite
538 NK=kme-1-K+kms
539 cwc(I,K,1)=QI3D(I,NK,J)
540 cwc(I,K,1)=max(0.,cwc(I,K,1))
541 ENDDO
542 ENDDO
543 ENDIF
544 ENDIF
545 !
546 ! ... Vertical profiles for ozone
547 !
548 call o3prof (np, p, ozone(1,iprof), its, ite, kts-1, kte, P2D, O3)
549
550 ! ... Vertical profiles for effective particle size
551 !
552 do k = kts-1, kte
553 do i = its, ite
554 reff(i,k,2) = 10.
555 reff(i,k,1) = 80.
556 end do
557 end do
558 !
559 ! ... Level indices separating high, middle and low clouds
560 !
561 do i = its, ite
562 p400(i) = 1.e5
563 p700(i) = 1.e5
564 enddo
565
566 do k = kts-1,kte+1
567 do i = its, ite
568 if (abs(P8W2D(i,k) - 400.) .lt. p400(i)) then
569 p400(i) = abs(P8W2D(i,k) - 400.)
570 ict(i) = k
571 endif
572 if (abs(P8W2D(i,k) - 700.) .lt. p700(i)) then
573 p700(i) = abs(P8W2D(i,k) - 700.)
574 icb(i) = k
575 endif
576 end do
577 end do
578
579 !wig beg
580 ! ... Aerosol effects. Added aerosol feedbacks with MOSAIC, Dec. 2005.
581 !
582 do ib = 1, 11
583 do k = kts-1,kte
584 do i = its,ite
585 taual(i,k,ib) = 0.
586 ssaal(i,k,ib) = 0.
587 asyal(i,k,ib) = 0.
588 end do
589 end do
590 end do
591
592 #ifdef AER_RA_FEEDBACK
593 !wig end
594 do ib = 1, 11
595 do k = kts-1,kte-1 !wig
596 do i = its,ite
597
598 ! taual(i,kte-k,ib) = 0.
599 ! ssaal(i,kte-k,ib) = 0.
600 ! asyal(i,kte-k,ib) = 0.
601
602 !jcb beg
603 ! convert optical properties at 300,400,600, and 999 to conform to the band wavelengths
604 ! these are: 200,235,270,287.5,302.5,305,362.5,550,1920,1745,6135; why the emphasis on the UV?
605 ! taual - use angstrom exponent
606 if(tauaer300(i,k+1,j).gt.thresh .and. tauaer999(i,k+1,j).gt.thresh) then
607 ang=log(tauaer300(i,k+1,j)/tauaer999(i,k+1,j))/log(999./300.)
608 ! write(6,*)i,k,ang,tauaer300(i,k+1,j),tauaer999(i,k+1,j)
609 taual(i,kte-k,ib)=tauaer400(i,k+1,j)*(0.4/midbands(ib))**ang ! notice reserved variable
610 ! write(6,10001)i,k,ang,tauaer300(i,k+1,j),tauaer999(i,k+1,j),midbands(ib),taual(i,k,ib)
611 !10001 format(i3,i3,5f12.6)
612
613 ! ssa - linear interpolation; extrapolation
614 slope=(waer600(i,k+1,j)-waer400(i,k+1,j))/.2
615 ssaal(i,kte-k,ib) = slope*(midbands(ib)-.6)+waer600(i,k+1,j) ! notice reversed variables
616 if(ssaal(i,kte-k,ib).lt.0.4) ssaal(i,kte-k,ib)=0.4
617 if(ssaal(i,kte-k,ib).ge.0.9) ssaal(i,kte-k,ib)=0.9
618
619 ! g - linear interpolation;extrapolation
620 slope=(gaer600(i,k+1,j)-gaer400(i,k+1,j))/.2
621 asyal(i,kte-k,ib) = slope*(midbands(ib)-.6)+gaer600(i,k+1,j) ! notice reversed varaibles
622 if(asyal(i,kte-k,ib).lt.0.5) asyal(i,kte-k,ib)=0.5
623 if(asyal(i,kte-k,ib).ge.1.0) asyal(i,kte-k,ib)=1.0
624 endif
625 !jcb end
626 end do
627 end do
628 end do
629
630 !wig beg
631 do ib = 1, 11
632 do i = its,ite
633 slope = 0. !use slope as a sum holder
634 do k = kts-1,kte
635 slope = slope + taual(i,k,ib)
636 end do
637 if( slope < 0. ) then
638 write(msg,'("ERROR: Negative total optical depth of ",f8.2," at point i,j,ib=",3i5)') slope,i,j,ib
639 call wrf_error_fatal(msg)
640 else if( slope > 5. ) then
641 call wrf_message("-------------------------")
642 write(msg,'("WARNING: Large total optical depth of ",f8.2," at point i,j,ib=",3i5)') slope,i,j,ib
643 call wrf_message(msg)
644
645 call wrf_message("Diagnostics 1: k, tauaer300, tauaer400, tauaer600, tauaer999")
646 do k=kts,kte
647 write(msg,'(i4,4f8.2)') k, tauaer300(i,k,j), tauaer400(i,k,j), &
648 tauaer600(i,k,j), tauaer999(i,k,j)
649 call wrf_message(msg)
650 end do
651
652 call wrf_message("Diagnostics 2: k, gaer300, gaer400, gaer600, gaer999")
653 do k=kts,kte
654 write(msg,'(i4,4f8.2)') k, gaer300(i,k,j), gaer400(i,k,j), &
655 gaer600(i,k,j), gaer999(i,k,j)
656 call wrf_message(msg)
657 end do
658
659 call wrf_message("Diagnostics 3: k, waer300, waer400, waer600, waer999")
660 do k=kts,kte
661 write(msg,'(i4,4f8.2)') k, waer300(i,k,j), waer400(i,k,j), &
662 waer600(i,k,j), waer999(i,k,j)
663 call wrf_message(msg)
664 end do
665
666 call wrf_message("Diagnostics 4: k, ssaal, asyal, taual")
667 do k=kts-1,kte
668 write(msg,'(i4,3f8.2)') k, ssaal(i,k,ib), asyal(i,k,ib), taual(i,k,ib)
669 call wrf_message(msg)
670 end do
671 call wrf_message("-------------------------")
672 end if
673 end do
674 end do
675 !wig end
676 #endif
677 !
678 ! ... Initialize output arrays
679 !
680 do ib = 1, 2
681 do k = kts-1, kte
682 do i = its, ite
683 taucld(i,k,ib) = 0.
684 end do
685 end do
686 end do
687 !
688 do k = kts-1,kte+1
689 do i = its,ite
690 flx(i,k) = 0.
691 flxd(i,k) = 0.
692 end do
693 end do
694 !
695 ! ... Solar zenith angle
696 !
697 do i = its,ite
698 xt24 = mod(xtime + radfrq * 0.5, 1440.)
699 tloctm = GMT + xt24 / 60. + XLONG(i,j) / 15.
700 hrang = 15. * (tloctm - 12.) * degrad
701 xxlat = XLAT(i,j) * degrad
702 cosz(i) = sin(xxlat) * sin(declin) + &
703 cos(xxlat) * cos(declin) * cos(hrang)
704 !urban
705 if(present(COSZ_URB2D)) COSZ_URB2D(i,j)=cosz(i) !urban
706 if(present(OMG_URB2D)) OMG_URB2D(i,j)=hrang !urban
707 rsuvbm(i) = ALB(i,j)
708 rsuvdf(i) = ALB(i,j)
709 rsirbm(i) = ALB(i,j)
710 rsirdf(i) = ALB(i,j)
711 end do
712
713 call sorad (mix,1,1,mkx+1,p8w2D,t2D,sh2D,o3, &
714 overcast,cldwater,cwc,taucld,reff,fcld2D,ict,icb,&
715 taual,ssaal,asyal, &
716 cosz,rsuvbm,rsuvdf,rsirbm,rsirdf, &
717 flx,flxd)
718 !
719 ! ... Convert the units of flx and flc from fraction to w/m^2
720 !
721 do k = kts, kte
722 do i = its, ite
723 nk=kme-1-k+kms
724 taucldc(i,nk,j)=taucld(i,k,2)
725 taucldi(i,nk,j)=taucld(i,k,1)
726 enddo
727 enddo
728
729 do k = kts, kte+1
730 do i = its, ite
731 if (cosz(i) .lt. thresh) then
732 flx(i,k) = 0.
733 else
734 flx(i,k) = flx(i,k) * SOLCON * cosz(i)
735 endif
736 end do
737 end do
738 !
739 ! ... Calculate heating rate (deg/sec)
740 !
741 fac = .01 * g / Cp
742 do k = kts, kte
743 do i = its, ite
744 if (cosz(i) .gt. thresh) then
745 TTEN2D(i,k) = - fac * (flx(i,k) - flx(i,k+1))/ &
746 (p8w2d(i,k)-p8w2d(i,k+1))
747 endif
748 end do
749 end do
750
751 !
752 ! ... Absorbed part in surface energy budget
753 !
754 do i = its, ite
755 if (cosz(i) .le. thresh) then
756 GSW(i,j) = 0.
757 else
758 GSW(i,j) = (1. - rsuvbm(i)) * flxd(i,kte+1) * SOLCON * cosz(i)
759 endif
760 end do
761
762 DO K=kts,kte
763 NK=kme-1-K+kms
764 DO I=its,ite
765 RTHRATEN(I,K,J)=RTHRATEN(I,K,J)+TTEN2D(I,NK)/pi3D(I,K,J)
766 ENDDO
767 ENDDO
768 !
769 ENDDO j_loop
770
771 END SUBROUTINE GSFCSWRAD
772
773 !********************* Version Solar-6 (May 8, 1997) *****************
774
775 subroutine sorad (m,n,ndim,np,pl,ta,wa,oa, &
776 overcast,cldwater,cwc,taucld,reff,fcld,ict,icb, &
777 taual,ssaal,asyal, &
778 cosz,rsuvbm,rsuvdf,rsirbm,rsirdf, &
779 flx,flxd)
780
781 !************************************************************************
782 !
783 ! Version Solar-6 (May 8, 1997)
784 !
785 ! New feature of this version is:
786 ! (1) An option is added for scaling the cloud optical thickness. If
787 ! the fractional cloud cover, fcld, in an atmospheric model is alway
788 ! either 1 or 0 (i.e. partly cloudy sky is not allowed), it does
789 ! not require the scaling of cloud optical thickness, and the
790 ! option "overcast" can be set to .true. Computation is faster
791 ! with this option than with overcast=.false.
792 !
793 !**********************************************************************
794 !
795 ! Version Solar-5 (April 1997)
796 !
797 ! New features of this version are:
798 ! (1) Cloud optical properties can be computed from cloud water/ice
799 ! amount and the effective particle size.
800 ! (2) Aerosol optical properties are functions of height and band.
801 ! (3) A maximum-random cloud overlapping approximation is applied.
802 !
803 !*********************************************************************
804 !
805 ! This routine computes solar fluxes due to the absoption by water
806 ! vapor, ozone, co2, o2, clouds, and aerosols and due to the
807 ! scattering by clouds, aerosols, and gases.
808 !
809 ! The solar spectrum is divided into one UV+visible band and three IR
810 ! bands separated by the wavelength 0.7 micron. The UV+visible band
811 ! is further divided into eight sub-bands.
812 !
813 ! This is a vectorized code. It computes fluxes simultaneously for
814 ! (m x n) soundings, which is a subset of (m x ndim) soundings.
815 ! In a global climate model, m and ndim correspond to the numbers of
816 ! grid boxes in the zonal and meridional directions, respectively.
817 !
818 ! Ice and liquid cloud particles are allowed to co-exist in a layer.
819 !
820 ! There is an option of providing either cloud ice/water mixing ratio
821 ! (cwc) or thickness (taucld). If the former is provided, set
822 ! cldwater=.true., and taucld will be computed from cwc and reff as a
823 ! function of spectra band. Otherwise, set cldwater=.false., and
824 ! specify taucld, independent of spectral band.
825 !
826 ! If no information is available for reff, a default value of
827 ! 10 micron for liquid water and 75 micron for ice can be used.
828 ! For a clear layer, reff can be set to any values except zero.
829 !
830 ! The maximum-random assumption is applied for treating cloud
831 ! overlapping.
832
833 ! Clouds are grouped into high, middle, and low clouds separated by
834 ! the level indices ict and icb. For detail, see subroutine cldscale.
835 !
836 ! In a high spatial-resolution atmospheric model, fractional cloud cover
837 ! might be computed to be either 0 or 1. In such a case, scaling of the
838 ! cloud optical thickness is not necessary, and the computation can be
839 ! made faster by setting overcast=.true. The option overcast=.false.
840 ! can be applied to any values of the fractional cloud cover, but the
841 ! computation is slower.
842 !
843 ! Aerosol optical thickness, single-scattering albaedo, and asymmtry
844 ! factor can be specified as functions of height and spectral band.
845 !
846 !----- Input parameters:
847 ! units size
848 ! number of soundings in zonal direction (m) n/d 1
849 ! number of soundings in meridional direction (n) n/d 1
850 ! maximum number of soundings in n/d 1
851 ! meridional direction (ndim>=n)
852 ! number of atmospheric layers (np) n/d 1
853 ! level pressure (pl) mb m*ndim*(np+1)
854 ! layer temperature (ta) k m*ndim*np
855 ! layer specific humidity (wa) gm/gm m*ndim*np
856 ! layer ozone concentration (oa) gm/gm m*ndim*np
857 ! co2 mixing ratio by volumn (co2) pppv 1
858 ! option for scaling cloud optical thickness n/d 1
859 ! overcast="true" if scaling is NOT required
860 ! overcast="fasle" if scaling is required
861 ! option for cloud optical thickness n/d 1
862 ! cldwater="true" if cwc is provided
863 ! cldwater="false" if taucld is provided
864 ! cloud water mixing ratio (cwc) gm/gm m*ndim*np*2
865 ! index 1 for ice particles
866 ! index 2 for liquid drops
867 ! cloud optical thickness (taucld) n/d m*ndim*np*2
868 ! index 1 for ice particles
869 ! index 2 for liquid drops
870 ! effective cloud-particle size (reff) micrometer m*ndim*np*2
871 ! index 1 for ice particles
872 ! index 2 for liquid drops
873 ! cloud amount (fcld) fraction m*ndim*np
874 ! level index separating high and middle n/d 1
875 ! clouds (ict)
876 ! level index separating middle and low n/d 1
877 ! clouds (icb)
878 ! aerosol optical thickness (taual) n/d m*ndim*np*11
879 ! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
880 ! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
881 ! in the uv region :
882 ! index 1 for the 0.175-0.225 micron band
883 ! index 2 for the 0.225-0.245; 0.260-0.280 micron band
884 ! index 3 for the 0.245-0.260 micron band
885 ! index 4 for the 0.280-0.295 micron band
886 ! index 5 for the 0.295-0.310 micron band
887 ! index 6 for the 0.310-0.320 micron band
888 ! index 7 for the 0.325-0.400 micron band
889 ! in the par region :
890 ! index 8 for the 0.400-0.700 micron band
891 ! in the infrared region :
892 ! index 9 for the 0.700-1.220 micron band
893 ! index 10 for the 1.220-2.270 micron band
894 ! index 11 for the 2.270-10.00 micron band
895 ! cosine of solar zenith angle (cosz) n/d m*ndim
896 ! uv+visible sfc albedo for beam radiation
897 ! for wavelengths<0.7 micron (rsuvbm) fraction m*ndim
898 ! uv+visible sfc albedo for diffuse radiation
899 ! for wavelengths<0.7 micron (rsuvdf) fraction m*ndim
900 ! ir sfc albedo for beam radiation
901 ! for wavelengths>0.7 micron (rsirbm) fraction m*ndim
902 ! ir sfc albedo for diffuse radiation (rsirdf) fraction m*ndim
903 !
904 !----- Output parameters
905 !
906 ! all-sky flux (downward minus upward) (flx) fraction m*ndim*(np+1)
907 ! clear-sky flux (downward minus upward) (flc) fraction m*ndim*(np+1)
908 ! all-sky direct downward uv (0.175-0.4 micron)
909 ! flux at the surface (fdiruv) fraction m*ndim
910 ! all-sky diffuse downward uv flux at
911 ! the surface (fdifuv) fraction m*ndim
912 ! all-sky direct downward par (0.4-0.7 micron)
913 ! flux at the surface (fdirpar) fraction m*ndim
914 ! all-sky diffuse downward par flux at
915 ! the surface (fdifpar) fraction m*ndim
916 ! all-sky direct downward ir (0.7-10 micron)
917 ! flux at the surface (fdirir) fraction m*ndim
918 ! all-sky diffuse downward ir flux at
919 ! the surface (fdifir) fraction m*ndim
920 !
921 !----- Notes:
922 !
923 ! (1) The unit of "flux" is fraction of the incoming solar radiation
924 ! at the top of the atmosphere. Therefore, fluxes should
925 ! be equal to "flux" multiplied by the extra-terrestrial solar
926 ! flux and the cosine of solar zenith angle.
927 ! (2) pl(i,j,1) is the pressure at the top of the model, and
928 ! pl(i,j,np+1) is the surface pressure.
929 ! (3) the pressure levels ict and icb correspond approximately
930 ! to 400 and 700 mb.
931 ! (4) if overcast='true', the clear-sky flux, flc, is not computed.
932 !
933 !**************************************************************************
934 implicit none
935 !**************************************************************************
936
937 !-----input parameters
938
939 integer m,n,ndim,np
940 integer ict(m,ndim),icb(m,ndim)
941 real pl(m,ndim,np+1),ta(m,ndim,np),wa(m,ndim,np),oa(m,ndim,np)
942 real cwc(m,ndim,np,2),taucld(m,ndim,np,2),reff(m,ndim,np,2), &
943 fcld(m,ndim,np)
944 real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
945 real cosz(m,ndim),rsuvbm(m,ndim),rsuvdf(m,ndim), &
946 rsirbm(m,ndim),rsirdf(m,ndim)
947 logical overcast,cldwater
948
949 !-----output parameters
950
951 real flx(m,ndim,np+1),flc(m,ndim,np+1)
952 real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
953 real fdiruv (m,ndim),fdifuv (m,ndim)
954 real fdirpar(m,ndim),fdifpar(m,ndim)
955 real fdirir (m,ndim),fdifir (m,ndim)
956
957 !-----temporary array
958
959 integer i,j,k
960 real cwp(m,n,np,2)
961 real dp(m,n,np),wh(m,n,np),oh(m,n,np),scal(m,n,np)
962 real swh(m,n,np+1),so2(m,n,np+1),df(m,n,np+1)
963 real sdf(m,n),sclr(m,n),csm(m,n),x
964
965 do j= 1, n
966 do i= 1, m
967 if (pl(i,j,1) .eq. 0.0) then
968 pl(i,j,1)=1.0e-4
969 endif
970 enddo
971 enddo
972
973 do j= 1, n
974 do i= 1, m
975
976 swh(i,j,1)=0.
977 so2(i,j,1)=0.
978
979 !-----csm is the effective secant of the solar zenith angle
980 ! see equation (12) of Lacis and Hansen (1974, JAS)
981
982 csm(i,j)=35./sqrt(1224.*cosz(i,j)*cosz(i,j)+1.)
983
984 enddo
985 enddo
986
987 do k= 1, np
988 do j= 1, n
989 do i= 1, m
990
991 !-----compute layer thickness and pressure-scaling function.
992 ! indices for the surface level and surface layer
993 ! are np+1 and np, respectively.
994
995 dp(i,j,k)=pl(i,j,k+1)-pl(i,j,k)
996 scal(i,j,k)=dp(i,j,k)*(.5*(pl(i,j,k)+pl(i,j,k+1))/300.)**.8
997
998 !-----compute scaled water vapor amount, unit is g/cm**2
999 ! note: the sign prior to the constant 0.00135 was incorrectly
1000 ! set to negative in the previous version
1001
1002 wh(i,j,k)=1.02*wa(i,j,k)*scal(i,j,k)* &
1003 (1.+0.00135*(ta(i,j,k)-240.)) +1.e-11
1004 swh(i,j,k+1)=swh(i,j,k)+wh(i,j,k)
1005
1006 !-----compute ozone amount, unit is (cm-atm)stp
1007 ! the number 466.7 is a conversion factor from g/cm**2 to (cm-atm)stp
1008
1009 oh(i,j,k)=1.02*oa(i,j,k)*dp(i,j,k)*466.7 +1.e-11
1010
1011 !-----compute layer cloud water amount (gm/m**2)
1012 ! the index is 1 for ice crystals and 2 for liquid drops
1013
1014 cwp(i,j,k,1)=1.02*10000.*cwc(i,j,k,1)*dp(i,j,k)
1015 cwp(i,j,k,2)=1.02*10000.*cwc(i,j,k,2)*dp(i,j,k)
1016
1017 enddo
1018 enddo
1019 enddo
1020
1021 !-----initialize fluxes for all-sky (flx), clear-sky (flc), and
1022 ! flux reduction (df)
1023
1024 do k=1, np+1
1025 do j=1, n
1026 do i=1, m
1027 flx(i,j,k)=0.
1028 flc(i,j,k)=0.
1029 flxu(i,j,k)=0.
1030 flxd(i,j,k)=0.
1031 df(i,j,k)=0.
1032 enddo
1033 enddo
1034 enddo
1035
1036 !-----compute solar uv and par fluxes
1037
1038 call soluv (m,n,ndim,np,oh,dp,overcast,cldwater, &
1039 cwp,taucld,reff,ict,icb,fcld,cosz, &
1040 taual,ssaal,asyal,csm,rsuvbm,rsuvdf, &
1041 flx,flc,flxu,flxd,fdiruv,fdifuv,fdirpar,fdifpar)
1042
1043 !-----compute and update solar ir fluxes
1044
1045 call solir (m,n,ndim,np,wh,overcast,cldwater, &
1046 cwp,taucld,reff,ict,icb,fcld,cosz, &
1047 taual,ssaal,asyal,csm,rsirbm,rsirdf, &
1048 flx,flc,flxu,flxd,fdirir,fdifir)
1049
1050 !-----compute scaled o2 amount, unit is (cm-atm)stp.
1051
1052 do k= 1, np
1053 do j= 1, n
1054 do i= 1, m
1055 so2(i,j,k+1)=so2(i,j,k)+165.22*scal(i,j,k)
1056 enddo
1057 enddo
1058 enddo
1059
1060 !-----compute flux reduction due to oxygen following
1061 ! chou (J. climate, 1990). The fraction 0.0287 is the
1062 ! extraterrestrial solar flux in the o2 bands.
1063
1064 do k= 2, np+1
1065 do j= 1, n
1066 do i= 1, m
1067 x=so2(i,j,k)*csm(i,j)
1068 df(i,j,k)=df(i,j,k)+0.0287*(1.-exp(-0.00027*sqrt(x)))
1069 enddo
1070 enddo
1071 enddo
1072
1073 !-----compute scaled co2 amounts. unit is (cm-atm)stp.
1074
1075 do k= 1, np
1076 do j= 1, n
1077 do i= 1, m
1078 so2(i,j,k+1)=so2(i,j,k)+co2*789.*scal(i,j,k)+1.e-11
1079 enddo
1080 enddo
1081 enddo
1082
1083 !-----compute and update flux reduction due to co2 following
1084 ! chou (J. Climate, 1990)
1085
1086 call flxco2(m,n,np,so2,swh,csm,df)
1087
1088 !-----adjust for the effect of o2 cnd co2 on clear-sky fluxes.
1089
1090 do k= 2, np+1
1091 do j= 1, n
1092 do i= 1, m
1093 flc(i,j,k)=flc(i,j,k)-df(i,j,k)
1094 enddo
1095 enddo
1096 enddo
1097
1098 !-----adjust for the all-sky fluxes due to o2 and co2. It is
1099 ! assumed that o2 and co2 have no effects on solar radiation
1100 ! below clouds.
1101
1102 do j=1,n
1103 do i=1,m
1104 sdf(i,j)=0.0
1105 sclr(i,j)=1.0
1106 enddo
1107 enddo
1108
1109 do k=1,np
1110 do j=1,n
1111 do i=1,m
1112
1113 !-----sclr is the fraction of clear sky.
1114 ! sdf is the flux reduction below clouds.
1115
1116 if(fcld(i,j,k).gt.0.01) then
1117 sdf(i,j)=sdf(i,j)+df(i,j,k)*sclr(i,j)*fcld(i,j,k)
1118 sclr(i,j)=sclr(i,j)*(1.-fcld(i,j,k))
1119 endif
1120 flx(i,j,k+1)=flx(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j)
1121 flxu(i,j,k+1)=flxu(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j)
1122 flxd(i,j,k+1)=flxd(i,j,k+1)-sdf(i,j)-df(i,j,k+1)*sclr(i,j)
1123
1124 enddo
1125 enddo
1126 enddo
1127
1128 !-----adjustment for the direct downward ir flux.
1129
1130 do j= 1, n
1131 do i= 1, m
1132 flc(i,j,np+1)=flc(i,j,np+1)+df(i,j,np+1)*rsirbm(i,j)
1133 flx(i,j,np+1)=flx(i,j,np+1)+(sdf(i,j)+ &
1134 df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
1135 flxu(i,j,np+1)=flxu(i,j,np+1)+(sdf(i,j)+ &
1136 df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
1137 flxd(i,j,np+1)=flxd(i,j,np+1)+(sdf(i,j)+ &
1138 df(i,j,np+1)*sclr(i,j))*rsirbm(i,j)
1139 fdirir(i,j)=fdirir(i,j)-(sdf(i,j)+df(i,j,np+1)*sclr(i,j))
1140 enddo
1141 enddo
1142
1143 end subroutine sorad
1144
1145 !************************************************************************
1146
1147 subroutine soluv (m,n,ndim,np,oh,dp,overcast,cldwater, &
1148 cwp,taucld,reff,ict,icb,fcld,cosz, &
1149 taual,ssaal,asyal,csm,rsuvbm,rsuvdf, &
1150 flx,flc,flxu,flxd,fdiruv,fdifuv,fdirpar,fdifpar)
1151
1152 !************************************************************************
1153 ! compute solar fluxes in the uv+par region. the spectrum is
1154 ! grouped into 8 bands:
1155 !
1156 ! Band Micrometer
1157 !
1158 ! UV-C 1. .175 - .225
1159 ! 2. .225 - .245
1160 ! .260 - .280
1161 ! 3. .245 - .260
1162 !
1163 ! UV-B 4. .280 - .295
1164 ! 5. .295 - .310
1165 ! 6. .310 - .320
1166 !
1167 ! UV-A 7. .320 - .400
1168 !
1169 ! PAR 8. .400 - .700
1170 !
1171 !----- Input parameters: units size
1172 !
1173 ! number of soundings in zonal direction (m) n/d 1
1174 ! number of soundings in meridional direction (n) n/d 1
1175 ! maximum number of soundings in n/d 1
1176 ! meridional direction (ndim)
1177 ! number of atmospheric layers (np) n/d 1
1178 ! layer ozone content (oh) (cm-atm)stp m*n*np
1179 ! layer pressure thickness (dp) mb m*n*np
1180 ! option for scaling cloud optical thickness n/d 1
1181 ! overcast="true" if scaling is NOT required
1182 ! overcast="fasle" if scaling is required
1183 ! input option for cloud optical thickness n/d 1
1184 ! cldwater="true" if taucld is provided
1185 ! cldwater="false" if cwp is provided
1186 ! cloud water amount (cwp) gm/m**2 m*n*np*2
1187 ! index 1 for ice particles
1188 ! index 2 for liquid drops
1189 ! cloud optical thickness (taucld) n/d m*ndim*np*2
1190 ! index 1 for ice paticles
1191 ! index 2 for liquid particles
1192 ! effective cloud-particle size (reff) micrometer m*ndim*np*2
1193 ! index 1 for ice paticles
1194 ! index 2 for liquid particles
1195 ! level indiex separating high and n/d m*n
1196 ! middle clouds (ict)
1197 ! level indiex separating middle and n/d m*n
1198 ! low clouds (icb)
1199 ! cloud amount (fcld) fraction m*ndim*np
1200 ! cosine of solar zenith angle (cosz) n/d m*ndim
1201 ! aerosol optical thickness (taual) n/d m*ndim*np*11
1202 ! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
1203 ! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
1204 ! cosecant of the solar zenith angle (csm) n/d m*n
1205 ! uv+par surface albedo for beam fraction m*ndim
1206 ! radiation (rsuvbm)
1207 ! uv+par surface albedo for diffuse fraction m*ndim
1208 ! radiation (rsuvdf)
1209 !
1210 !---- temporary array
1211 !
1212 ! scaled cloud optical thickness n/d m*n*np
1213 ! for beam radiation (tauclb)
1214 ! scaled cloud optical thickness n/d m*n*np
1215 ! for diffuse radiation (tauclf)
1216 !
1217 !----- output (updated) parameters:
1218 !
1219 ! all-sky net downward flux (flx) fraction m*ndim*(np+1)
1220 ! clear-sky net downward flux (flc) fraction m*ndim*(np+1)
1221 ! all-sky direct downward uv flux at
1222 ! the surface (fdiruv) fraction m*ndim
1223 ! all-sky diffuse downward uv flux at
1224 ! the surface (fdifuv) fraction m*ndim
1225 ! all-sky direct downward par flux at
1226 ! the surface (fdirpar) fraction m*ndim
1227 ! all-sky diffuse downward par flux at
1228 ! the surface (fdifpar) fraction m*ndim
1229 !
1230 !***********************************************************************
1231 implicit none
1232 !***********************************************************************
1233
1234 !-----input parameters
1235
1236 integer m,n,ndim,np
1237 integer ict(m,ndim),icb(m,ndim)
1238 real taucld(m,ndim,np,2),reff(m,ndim,np,2),fcld(m,ndim,np)
1239 real cc(m,n,3),cosz(m,ndim)
1240 real cwp(m,n,np,2),oh(m,n,np),dp(m,n,np)
1241 real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
1242 real rsuvbm(m,ndim),rsuvdf(m,ndim),csm(m,n)
1243 logical overcast,cldwater
1244
1245 !-----output (updated) parameter
1246
1247 real flx(m,ndim,np+1),flc(m,ndim,np+1)
1248 real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
1249 real fdiruv (m,ndim),fdifuv (m,ndim)
1250 real fdirpar(m,ndim),fdifpar(m,ndim)
1251
1252 !-----static parameters
1253
1254 integer nband
1255 parameter (nband=8)
1256 real hk(nband),xk(nband),ry(nband)
1257 real aig(3),awg(3)
1258
1259 !-----temporary array
1260
1261 integer i,j,k,ib
1262 real tauclb(m,n,np),tauclf(m,n,np),asycl(m,n,np)
1263 real taurs,tauoz,tausto,ssatau,asysto,tauto,ssato,asyto
1264 real taux,reff1,reff2,g1,g2
1265 real td(m,n,np+1,2),rr(m,n,np+1,2),tt(m,n,np+1,2), &
1266 rs(m,n,np+1,2),ts(m,n,np+1,2)
1267 real fall(m,n,np+1),fclr(m,n,np+1),fsdir(m,n),fsdif(m,n)
1268 real fallu(m,n,np+1),falld(m,n,np+1)
1269 real asyclt(m,n)
1270 real rr1t(m,n),tt1t(m,n),td1t(m,n),rs1t(m,n),ts1t(m,n)
1271 real rr2t(m,n),tt2t(m,n),td2t(m,n),rs2t(m,n),ts2t(m,n)
1272
1273 !-----hk is the fractional extra-terrestrial solar flux in each
1274 ! of the 8 bands. the sum of hk is 0.47074.
1275
1276 data hk/.00057, .00367, .00083, .00417, &
1277 .00600, .00556, .05913, .39081/
1278
1279 !-----xk is the ozone absorption coefficient. unit: /(cm-atm)stp
1280
1281 data xk /30.47, 187.2, 301.9, 42.83, &
1282 7.09, 1.25, 0.0345, 0.0539/
1283
1284 !-----ry is the extinction coefficient for Rayleigh scattering.
1285 ! unit: /mb.
1286
1287 data ry /.00604, .00170, .00222, .00132, &
1288 .00107, .00091, .00055, .00012/
1289
1290 !-----coefficients for computing the asymmetry factor of ice clouds
1291 ! from asycl=aig(*,1)+aig(*,2)*reff+aig(*,3)*reff**2, independent
1292 ! of spectral band.
1293
1294 data aig/.74625000,.00105410,-.00000264/
1295
1296 !-----coefficients for computing the asymmetry factor of liquid
1297 ! clouds from asycl=awg(*,1)+awg(*,2)*reff+awg(*,3)*reff**2,
1298 ! independent of spectral band.
1299
1300 data awg/.82562000,.00529000,-.00014866/
1301
1302 !-----initialize fdiruv, fdifuv, surface reflectances and transmittances.
1303 ! cc is the maximum cloud cover in each of the three cloud groups.
1304
1305 do j= 1, n
1306 do i= 1, m
1307 fdiruv(i,j)=0.0
1308 fdifuv(i,j)=0.0
1309 rr(i,j,np+1,1)=rsuvbm(i,j)
1310 rr(i,j,np+1,2)=rsuvbm(i,j)
1311 rs(i,j,np+1,1)=rsuvdf(i,j)
1312 rs(i,j,np+1,2)=rsuvdf(i,j)
1313 td(i,j,np+1,1)=0.0
1314 td(i,j,np+1,2)=0.0
1315 tt(i,j,np+1,1)=0.0
1316 tt(i,j,np+1,2)=0.0
1317 ts(i,j,np+1,1)=0.0
1318 ts(i,j,np+1,2)=0.0
1319 cc(i,j,1)=0.0
1320 cc(i,j,2)=0.0
1321 cc(i,j,3)=0.0
1322 enddo
1323 enddo
1324
1325
1326 !-----compute cloud optical thickness
1327
1328 if (cldwater) then
1329
1330 do k= 1, np
1331 do j= 1, n
1332 do i= 1, m
1333 taucld(i,j,k,1)=cwp(i,j,k,1)*( 3.33e-4+2.52/reff(i,j,k,1))
1334 taucld(i,j,k,2)=cwp(i,j,k,2)*(-6.59e-3+1.65/reff(i,j,k,2))
1335 enddo
1336 enddo
1337 enddo
1338
1339 endif
1340
1341 !-----options for scaling cloud optical thickness
1342
1343 if (overcast) then
1344
1345 do k= 1, np
1346 do j= 1, n
1347 do i= 1, m
1348 tauclb(i,j,k)=taucld(i,j,k,1)+taucld(i,j,k,2)
1349 tauclf(i,j,k)=tauclb(i,j,k)
1350 enddo
1351 enddo
1352 enddo
1353
1354 do k= 1, 3
1355 do j= 1, n
1356 do i= 1, m
1357 cc(i,j,k)=1.0
1358 enddo
1359 enddo
1360 enddo
1361
1362 else
1363
1364 !-----scale cloud optical thickness in each layer from taucld (with
1365 ! cloud amount fcld) to tauclb and tauclf (with cloud amount cc).
1366 ! tauclb is the scaled optical thickness for beam radiation and
1367 ! tauclf is for diffuse radiation.
1368
1369 call cldscale(m,n,ndim,np,cosz,fcld,taucld,ict,icb, &
1370 cc,tauclb,tauclf)
1371
1372 endif
1373
1374 !-----compute cloud asymmetry factor for a mixture of
1375 ! liquid and ice particles. unit of reff is micrometers.
1376
1377 do k= 1, np
1378
1379 do j= 1, n
1380 do i= 1, m
1381
1382 asyclt(i,j)=1.0
1383
1384 taux=taucld(i,j,k,1)+taucld(i,j,k,2)
1385 if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
1386
1387 reff1=min(reff(i,j,k,1),130.)
1388 reff2=min(reff(i,j,k,2),20.0)
1389
1390 g1=(aig(1)+(aig(2)+aig(3)*reff1)*reff1)*taucld(i,j,k,1)
1391 g2=(awg(1)+(awg(2)+awg(3)*reff2)*reff2)*taucld(i,j,k,2)
1392 asyclt(i,j)=(g1+g2)/taux
1393
1394 endif
1395
1396 enddo
1397 enddo
1398
1399 do j=1,n
1400 do i=1,m
1401 asycl(i,j,k)=asyclt(i,j)
1402 enddo
1403 enddo
1404
1405 enddo
1406
1407 !-----integration over spectral bands
1408
1409 do 100 ib=1,nband
1410
1411 do 300 k= 1, np
1412
1413 do j= 1, n
1414 do i= 1, m
1415
1416 !-----compute ozone and rayleigh optical thicknesses
1417
1418 taurs=ry(ib)*dp(i,j,k)
1419 tauoz=xk(ib)*oh(i,j,k)
1420
1421 !-----compute clear-sky optical thickness, single scattering albedo,
1422 ! and asymmetry factor
1423
1424 tausto=taurs+tauoz+taual(i,j,k,ib)+1.0e-8
1425 ssatau=ssaal(i,j,k,ib)*taual(i,j,k,ib)+taurs
1426 asysto=asyal(i,j,k,ib)*ssaal(i,j,k,ib)*taual(i,j,k,ib)
1427
1428 tauto=tausto
1429 ssato=ssatau/tauto+1.0e-8
1430 ssato=min(ssato,0.999999)
1431 asyto=asysto/(ssato*tauto)
1432
1433 !-----compute reflectance and transmittance for cloudless layers
1434
1435 !- for direct incident radiation
1436
1437 call deledd (tauto,ssato,asyto,csm(i,j), &
1438 rr1t(i,j),tt1t(i,j),td1t(i,j))
1439
1440 !- for diffuse incident radiation
1441
1442 call sagpol (tauto,ssato,asyto,rs1t(i,j),ts1t(i,j))
1443
1444 !-----compute reflectance and transmittance for cloud layers
1445
1446 if (tauclb(i,j,k).lt.0.01 .or. fcld(i,j,k).lt.0.01) then
1447
1448 rr2t(i,j)=rr1t(i,j)
1449 tt2t(i,j)=tt1t(i,j)
1450 td2t(i,j)=td1t(i,j)
1451 rs2t(i,j)=rs1t(i,j)
1452 ts2t(i,j)=ts1t(i,j)
1453
1454 else
1455
1456 !-- for direct incident radiation
1457
1458 tauto=tausto+tauclb(i,j,k)
1459 ssato=(ssatau+tauclb(i,j,k))/tauto+1.0e-8
1460 ssato=min(ssato,0.999999)
1461 asyto=(asysto+asycl(i,j,k)*tauclb(i,j,k))/(ssato*tauto)
1462
1463 call deledd (tauto,ssato,asyto,csm(i,j), &
1464 rr2t(i,j),tt2t(i,j),td2t(i,j))
1465
1466 !-- for diffuse incident radiation
1467
1468 tauto=tausto+tauclf(i,j,k)
1469 ssato=(ssatau+tauclf(i,j,k))/tauto+1.0e-8
1470 ssato=min(ssato,0.999999)
1471 asyto=(asysto+asycl(i,j,k)*tauclf(i,j,k))/(ssato*tauto)
1472
1473 call sagpol (tauto,ssato,asyto,rs2t(i,j),ts2t(i,j))
1474
1475 endif
1476
1477 enddo
1478 enddo
1479
1480 do j=1,n
1481 do i=1,m
1482 rr(i,j,k,1)=rr1t(i,j)
1483 enddo
1484 enddo
1485 do j=1,n
1486 do i=1,m
1487 tt(i,j,k,1)=tt1t(i,j)
1488 enddo
1489 enddo
1490 do j=1,n
1491 do i=1,m
1492 td(i,j,k,1)=td1t(i,j)
1493 enddo
1494 enddo
1495 do j=1,n
1496 do i=1,m
1497 rs(i,j,k,1)=rs1t(i,j)
1498 enddo
1499 enddo
1500 do j=1,n
1501 do i=1,m
1502 ts(i,j,k,1)=ts1t(i,j)
1503 enddo
1504 enddo
1505
1506 do j=1,n
1507 do i=1,m
1508 rr(i,j,k,2)=rr2t(i,j)
1509 enddo
1510 enddo
1511 do j=1,n
1512 do i=1,m
1513 tt(i,j,k,2)=tt2t(i,j)
1514 enddo
1515 enddo
1516 do j=1,n
1517 do i=1,m
1518 td(i,j,k,2)=td2t(i,j)
1519 enddo
1520 enddo
1521 do j=1,n
1522 do i=1,m
1523 rs(i,j,k,2)=rs2t(i,j)
1524 enddo
1525 enddo
1526 do j=1,n
1527 do i=1,m
1528 ts(i,j,k,2)=ts2t(i,j)
1529 enddo
1530 enddo
1531
1532 300 continue
1533
1534 !-----flux calculations
1535
1536 call cldflx (m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts, &
1537 fclr,fall,fallu,falld,fsdir,fsdif)
1538
1539 do k= 1, np+1
1540 do j= 1, n
1541 do i= 1, m
1542 flx(i,j,k)=flx(i,j,k)+fall(i,j,k)*hk(ib)
1543 flxu(i,j,k)=flxu(i,j,k)+fallu(i,j,k)*hk(ib)
1544 flxd(i,j,k)=flxd(i,j,k)+falld(i,j,k)*hk(ib)
1545 enddo
1546 enddo
1547 do j= 1, n
1548 do i= 1, m
1549 flc(i,j,k)=flc(i,j,k)+fclr(i,j,k)*hk(ib)
1550 enddo
1551 enddo
1552 enddo
1553
1554 !-----compute downward surface fluxes in the UV and par regions
1555
1556 if(ib.lt.8) then
1557 do j=1,n
1558 do i=1,m
1559 fdiruv(i,j)=fdiruv(i,j)+fsdir(i,j)*hk(ib)
1560 fdifuv(i,j)=fdifuv(i,j)+fsdif(i,j)*hk(ib)
1561 enddo
1562 enddo
1563 else
1564 do j=1,n
1565 do i=1,m
1566 fdirpar(i,j)=fsdir(i,j)*hk(ib)
1567 fdifpar(i,j)=fsdif(i,j)*hk(ib)
1568 enddo
1569 enddo
1570 endif
1571
1572 100 continue
1573
1574 end subroutine soluv
1575
1576 !************************************************************************
1577
1578 subroutine solir (m,n,ndim,np,wh,overcast,cldwater, &
1579 cwp,taucld,reff,ict,icb,fcld,cosz, &
1580 taual,ssaal,asyal,csm,rsirbm,rsirdf, &
1581 flx,flc,flxu,flxd,fdirir,fdifir)
1582
1583 !************************************************************************
1584 ! compute solar flux in the infrared region. The spectrum is divided
1585 ! into three bands:
1586 !
1587 ! band wavenumber(/cm) wavelength (micron)
1588 ! 1( 9) 14300-8200 0.70-1.22
1589 ! 2(10) 8200-4400 1.22-2.27
1590 ! 3(11) 4400-1000 2.27-10.0
1591 !
1592 !----- Input parameters: units size
1593 !
1594 ! number of soundings in zonal direction (m) n/d 1
1595 ! number of soundings in meridional direction (n) n/d 1
1596 ! maximum number of soundings in n/d 1
1597 ! meridional direction (ndim)
1598 ! number of atmospheric layers (np) n/d 1
1599 ! layer scaled-water vapor content (wh) gm/cm^2 m*n*np
1600 ! option for scaling cloud optical thickness n/d 1
1601 ! overcast="true" if scaling is NOT required
1602 ! overcast="fasle" if scaling is required
1603 ! input option for cloud optical thickness n/d 1
1604 ! cldwater="true" if taucld is provided
1605 ! cldwater="false" if cwp is provided
1606 ! cloud water concentration (cwp) gm/m**2 m*n*np*2
1607 ! index 1 for ice particles
1608 ! index 2 for liquid drops
1609 ! cloud optical thickness (taucld) n/d m*ndim*np*2
1610 ! index 1 for ice paticles
1611 ! effective cloud-particle size (reff) micrometer m*ndim*np*2
1612 ! index 1 for ice paticles
1613 ! index 2 for liquid particles
1614 ! level index separating high and n/d m*n
1615 ! middle clouds (ict)
1616 ! level index separating middle and n/d m*n
1617 ! low clouds (icb)
1618 ! cloud amount (fcld) fraction m*ndim*np
1619 ! aerosol optical thickness (taual) n/d m*ndim*np*11
1620 ! aerosol single-scattering albedo (ssaal) n/d m*ndim*np*11
1621 ! aerosol asymmetry factor (asyal) n/d m*ndim*np*11
1622 ! cosecant of the solar zenith angle (csm) n/d m*n
1623 ! near ir surface albedo for beam fraction m*ndim
1624 ! radiation (rsirbm)
1625 ! near ir surface albedo for diffuse fraction m*ndim
1626 ! radiation (rsirdf)
1627 !
1628 !---- temporary array
1629 !
1630 ! scaled cloud optical thickness n/d m*n*np
1631 ! for beam radiation (tauclb)
1632 ! scaled cloud optical thickness n/d m*n*np
1633 ! for diffuse radiation (tauclf)
1634 !
1635 !----- output (updated) parameters:
1636 !
1637 ! all-sky flux (downward-upward) (flx) fraction m*ndim*(np+1)
1638 ! clear-sky flux (downward-upward) (flc) fraction m*ndim*(np+1)
1639 ! all-sky direct downward ir flux at
1640 ! the surface (fdirir) fraction m*ndim
1641 ! all-sky diffuse downward ir flux at
1642 ! the surface (fdifir) fraction m*ndim
1643 !
1644 !**********************************************************************
1645 implicit none
1646 !**********************************************************************
1647
1648 !-----input parameters
1649
1650 integer m,n,ndim,np
1651 integer ict(m,ndim),icb(m,ndim)
1652 real cwp(m,n,np,2),taucld(m,ndim,np,2),reff(m,ndim,np,2)
1653 real fcld(m,ndim,np),cc(m,n,3),cosz(m,ndim)
1654 real rsirbm(m,ndim),rsirdf(m,ndim)
1655 real taual(m,ndim,np,11),ssaal(m,ndim,np,11),asyal(m,ndim,np,11)
1656 real wh(m,n,np),csm(m,n)
1657 logical overcast,cldwater
1658
1659 !-----output (updated) parameters
1660
1661 real flx(m,ndim,np+1),flc(m,ndim,np+1)
1662 real flxu(m,ndim,np+1),flxd(m,ndim,np+1)
1663 real fdirir(m,ndim),fdifir(m,ndim)
1664
1665 !-----static parameters
1666
1667 integer nk,nband
1668 parameter (nk=10,nband=3)
1669 real xk(nk),hk(nband,nk),aib(nband,2),awb(nband,2)
1670 real aia(nband,3),awa(nband,3),aig(nband,3),awg(nband,3)
1671
1672 !-----temporary array
1673
1674 integer ib,iv,ik,i,j,k
1675 real tauclb(m,n,np),tauclf(m,n,np)
1676 real ssacl(m,n,np),asycl(m,n,np)
1677 real rr(m,n,np+1,2),tt(m,n,np+1,2),td(m,n,np+1,2), &
1678 rs(m,n,np+1,2),ts(m,n,np+1,2)
1679 real fall(m,n,np+1),fclr(m,n,np+1)
1680 real fallu(m,n,np+1),falld(m,n,np+1)
1681 real fsdir(m,n),fsdif(m,n)
1682
1683 real tauwv,tausto,ssatau,asysto,tauto,ssato,asyto
1684 real taux,reff1,reff2,w1,w2,g1,g2
1685 real ssaclt(m,n),asyclt(m,n)
1686 real rr1t(m,n),tt1t(m,n),td1t(m,n),rs1t(m,n),ts1t(m,n)
1687 real rr2t(m,n),tt2t(m,n),td2t(m,n),rs2t(m,n),ts2t(m,n)
1688
1689 !-----water vapor absorption coefficient for 10 k-intervals.
1690 ! unit: cm^2/gm
1691
1692 data xk/ &
1693 0.0010, 0.0133, 0.0422, 0.1334, 0.4217, &
1694 1.334, 5.623, 31.62, 177.8, 1000.0/
1695
1696 !-----water vapor k-distribution function,
1697 ! the sum of hk is 0.52926. unit: fraction
1698
1699 data hk/ &
1700 .20673,.08236,.01074, .03497,.01157,.00360, &
1701 .03011,.01133,.00411, .02260,.01143,.00421, &
1702 .01336,.01240,.00389, .00696,.01258,.00326, &
1703 .00441,.01381,.00499, .00115,.00650,.00465, &
1704 .00026,.00244,.00245, .00000,.00094,.00145/
1705
1706 !-----coefficients for computing the extinction coefficient of
1707 ! ice clouds from b=aib(*,1)+aib(*,2)/reff
1708
1709 data aib/ &
1710 .000333, .000333, .000333, &
1711 2.52, 2.52, 2.52/
1712
1713 !-----coefficients for computing the extinction coefficient of
1714 ! water clouds from b=awb(*,1)+awb(*,2)/reff
1715
1716 data awb/ &
1717 -0.0101, -0.0166, -0.0339, &
1718 1.72, 1.85, 2.16/
1719
1720
1721 !-----coefficients for computing the single scattering albedo of
1722 ! ice clouds from ssa=1-(aia(*,1)+aia(*,2)*reff+aia(*,3)*reff**2)
1723
1724 data aia/ &
1725 -.00000260, .00215346, .08938331, &
1726 .00000746, .00073709, .00299387, &
1727 .00000000,-.00000134,-.00001038/
1728
1729 !-----coefficients for computing the single scattering albedo of
1730 ! liquid clouds from ssa=1-(awa(*,1)+awa(*,2)*reff+awa(*,3)*reff**2)
1731
1732 data awa/ &
1733 .00000007,-.00019934, .01209318, &
1734 .00000845, .00088757, .01784739, &
1735 -.00000004,-.00000650,-.00036910/
1736
1737 !-----coefficients for computing the asymmetry factor of ice clouds
1738 ! from asycl=aig(*,1)+aig(*,2)*reff+aig(*,3)*reff**2
1739
1740 data aig/ &
1741 .74935228, .76098937, .84090400, &
1742 .00119715, .00141864, .00126222, &
1743 -.00000367,-.00000396,-.00000385/
1744
1745 !-----coefficients for computing the asymmetry factor of liquid clouds
1746 ! from asycl=awg(*,1)+awg(*,2)*reff+awg(*,3)*reff**2
1747
1748 data awg/ &
1749 .79375035, .74513197, .83530748, &
1750 .00832441, .01370071, .00257181, &
1751 -.00023263,-.00038203, .00005519/
1752
1753 !-----initialize surface fluxes, reflectances, and transmittances.
1754 ! cc is the maximum cloud cover in each of the three cloud groups.
1755
1756 do j= 1, n
1757 do i= 1, m
1758 fdirir(i,j)=0.0
1759 fdifir(i,j)=0.0
1760 rr(i,j,np+1,1)=rsirbm(i,j)
1761 rr(i,j,np+1,2)=rsirbm(i,j)
1762 rs(i,j,np+1,1)=rsirdf(i,j)
1763 rs(i,j,np+1,2)=rsirdf(i,j)
1764 td(i,j,np+1,1)=0.0
1765 td(i,j,np+1,2)=0.0
1766 tt(i,j,np+1,1)=0.0
1767 tt(i,j,np+1,2)=0.0
1768 ts(i,j,np+1,1)=0.0
1769 ts(i,j,np+1,2)=0.0
1770 cc(i,j,1)=0.0
1771 cc(i,j,2)=0.0
1772 cc(i,j,3)=0.0
1773 enddo
1774 enddo
1775
1776 !-----integration over spectral bands
1777
1778 do 100 ib=1,nband
1779
1780 iv=ib+8
1781
1782 !-----compute cloud optical thickness
1783
1784 if (cldwater) then
1785
1786 do k= 1, np
1787 do j= 1, n
1788 do i= 1, m
1789 taucld(i,j,k,1)=cwp(i,j,k,1)*(aib(ib,1) &
1790 +aib(ib,2)/reff(i,j,k,1))
1791 taucld(i,j,k,2)=cwp(i,j,k,2)*(awb(ib,1) &
1792 +awb(ib,2)/reff(i,j,k,2))
1793 enddo
1794 enddo
1795 enddo
1796
1797 endif
1798
1799 !-----options for scaling cloud optical thickness
1800
1801 if (overcast) then
1802
1803 do k= 1, np
1804 do j= 1, n
1805 do i= 1, m
1806 tauclb(i,j,k)=taucld(i,j,k,1)+taucld(i,j,k,2)
1807 tauclf(i,j,k)=tauclb(i,j,k)
1808 enddo
1809 enddo
1810 enddo
1811
1812 do k= 1, 3
1813 do j= 1, n
1814 do i= 1, m
1815 cc(i,j,k)=1.0
1816 enddo
1817 enddo
1818 enddo
1819
1820 else
1821
1822 !-----scale cloud optical thickness in each layer from taucld (with
1823 ! cloud amount fcld) to tauclb and tauclf (with cloud amount cc).
1824 ! tauclb is the scaled optical thickness for beam radiation and
1825 ! tauclf is for diffuse radiation.
1826
1827 call cldscale(m,n,ndim,np,cosz,fcld,taucld,ict,icb, &
1828 cc,tauclb,tauclf)
1829
1830 endif
1831
1832 !-----compute cloud single scattering albedo and asymmetry factor
1833 ! for a mixture of ice and liquid particles.
1834
1835 do k= 1, np
1836
1837 do j= 1, n
1838 do i= 1, m
1839
1840 ssaclt(i,j)=1.0
1841 asyclt(i,j)=1.0
1842
1843 taux=taucld(i,j,k,1)+taucld(i,j,k,2)
1844 if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
1845
1846 reff1=min(reff(i,j,k,1),130.)
1847 reff2=min(reff(i,j,k,2),20.0)
1848
1849 w1=(1.-(aia(ib,1)+(aia(ib,2)+ &
1850 aia(ib,3)*reff1)*reff1))*taucld(i,j,k,1)
1851 w2=(1.-(awa(ib,1)+(awa(ib,2)+ &
1852 awa(ib,3)*reff2)*reff2))*taucld(i,j,k,2)
1853 ssaclt(i,j)=(w1+w2)/taux
1854
1855 g1=(aig(ib,1)+(aig(ib,2)+aig(ib,3)*reff1)*reff1)*w1
1856 g2=(awg(ib,1)+(awg(ib,2)+awg(ib,3)*reff2)*reff2)*w2
1857 asyclt(i,j)=(g1+g2)/(w1+w2)
1858
1859 endif
1860
1861 enddo
1862 enddo
1863
1864 do j=1,n
1865 do i=1,m
1866 ssacl(i,j,k)=ssaclt(i,j)
1867 enddo
1868 enddo
1869 do j=1,n
1870 do i=1,m
1871 asycl(i,j,k)=asyclt(i,j)
1872 enddo
1873 enddo
1874
1875 enddo
1876
1877 !-----integration over the k-distribution function
1878
1879 do 200 ik=1,nk
1880
1881 do 300 k= 1, np
1882
1883 do j= 1, n
1884 do i= 1, m
1885
1886 tauwv=xk(ik)*wh(i,j,k)
1887
1888 !-----compute clear-sky optical thickness, single scattering albedo,
1889 ! and asymmetry factor.
1890
1891 tausto=tauwv+taual(i,j,k,iv)+1.0e-8
1892 ssatau=ssaal(i,j,k,iv)*taual(i,j,k,iv)
1893 asysto=asyal(i,j,k,iv)*ssaal(i,j,k,iv)*taual(i,j,k,iv)
1894
1895 !-----compute reflectance and transmittance for cloudless layers
1896
1897 tauto=tausto
1898 ssato=ssatau/tauto+1.0e-8
1899
1900 if (ssato .gt. 0.001) then
1901
1902 ssato=min(ssato,0.999999)
1903 asyto=asysto/(ssato*tauto)
1904
1905 !- for direct incident radiation
1906
1907 call deledd (tauto,ssato,asyto,csm(i,j), &
1908 rr1t(i,j),tt1t(i,j),td1t(i,j))
1909
1910 !- for diffuse incident radiation
1911
1912 call sagpol (tauto,ssato,asyto,rs1t(i,j),ts1t(i,j))
1913
1914 else
1915
1916 td1t(i,j)=exp(-tauto*csm(i,j))
1917 ts1t(i,j)=exp(-1.66*tauto)
1918 tt1t(i,j)=0.0
1919 rr1t(i,j)=0.0
1920 rs1t(i,j)=0.0
1921
1922 endif
1923
1924 !-----compute reflectance and transmittance for cloud layers
1925
1926 if (tauclb(i,j,k).lt.0.01 .or. fcld(i,j,k).lt.0.01) then
1927
1928 rr2t(i,j)=rr1t(i,j)
1929 tt2t(i,j)=tt1t(i,j)
1930 td2t(i,j)=td1t(i,j)
1931 rs2t(i,j)=rs1t(i,j)
1932 ts2t(i,j)=ts1t(i,j)
1933
1934 else
1935
1936 !- for direct incident radiation
1937
1938 tauto=tausto+tauclb(i,j,k)
1939 ssato=(ssatau+ssacl(i,j,k)*tauclb(i,j,k))/tauto+1.0e-8
1940 ssato=min(ssato,0.999999)
1941 asyto=(asysto+asycl(i,j,k)*ssacl(i,j,k)*tauclb(i,j,k))/ &
1942 (ssato*tauto)
1943
1944 call deledd (tauto,ssato,asyto,csm(i,j), &
1945 rr2t(i,j),tt2t(i,j),td2t(i,j))
1946
1947 !- for diffuse incident radiation
1948
1949 tauto=tausto+tauclf(i,j,k)
1950 ssato=(ssatau+ssacl(i,j,k)*tauclf(i,j,k))/tauto+1.0e-8
1951 ssato=min(ssato,0.999999)
1952 asyto=(asysto+asycl(i,j,k)*ssacl(i,j,k)*tauclf(i,j,k))/ &
1953 (ssato*tauto)
1954
1955 call sagpol (tauto,ssato,asyto,rs2t(i,j),ts2t(i,j))
1956
1957 endif
1958
1959 enddo
1960 enddo
1961
1962 do j=1,n
1963 do i=1,m
1964 rr(i,j,k,1)=rr1t(i,j)
1965 enddo
1966 enddo
1967 do j=1,n
1968 do i=1,m
1969 tt(i,j,k,1)=tt1t(i,j)
1970 enddo
1971 enddo
1972 do j=1,n
1973 do i=1,m
1974 td(i,j,k,1)=td1t(i,j)
1975 enddo
1976 enddo
1977 do j=1,n
1978 do i=1,m
1979 rs(i,j,k,1)=rs1t(i,j)
1980 enddo
1981 enddo
1982 do j=1,n
1983 do i=1,m
1984 ts(i,j,k,1)=ts1t(i,j)
1985 enddo
1986 enddo
1987
1988 do j=1,n
1989 do i=1,m
1990 rr(i,j,k,2)=rr2t(i,j)
1991 enddo
1992 enddo
1993 do j=1,n
1994 do i=1,m
1995 tt(i,j,k,2)=tt2t(i,j)
1996 enddo
1997 enddo
1998 do j=1,n
1999 do i=1,m
2000 td(i,j,k,2)=td2t(i,j)
2001 enddo
2002 enddo
2003 do j=1,n
2004 do i=1,m
2005 rs(i,j,k,2)=rs2t(i,j)
2006 enddo
2007 enddo
2008 do j=1,n
2009 do i=1,m
2010 ts(i,j,k,2)=ts2t(i,j)
2011 enddo
2012 enddo
2013
2014 300 continue
2015
2016 !-----flux calculations
2017
2018 call cldflx (m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts, &
2019 fclr,fall,fallu,falld,fsdir,fsdif)
2020
2021 do k= 1, np+1
2022 do j= 1, n
2023 do i= 1, m
2024 flx(i,j,k) = flx(i,j,k)+fall(i,j,k)*hk(ib,ik)
2025 flxu(i,j,k) = flxu(i,j,k)+fallu(i,j,k)*hk(ib,ik)
2026 flxd(i,j,k) = flxd(i,j,k)+falld(i,j,k)*hk(ib,ik)
2027 enddo
2028 enddo
2029 do j= 1, n
2030 do i= 1, m
2031 flc(i,j,k) = flc(i,j,k)+fclr(i,j,k)*hk(ib,ik)
2032 enddo
2033 enddo
2034 enddo
2035
2036 !-----compute downward surface fluxes in the ir region
2037
2038 do j= 1, n
2039 do i= 1, m
2040 fdirir(i,j) = fdirir(i,j)+fsdir(i,j)*hk(ib,ik)
2041 fdifir(i,j) = fdifir(i,j)+fsdif(i,j)*hk(ib,ik)
2042 enddo
2043 enddo
2044
2045 200 continue
2046 100 continue
2047
2048 end subroutine solir
2049
2050 !********************************************************************
2051
2052 subroutine cldscale (m,n,ndim,np,cosz,fcld,taucld,ict,icb, &
2053 cc,tauclb,tauclf)
2054
2055 !********************************************************************
2056 !
2057 ! This subroutine computes the high, middle, and
2058 ! low cloud amounts and scales the cloud optical thickness.
2059 !
2060 ! To simplify calculations in a cloudy atmosphere, clouds are
2061 ! grouped into high, middle and low clouds separated by the levels
2062 ! ict and icb (level 1 is the top of the model atmosphere).
2063 !
2064 ! Within each of the three groups, clouds are assumed maximally
2065 ! overlapped, and the cloud cover (cc) of a group is the maximum
2066 ! cloud cover of all the layers in the group. The optical thickness
2067 ! (taucld) of a given layer is then scaled to new values (tauclb and
2068 ! tauclf) so that the layer reflectance corresponding to the cloud
2069 ! cover cc is the same as the original reflectance with optical
2070 ! thickness taucld and cloud cover fcld.
2071 !
2072 !---input parameters
2073 !
2074 ! number of grid intervals in zonal direction (m)
2075 ! number of grid intervals in meridional direction (n)
2076 ! maximum number of grid intervals in meridional direction (ndim)
2077 ! number of atmospheric layers (np)
2078 ! cosine of the solar zenith angle (cosz)
2079 ! fractional cloud cover (fcld)
2080 ! cloud optical thickness (taucld)
2081 ! index separating high and middle clouds (ict)
2082 ! index separating middle and low clouds (icb)
2083 !
2084 !---output parameters
2085 !
2086 ! fractional cover of high, middle, and low clouds (cc)
2087 ! scaled cloud optical thickness for beam radiation (tauclb)
2088 ! scaled cloud optical thickness for diffuse radiation (tauclf)
2089 !
2090 !********************************************************************
2091 implicit none
2092 !********************************************************************
2093
2094 !-----input parameters
2095
2096 integer m,n,ndim,np
2097 integer ict(m,ndim),icb(m,ndim)
2098 real cosz(m,ndim),fcld(m,ndim,np),taucld(m,ndim,np,2)
2099
2100 !-----output parameters
2101
2102 real cc(m,n,3),tauclb(m,n,np),tauclf(m,n,np)
2103
2104 !-----temporary variables
2105
2106 integer i,j,k,im,it,ia,kk
2107 real fm,ft,fa,xai,taux
2108
2109 !-----pre-computed table
2110
2111 integer nm,nt,na
2112 parameter (nm=11,nt=9,na=11)
2113 real dm,dt,da,t1,caib(nm,nt,na),caif(nt,na)
2114 parameter (dm=0.1,dt=0.30103,da=0.1,t1=-0.9031)
2115
2116 !-----include the pre-computed table of mcai for scaling the cloud optical
2117 ! thickness under the assumption that clouds are maximally overlapped
2118 !
2119 ! caib is for scaling the cloud optical thickness for direct radiation
2120 ! caif is for scaling the cloud optical thickness for diffuse radiation
2121
2122
2123 data ((caib(1,i,j),j=1,11),i=1,9)/ &
2124 .000,0.068,0.140,0.216,0.298,0.385,0.481,0.586,0.705,0.840,1.000, &
2125 .000,0.052,0.106,0.166,0.230,0.302,0.383,0.478,0.595,0.752,1.000, &
2126 .000,0.038,0.078,0.120,0.166,0.218,0.276,0.346,0.438,0.582,1.000, &
2127 .000,0.030,0.060,0.092,0.126,0.164,0.206,0.255,0.322,0.442,1.000, &
2128 .000,0.025,0.051,0.078,0.106,0.136,0.170,0.209,0.266,0.462,1.000, &
2129 .000,0.023,0.046,0.070,0.095,0.122,0.150,0.187,0.278,0.577,1.000, &
2130 .000,0.022,0.043,0.066,0.089,0.114,0.141,0.187,0.354,0.603,1.000, &
2131 .000,0.021,0.042,0.063,0.086,0.108,0.135,0.214,0.349,0.565,1.000, &
2132 .000,0.021,0.041,0.062,0.083,0.105,0.134,0.202,0.302,0.479,1.000/
2133 data ((caib(2,i,j),j=1,11),i=1,9)/ &
2134 .000,0.088,0.179,0.272,0.367,0.465,0.566,0.669,0.776,0.886,1.000, &
2135 .000,0.079,0.161,0.247,0.337,0.431,0.531,0.637,0.749,0.870,1.000, &
2136 .000,0.065,0.134,0.207,0.286,0.372,0.466,0.572,0.692,0.831,1.000, &
2137 .000,0.049,0.102,0.158,0.221,0.290,0.370,0.465,0.583,0.745,1.000, &
2138 .000,0.037,0.076,0.118,0.165,0.217,0.278,0.354,0.459,0.638,1.000, &
2139 .000,0.030,0.061,0.094,0.130,0.171,0.221,0.286,0.398,0.631,1.000, &
2140 .000,0.026,0.052,0.081,0.111,0.146,0.189,0.259,0.407,0.643,1.000, &
2141 .000,0.023,0.047,0.072,0.098,0.129,0.170,0.250,0.387,0.598,1.000, &
2142 .000,0.022,0.044,0.066,0.090,0.118,0.156,0.224,0.328,0.508,1.000/
2143 data ((caib(3,i,j),j=1,11),i=1,9)/ &
2144 .000,0.094,0.189,0.285,0.383,0.482,0.582,0.685,0.788,0.894,1.000, &
2145 .000,0.088,0.178,0.271,0.366,0.465,0.565,0.669,0.776,0.886,1.000, &
2146 .000,0.079,0.161,0.247,0.337,0.431,0.531,0.637,0.750,0.870,1.000, &
2147 .000,0.066,0.134,0.209,0.289,0.375,0.470,0.577,0.697,0.835,1.000, &
2148 .000,0.050,0.104,0.163,0.227,0.300,0.383,0.483,0.606,0.770,1.000, &
2149 .000,0.038,0.080,0.125,0.175,0.233,0.302,0.391,0.518,0.710,1.000, &
2150 .000,0.031,0.064,0.100,0.141,0.188,0.249,0.336,0.476,0.689,1.000, &
2151 .000,0.026,0.054,0.084,0.118,0.158,0.213,0.298,0.433,0.638,1.000, &
2152 .000,0.023,0.048,0.074,0.102,0.136,0.182,0.254,0.360,0.542,1.000/
2153 data ((caib(4,i,j),j=1,11),i=1,9)/ &
2154 .000,0.096,0.193,0.290,0.389,0.488,0.589,0.690,0.792,0.896,1.000, &
2155 .000,0.092,0.186,0.281,0.378,0.477,0.578,0.680,0.785,0.891,1.000, &
2156 .000,0.086,0.174,0.264,0.358,0.455,0.556,0.660,0.769,0.882,1.000, &
2157 .000,0.074,0.153,0.235,0.323,0.416,0.514,0.622,0.737,0.862,1.000, &
2158 .000,0.061,0.126,0.195,0.271,0.355,0.449,0.555,0.678,0.823,1.000, &
2159 .000,0.047,0.098,0.153,0.215,0.286,0.370,0.471,0.600,0.770,1.000, &
2160 .000,0.037,0.077,0.120,0.170,0.230,0.303,0.401,0.537,0.729,1.000, &
2161 .000,0.030,0.062,0.098,0.138,0.187,0.252,0.343,0.476,0.673,1.000, &
2162 .000,0.026,0.053,0.082,0.114,0.154,0.207,0.282,0.391,0.574,1.000/
2163 data ((caib(5,i,j),j=1,11),i=1,9)/ &
2164 .000,0.097,0.194,0.293,0.392,0.492,0.592,0.693,0.794,0.897,1.000, &
2165 .000,0.094,0.190,0.286,0.384,0.483,0.584,0.686,0.789,0.894,1.000, &
2166 .000,0.090,0.181,0.274,0.370,0.468,0.569,0.672,0.778,0.887,1.000, &
2167 .000,0.081,0.165,0.252,0.343,0.439,0.539,0.645,0.757,0.874,1.000, &
2168 .000,0.069,0.142,0.218,0.302,0.392,0.490,0.598,0.717,0.850,1.000, &
2169 .000,0.054,0.114,0.178,0.250,0.330,0.422,0.529,0.656,0.810,1.000, &
2170 .000,0.042,0.090,0.141,0.200,0.269,0.351,0.455,0.589,0.764,1.000, &
2171 .000,0.034,0.070,0.112,0.159,0.217,0.289,0.384,0.515,0.703,1.000, &
2172 .000,0.028,0.058,0.090,0.128,0.174,0.231,0.309,0.420,0.602,1.000/
2173 data ((caib(6,i,j),j=1,11),i=1,9)/ &
2174 .000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
2175 .000,0.096,0.193,0.290,0.389,0.488,0.588,0.690,0.792,0.895,1.000, &
2176 .000,0.092,0.186,0.281,0.378,0.477,0.577,0.680,0.784,0.891,1.000, &
2177 .000,0.086,0.174,0.264,0.358,0.455,0.556,0.661,0.769,0.882,1.000, &
2178 .000,0.075,0.154,0.237,0.325,0.419,0.518,0.626,0.741,0.865,1.000, &
2179 .000,0.062,0.129,0.201,0.279,0.366,0.462,0.571,0.694,0.836,1.000, &
2180 .000,0.049,0.102,0.162,0.229,0.305,0.394,0.501,0.631,0.793,1.000, &
2181 .000,0.038,0.080,0.127,0.182,0.245,0.323,0.422,0.550,0.730,1.000, &
2182 .000,0.030,0.064,0.100,0.142,0.192,0.254,0.334,0.448,0.627,1.000/
2183 data ((caib(7,i,j),j=1,11),i=1,9)/ &
2184 .000,0.098,0.198,0.296,0.396,0.496,0.596,0.696,0.797,0.898,1.000, &
2185 .000,0.097,0.194,0.293,0.392,0.491,0.591,0.693,0.794,0.897,1.000, &
2186 .000,0.094,0.190,0.286,0.384,0.483,0.583,0.686,0.789,0.894,1.000, &
2187 .000,0.089,0.180,0.274,0.369,0.467,0.568,0.672,0.778,0.887,1.000, &
2188 .000,0.081,0.165,0.252,0.344,0.440,0.541,0.646,0.758,0.875,1.000, &
2189 .000,0.069,0.142,0.221,0.306,0.397,0.496,0.604,0.722,0.854,1.000, &
2190 .000,0.056,0.116,0.182,0.256,0.338,0.432,0.540,0.666,0.816,1.000, &
2191 .000,0.043,0.090,0.143,0.203,0.273,0.355,0.455,0.583,0.754,1.000, &
2192 .000,0.034,0.070,0.111,0.157,0.210,0.276,0.359,0.474,0.650,1.000/
2193 data ((caib(8,i,j),j=1,11),i=1,9)/ &
2194 .000,0.099,0.198,0.298,0.398,0.497,0.598,0.698,0.798,0.899,1.000, &
2195 .000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
2196 .000,0.096,0.193,0.290,0.390,0.489,0.589,0.690,0.793,0.896,1.000, &
2197 .000,0.093,0.186,0.282,0.379,0.478,0.578,0.681,0.786,0.892,1.000, &
2198 .000,0.086,0.175,0.266,0.361,0.458,0.558,0.663,0.771,0.883,1.000, &
2199 .000,0.076,0.156,0.240,0.330,0.423,0.523,0.630,0.744,0.867,1.000, &
2200 .000,0.063,0.130,0.203,0.282,0.369,0.465,0.572,0.694,0.834,1.000, &
2201 .000,0.049,0.102,0.161,0.226,0.299,0.385,0.486,0.611,0.774,1.000, &
2202 .000,0.038,0.078,0.122,0.172,0.229,0.297,0.382,0.498,0.672,1.000/
2203 data ((caib(9,i,j),j=1,11),i=1,9)/ &
2204 .000,0.099,0.199,0.298,0.398,0.498,0.598,0.699,0.799,0.899,1.000, &
2205 .000,0.099,0.198,0.298,0.398,0.497,0.598,0.698,0.798,0.899,1.000, &
2206 .000,0.098,0.196,0.295,0.394,0.494,0.594,0.695,0.796,0.898,1.000, &
2207 .000,0.096,0.193,0.290,0.389,0.488,0.588,0.690,0.792,0.895,1.000, &
2208 .000,0.092,0.185,0.280,0.376,0.474,0.575,0.678,0.782,0.890,1.000, &
2209 .000,0.084,0.170,0.259,0.351,0.447,0.547,0.652,0.762,0.878,1.000, &
2210 .000,0.071,0.146,0.224,0.308,0.398,0.494,0.601,0.718,0.850,1.000, &
2211 .000,0.056,0.114,0.178,0.248,0.325,0.412,0.514,0.638,0.793,1.000, &
2212 .000,0.042,0.086,0.134,0.186,0.246,0.318,0.405,0.521,0.691,1.000/
2213 data ((caib(10,i,j),j=1,11),i=1,9)/ &
2214 .000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
2215 .000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
2216 .000,0.100,0.200,0.300,0.400,0.500,0.600,0.700,0.800,0.900,1.000, &
2217 .000,0.100,0.199,0.298,0.398,0.498,0.598,0.698,0.798,0.899,1.000, &
2218 .000,0.098,0.196,0.294,0.392,0.491,0.590,0.691,0.793,0.896,1.000, &
2219 .000,0.092,0.185,0.278,0.374,0.470,0.570,0.671,0.777,0.886,1.000, &
2220 .000,0.081,0.162,0.246,0.333,0.424,0.521,0.625,0.738,0.862,1.000, &
2221 .000,0.063,0.128,0.196,0.270,0.349,0.438,0.540,0.661,0.809,1.000, &
2222 .000,0.046,0.094,0.146,0.202,0.264,0.337,0.426,0.542,0.710,1.000/
2223 data ((caib(11,i,j),j=1,11),i=1,9)/ &
2224 .000,0.101,0.202,0.302,0.402,0.502,0.602,0.702,0.802,0.901,1.000, &
2225 .000,0.102,0.202,0.303,0.404,0.504,0.604,0.703,0.802,0.902,1.000, &
2226 .000,0.102,0.205,0.306,0.406,0.506,0.606,0.706,0.804,0.902,1.000, &
2227 .000,0.104,0.207,0.309,0.410,0.510,0.609,0.707,0.805,0.902,1.000, &
2228 .000,0.106,0.208,0.309,0.409,0.508,0.606,0.705,0.803,0.902,1.000, &
2229 .000,0.102,0.202,0.298,0.395,0.493,0.590,0.690,0.790,0.894,1.000, &
2230 .000,0.091,0.179,0.267,0.357,0.449,0.545,0.647,0.755,0.872,1.000, &
2231 .000,0.073,0.142,0.214,0.290,0.372,0.462,0.563,0.681,0.822,1.000, &
2232 .000,0.053,0.104,0.158,0.217,0.281,0.356,0.446,0.562,0.726,1.000/
2233 data ((caif(i,j),j=1,11),i=1,9)/ &
2234 .000,0.099,0.198,0.297,0.397,0.496,0.597,0.697,0.798,0.899,1.000, &
2235 .000,0.098,0.196,0.294,0.394,0.494,0.594,0.694,0.796,0.898,1.000, &
2236 .000,0.096,0.192,0.290,0.388,0.487,0.587,0.689,0.792,0.895,1.000, &
2237 .000,0.092,0.185,0.280,0.376,0.476,0.576,0.678,0.783,0.890,1.000, &
2238 .000,0.085,0.173,0.263,0.357,0.454,0.555,0.659,0.768,0.881,1.000, &
2239 .000,0.076,0.154,0.237,0.324,0.418,0.517,0.624,0.738,0.864,1.000, &
2240 .000,0.063,0.131,0.203,0.281,0.366,0.461,0.567,0.688,0.830,1.000, &
2241 .000,0.052,0.107,0.166,0.232,0.305,0.389,0.488,0.610,0.770,1.000, &
2242 .000,0.043,0.088,0.136,0.189,0.248,0.317,0.400,0.510,0.675,1.000/
2243
2244 !-----clouds within each of the high, middle, and low clouds are assumed
2245 ! to be maximally overlapped, and the cloud cover (cc) for a group
2246 ! (high, middle, or low) is the maximum cloud cover of all the layers
2247 ! within a group
2248
2249 do j=1,n
2250 do i=1,m
2251 cc(i,j,1)=0.0
2252 cc(i,j,2)=0.0
2253 cc(i,j,3)=0.0
2254 enddo
2255 enddo
2256 do j=1,n
2257 do i=1,m
2258 do k=1,ict(i,j)-1
2259 cc(i,j,1)=max(cc(i,j,1),fcld(i,j,k))
2260 enddo
2261 enddo
2262 enddo
2263
2264 do j=1,n
2265 do i=1,m
2266 do k=ict(i,j),icb(i,j)-1
2267 cc(i,j,2)=max(cc(i,j,2),fcld(i,j,k))
2268 enddo
2269 enddo
2270 enddo
2271
2272 do j=1,n
2273 do i=1,m
2274 do k=icb(i,j),np
2275 cc(i,j,3)=max(cc(i,j,3),fcld(i,j,k))
2276 enddo
2277 enddo
2278 enddo
2279
2280 !-----scale the cloud optical thickness.
2281 ! taucld(i,j,k,1) is the optical thickness for ice particles, and
2282 ! taucld(i,j,k,2) is the optical thickness for liquid particles.
2283
2284 do j=1,n
2285 do i=1,m
2286
2287 do k=1,np
2288
2289 if(k.lt.ict(i,j)) then
2290 kk=1
2291 elseif(k.ge.ict(i,j) .and. k.lt.icb(i,j)) then
2292 kk=2
2293 else
2294 kk=3
2295 endif
2296
2297 tauclb(i,j,k) = 0.0
2298 tauclf(i,j,k) = 0.0
2299
2300 taux=taucld(i,j,k,1)+taucld(i,j,k,2)
2301 if (taux.gt.0.05 .and. fcld(i,j,k).gt.0.01) then
2302
2303 !-----normalize cloud cover
2304
2305 fa=fcld(i,j,k)/cc(i,j,kk)
2306
2307 !-----table look-up
2308
2309 taux=min(taux,32.)
2310
2311 fm=cosz(i,j)/dm
2312 ft=(log10(taux)-t1)/dt
2313 fa=fa/da
2314
2315 im=int(fm+1.5)
2316 it=int(ft+1.5)
2317 ia=int(fa+1.5)
2318
2319 im=max(im,2)
2320 it=max(it,2)
2321 ia=max(ia,2)
2322
2323 im=min(im,nm-1)
2324 it=min(it,nt-1)
2325 ia=min(ia,na-1)
2326
2327 fm=fm-float(im-1)
2328 ft=ft-float(it-1)
2329 fa=fa-float(ia-1)
2330
2331 !-----scale cloud optical thickness for beam radiation.
2332 ! the scaling factor, xai, is a function of the solar zenith
2333 ! angle, optical thickness, and cloud cover.
2334
2335 xai= (-caib(im-1,it,ia)*(1.-fm)+ &
2336 caib(im+1,it,ia)*(1.+fm))*fm*.5+caib(im,it,ia)*(1.-fm*fm)
2337
2338 xai=xai+(-caib(im,it-1,ia)*(1.-ft)+ &
2339 caib(im,it+1,ia)*(1.+ft))*ft*.5+caib(im,it,ia)*(1.-ft*ft)
2340
2341 xai=xai+(-caib(im,it,ia-1)*(1.-fa)+ &
2342 caib(im,it,ia+1)*(1.+fa))*fa*.5+caib(im,it,ia)*(1.-fa*fa)
2343
2344 xai= xai-2.*caib(im,it,ia)
2345 xai=max(xai,0.0)
2346
2347 tauclb(i,j,k) = taux*xai
2348
2349 !-----scale cloud optical thickness for diffuse radiation.
2350 ! the scaling factor, xai, is a function of the cloud optical
2351 ! thickness and cover but not the solar zenith angle.
2352
2353 xai= (-caif(it-1,ia)*(1.-ft)+ &
2354 caif(it+1,ia)*(1.+ft))*ft*.5+caif(it,ia)*(1.-ft*ft)
2355
2356 xai=xai+(-caif(it,ia-1)*(1.-fa)+ &
2357 caif(it,ia+1)*(1.+fa))*fa*.5+caif(it,ia)*(1.-fa*fa)
2358
2359 xai= xai-caif(it,ia)
2360 xai=max(xai,0.0)
2361
2362 tauclf(i,j,k) = taux*xai
2363
2364 endif
2365
2366 enddo
2367 enddo
2368 enddo
2369
2370 end subroutine cldscale
2371
2372 !*********************************************************************
2373
2374 subroutine deledd(tau,ssc,g0,csm,rr,tt,td)
2375
2376 !*********************************************************************
2377 !
2378 !-----uses the delta-eddington approximation to compute the
2379 ! bulk scattering properties of a single layer
2380 ! coded following King and Harshvardhan (JAS, 1986)
2381 !
2382 ! inputs:
2383 !
2384 ! tau: the effective optical thickness
2385 ! ssc: the effective single scattering albedo
2386 ! g0: the effective asymmetry factor
2387 ! csm: the effective secant of the zenith angle
2388 !
2389 ! outputs:
2390 !
2391 ! rr: the layer reflection of the direct beam
2392 ! tt: the layer diffuse transmission of the direct beam
2393 ! td: the layer direct transmission of the direct beam
2394 !
2395 !*********************************************************************
2396 implicit none
2397 !*********************************************************************
2398
2399 real zero,one,two,three,four,fourth,seven,thresh
2400 parameter (one =1., three=3.)
2401 parameter (two =2., seven=7.)
2402 parameter (four=4., fourth=.25)
2403 parameter (zero=0., thresh=1.e-8)
2404
2405 !-----input parameters
2406 real tau,ssc,g0,csm
2407
2408 !-----output parameters
2409 real rr,tt,td
2410
2411 !-----temporary parameters
2412
2413 real zth,ff,xx,taup,sscp,gp,gm1,gm2,gm3,akk,alf1,alf2, &
2414 all,bll,st7,st8,cll,dll,fll,ell,st1,st2,st3,st4
2415
2416 !---------------------------------------------------------------------
2417
2418 zth = one / csm
2419
2420 ! delta-eddington scaling of single scattering albedo,
2421 ! optical thickness, and asymmetry factor,
2422 ! K & H eqs(27-29)
2423
2424 ff = g0*g0
2425 xx = one-ff*ssc
2426 taup= tau*xx
2427 sscp= ssc*(one-ff)/xx
2428 gp = g0/(one+g0)
2429
2430 ! gamma1, gamma2, and gamma3. see table 2 and eq(26) K & H
2431 ! ssc and gp are the d-s single scattering
2432 ! albedo and asymmetry factor.
2433
2434 xx = three*gp
2435 gm1 = (seven - sscp*(four+xx))*fourth
2436 gm2 = -(one - sscp*(four-xx))*fourth
2437
2438 ! akk is k as defined in eq(25) of K & H
2439
2440 akk = sqrt((gm1+gm2)*(gm1-gm2))
2441
2442 xx = akk * zth
2443 st7 = one - xx
2444 st8 = one + xx
2445 st3 = st7 * st8
2446
2447 if (abs(st3) .lt. thresh) then
2448 zth = zth + 0.001
2449 xx = akk * zth
2450 st7 = one - xx
2451 st8 = one + xx
2452 st3 = st7 * st8
2453 endif
2454
2455 ! extinction of the direct beam transmission
2456
2457 td = exp(-taup/zth)
2458
2459 ! alf1 and alf2 are alpha1 and alpha2 from eqs (23) & (24) of K & H
2460
2461 gm3 = (two - zth*three*gp)*fourth
2462 xx = gm1 - gm2
2463 alf1 = gm1 - gm3 * xx
2464 alf2 = gm2 + gm3 * xx
2465
2466 ! all is last term in eq(21) of K & H
2467 ! bll is last term in eq(22) of K & H
2468
2469 xx = akk * two
2470 all = (gm3 - alf2 * zth )*xx*td
2471 bll = (one - gm3 + alf1*zth)*xx
2472
2473 xx = akk * gm3
2474 cll = (alf2 + xx) * st7
2475 dll = (alf2 - xx) * st8
2476
2477 xx = akk * (one-gm3)
2478 fll = (alf1 + xx) * st8
2479 ell = (alf1 - xx) * st7
2480
2481 st2 = exp(-akk*taup)
2482 st4 = st2 * st2
2483
2484 st1 = sscp / ((akk+gm1 + (akk-gm1)*st4) * st3)
2485
2486 ! rr is r-hat of eq(21) of K & H
2487 ! tt is diffuse part of t-hat of eq(22) of K & H
2488
2489 rr = ( cll-dll*st4 -all*st2)*st1
2490 tt = - ((fll-ell*st4)*td-bll*st2)*st1
2491
2492 rr = max(rr,zero)
2493 tt = max(tt,zero)
2494
2495 end subroutine deledd
2496
2497 !*********************************************************************
2498
2499 subroutine sagpol(tau,ssc,g0,rll,tll)
2500
2501 !*********************************************************************
2502 !-----transmittance (tll) and reflectance (rll) of diffuse radiation
2503 ! follows Sagan and Pollock (JGR, 1967).
2504 ! also, eq.(31) of Lacis and Hansen (JAS, 1974).
2505 !
2506 !-----input parameters:
2507 !
2508 ! tau: the effective optical thickness
2509 ! ssc: the effective single scattering albedo
2510 ! g0: the effective asymmetry factor
2511 !
2512 !-----output parameters:
2513 !
2514 ! rll: the layer reflection of diffuse radiation
2515 ! tll: the layer transmission of diffuse radiation
2516 !
2517 !*********************************************************************
2518 implicit none
2519 !*********************************************************************
2520
2521 real one,three,four
2522 parameter (one=1., three=3., four=4.)
2523
2524 !-----output parameters:
2525
2526 real tau,ssc,g0
2527
2528 !-----output parameters:
2529
2530 real rll,tll
2531
2532 !-----temporary arrays
2533
2534 real xx,uuu,ttt,emt,up1,um1,st1
2535
2536 xx = one-ssc*g0
2537 uuu = sqrt( xx/(one-ssc))
2538 ttt = sqrt( xx*(one-ssc)*three )*tau
2539 emt = exp(-ttt)
2540 up1 = uuu + one
2541 um1 = uuu - one
2542 xx = um1*emt
2543 st1 = one / ((up1+xx) * (up1-xx))
2544 rll = up1*um1*(one-emt*emt)*st1
2545 tll = uuu*four*emt *st1
2546
2547 end subroutine sagpol
2548
2549 !*******************************************************************
2550
2551 subroutine cldflx (m,n,np,ict,icb,overcast,cc,rr,tt,td,rs,ts,&
2552 fclr,fall,fallu,falld,fsdir,fsdif)
2553
2554 !*******************************************************************
2555 ! compute upward and downward fluxes using a two-stream adding method
2556 ! following equations (3)-(5) of Chou (1992, JAS).
2557 !
2558 ! clouds are grouped into high, middle, and low clouds which are
2559 ! assumed randomly overlapped. It involves eight sets of calculations.
2560 ! In each set of calculations, each atmospheric layer is homogeneous,
2561 ! either totally filled with clouds or without clouds.
2562
2563 ! input parameters:
2564 !
2565 ! m: number of soundings in zonal direction
2566 ! n: number of soundings in meridional direction
2567 ! np: number of atmospheric layers
2568 ! ict: the level separating high and middle clouds
2569 ! icb: the level separating middle and low clouds
2570 ! cc: effective cloud covers for high, middle and low clouds
2571 ! tt: diffuse transmission of a layer illuminated by beam radiation
2572 ! td: direct beam tranmssion
2573 ! ts: transmission of a layer illuminated by diffuse radiation
2574 ! rr: reflection of a layer illuminated by beam radiation
2575 ! rs: reflection of a layer illuminated by diffuse radiation
2576 !
2577 ! output parameters:
2578 !
2579 ! fclr: clear-sky flux (downward minus upward)
2580 ! fall: all-sky flux (downward minus upward)
2581 ! fsdir: surface direct downward flux
2582 ! fsdif: surface diffuse downward flux
2583 !
2584 !*********************************************************************c
2585 implicit none
2586 !*********************************************************************c
2587
2588 !-----input parameters
2589
2590 integer m,n,np
2591 integer ict(m,n),icb(m,n)
2592
2593 real rr(m,n,np+1,2),tt(m,n,np+1,2),td(m,n,np+1,2)
2594 real rs(m,n,np+1,2),ts(m,n,np+1,2)
2595 real cc(m,n,3)
2596 logical overcast
2597
2598 !-----temporary array
2599
2600 integer i,j,k,ih,im,is,itm
2601 real rra(m,n,np+1,2,2),tta(m,n,np+1,2,2),tda(m,n,np+1,2,2)
2602 real rsa(m,n,np+1,2,2),rxa(m,n,np+1,2,2)
2603 real ch(m,n),cm(m,n),ct(m,n),flxdn(m,n,np+1)
2604 real flxdnu(m,n,np+1),flxdnd(m,n,np+1)
2605 real fdndir(m,n),fdndif(m,n),fupdif
2606 real denm,xx
2607
2608 !-----output parameters
2609
2610 real fclr(m,n,np+1),fall(m,n,np+1)
2611 real fallu(m,n,np+1),falld(m,n,np+1)
2612 real fsdir(m,n),fsdif(m,n)
2613
2614 !-----initialize all-sky flux (fall) and surface downward fluxes
2615
2616 do k=1,np+1
2617 do j=1,n
2618 do i=1,m
2619 fclr(i,j,k)=0.0
2620 fall(i,j,k)=0.0
2621 fallu(i,j,k)=0.0
2622 falld(i,j,k)=0.0
2623 enddo
2624 enddo
2625 enddo
2626
2627 do j=1,n
2628 do i=1,m
2629 fsdir(i,j)=0.0
2630 fsdif(i,j)=0.0
2631 enddo
2632 enddo
2633
2634 !-----compute transmittances and reflectances for a composite of
2635 ! layers. layers are added one at a time, going down from the top.
2636 ! tda is the composite transmittance illuminated by beam radiation
2637 ! tta is the composite diffuse transmittance illuminated by
2638 ! beam radiation
2639 ! rsa is the composite reflectance illuminated from below
2640 ! by diffuse radiation
2641 ! tta and rsa are computed from eqs. (4b) and (3b) of Chou
2642
2643 itm=1
2644
2645 !-----if overcas.=.true., set itm=2, and only one set of fluxes is computed
2646
2647 if (overcast) itm=2
2648
2649 !-----for high clouds. indices 1 and 2 denote clear and cloudy
2650 ! situations, respectively.
2651
2652 do 10 ih=itm,2
2653
2654 do j= 1, n
2655 do i= 1, m
2656 tda(i,j,1,ih,1)=td(i,j,1,ih)
2657 tta(i,j,1,ih,1)=tt(i,j,1,ih)
2658 rsa(i,j,1,ih,1)=rs(i,j,1,ih)
2659 tda(i,j,1,ih,2)=td(i,j,1,ih)
2660 tta(i,j,1,ih,2)=tt(i,j,1,ih)
2661 rsa(i,j,1,ih,2)=rs(i,j,1,ih)
2662 enddo
2663 enddo
2664
2665 do j= 1, n
2666 do i= 1, m
2667 do k= 2, ict(i,j)-1
2668 denm = ts(i,j,k,ih)/( 1.-rsa(i,j,k-1,ih,1)*rs(i,j,k,ih))
2669 tda(i,j,k,ih,1)= tda(i,j,k-1,ih,1)*td(i,j,k,ih)
2670 tta(i,j,k,ih,1)= tda(i,j,k-1,ih,1)*tt(i,j,k,ih) &
2671 +(tda(i,j,k-1,ih,1)*rr(i,j,k,ih) &
2672 *rsa(i,j,k-1,ih,1)+tta(i,j,k-1,ih,1))*denm
2673 rsa(i,j,k,ih,1)= rs(i,j,k,ih)+ts(i,j,k,ih) &
2674 *rsa(i,j,k-1,ih,1)*denm
2675 tda(i,j,k,ih,2)= tda(i,j,k,ih,1)
2676 tta(i,j,k,ih,2)= tta(i,j,k,ih,1)
2677 rsa(i,j,k,ih,2)= rsa(i,j,k,ih,1)
2678 enddo
2679 enddo
2680 enddo
2681
2682 !-----for middle clouds
2683
2684 do 10 im=itm,2
2685
2686 do j= 1, n
2687 do i= 1, m
2688 do k= ict(i,j), icb(i,j)-1
2689 denm = ts(i,j,k,im)/( 1.-rsa(i,j,k-1,ih,im)*rs(i,j,k,im))
2690 tda(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*td(i,j,k,im)
2691 tta(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*tt(i,j,k,im) &
2692 +(tda(i,j,k-1,ih,im)*rr(i,j,k,im) &
2693 *rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
2694 rsa(i,j,k,ih,im)= rs(i,j,k,im)+ts(i,j,k,im) &
2695 *rsa(i,j,k-1,ih,im)*denm
2696 enddo
2697 enddo
2698 enddo
2699
2700 10 continue
2701
2702 !-----layers are added one at a time, going up from the surface.
2703 ! rra is the composite reflectance illuminated by beam radiation
2704 ! rxa is the composite reflectance illuminated from above
2705 ! by diffuse radiation
2706 ! rra and rxa are computed from eqs. (4a) and (3a) of Chou
2707
2708 !-----for the low clouds
2709
2710 do 20 is=itm,2
2711
2712 do j= 1, n
2713 do i= 1, m
2714 rra(i,j,np+1,1,is)=rr(i,j,np+1,is)
2715 rxa(i,j,np+1,1,is)=rs(i,j,np+1,is)
2716 rra(i,j,np+1,2,is)=rr(i,j,np+1,is)
2717 rxa(i,j,np+1,2,is)=rs(i,j,np+1,is)
2718 enddo
2719 enddo
2720
2721 do j= 1, n
2722 do i= 1, m
2723 do k=np,icb(i,j),-1
2724 denm=ts(i,j,k,is)/( 1.-rs(i,j,k,is)*rxa(i,j,k+1,1,is) )
2725 rra(i,j,k,1,is)=rr(i,j,k,is)+(td(i,j,k,is) &
2726 *rra(i,j,k+1,1,is)+tt(i,j,k,is)*rxa(i,j,k+1,1,is))*denm
2727 rxa(i,j,k,1,is)= rs(i,j,k,is)+ts(i,j,k,is) &
2728 *rxa(i,j,k+1,1,is)*denm
2729 rra(i,j,k,2,is)=rra(i,j,k,1,is)
2730 rxa(i,j,k,2,is)=rxa(i,j,k,1,is)
2731 enddo
2732 enddo
2733 enddo
2734
2735 !-----for middle clouds
2736
2737 do 20 im=itm,2
2738
2739 do j= 1, n
2740 do i= 1, m
2741 do k= icb(i,j)-1,ict(i,j),-1
2742 denm=ts(i,j,k,im)/( 1.-rs(i,j,k,im)*rxa(i,j,k+1,im,is) )
2743 rra(i,j,k,im,is)= rr(i,j,k,im)+(td(i,j,k,im) &
2744 *rra(i,j,k+1,im,is)+tt(i,j,k,im)*rxa(i,j,k+1,im,is))*denm
2745 rxa(i,j,k,im,is)= rs(i,j,k,im)+ts(i,j,k,im) &
2746 *rxa(i,j,k+1,im,is)*denm
2747 enddo
2748 enddo
2749 enddo
2750
2751 20 continue
2752
2753 !-----integration over eight sky situations.
2754 ! ih, im, is denotes high, middle and low cloud groups.
2755
2756 do 100 ih=itm,2
2757
2758 !-----clear portion
2759
2760 if(ih.eq.1) then
2761 do j=1,n
2762 do i=1,m
2763 ch(i,j)=1.0-cc(i,j,1)
2764 enddo
2765 enddo
2766
2767 else
2768
2769 !-----cloudy portion
2770
2771 do j=1,n
2772 do i=1,m
2773 ch(i,j)=cc(i,j,1)
2774 enddo
2775 enddo
2776
2777 endif
2778
2779 do 100 im=itm,2
2780
2781 !-----clear portion
2782
2783 if(im.eq.1) then
2784
2785 do j=1,n
2786 do i=1,m
2787 cm(i,j)=ch(i,j)*(1.0-cc(i,j,2))
2788 enddo
2789 enddo
2790
2791 else
2792
2793 !-----cloudy portion
2794
2795 do j=1,n
2796 do i=1,m
2797 cm(i,j)=ch(i,j)*cc(i,j,2)
2798 enddo
2799 enddo
2800
2801 endif
2802
2803 do 100 is=itm,2
2804
2805 !-----clear portion
2806
2807 if(is.eq.1) then
2808
2809 do j=1,n
2810 do i=1,m
2811 ct(i,j)=cm(i,j)*(1.0-cc(i,j,3))
2812 enddo
2813 enddo
2814
2815 else
2816
2817 !-----cloudy portion
2818
2819 do j=1,n
2820 do i=1,m
2821 ct(i,j)=cm(i,j)*cc(i,j,3)
2822 enddo
2823 enddo
2824
2825 endif
2826
2827 !-----add one layer at a time, going down.
2828
2829 do j= 1, n
2830 do i= 1, m
2831 do k= icb(i,j), np
2832 denm = ts(i,j,k,is)/( 1.-rsa(i,j,k-1,ih,im)*rs(i,j,k,is) )
2833 tda(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*td(i,j,k,is)
2834 tta(i,j,k,ih,im)= tda(i,j,k-1,ih,im)*tt(i,j,k,is) &
2835 +(tda(i,j,k-1,ih,im)*rr(i,j,k,is) &
2836 *rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
2837 rsa(i,j,k,ih,im)= rs(i,j,k,is)+ts(i,j,k,is) &
2838 *rsa(i,j,k-1,ih,im)*denm
2839 enddo
2840 enddo
2841 enddo
2842
2843 !-----add one layer at a time, going up.
2844
2845 do j= 1, n
2846 do i= 1, m
2847 do k= ict(i,j)-1,1,-1
2848 denm =ts(i,j,k,ih)/(1.-rs(i,j,k,ih)*rxa(i,j,k+1,im,is))
2849 rra(i,j,k,im,is)= rr(i,j,k,ih)+(td(i,j,k,ih) &
2850 *rra(i,j,k+1,im,is)+tt(i,j,k,ih)*rxa(i,j,k+1,im,is))*denm
2851 rxa(i,j,k,im,is)= rs(i,j,k,ih)+ts(i,j,k,ih) &
2852 *rxa(i,j,k+1,im,is)*denm
2853 enddo
2854 enddo
2855 enddo
2856
2857 !-----compute fluxes following eq (5) of Chou (1992)
2858
2859 ! fdndir is the direct downward flux
2860 ! fdndif is the diffuse downward flux
2861 ! fupdif is the diffuse upward flux
2862
2863 do k=2,np+1
2864 do j=1, n
2865 do i=1, m
2866 denm= 1./(1.- rxa(i,j,k,im,is)*rsa(i,j,k-1,ih,im))
2867 fdndir(i,j)= tda(i,j,k-1,ih,im)
2868 xx = tda(i,j,k-1,ih,im)*rra(i,j,k,im,is)
2869 fdndif(i,j)= (xx*rsa(i,j,k-1,ih,im)+tta(i,j,k-1,ih,im))*denm
2870 fupdif= (xx+tta(i,j,k-1,ih,im)*rxa(i,j,k,im,is))*denm
2871 flxdn(i,j,k)=fdndir(i,j)+fdndif(i,j)-fupdif
2872 flxdnu(i,j,k)=-fupdif
2873 flxdnd(i,j,k)=fdndir(i,j)+fdndif(i,j)
2874 enddo
2875 enddo
2876 enddo
2877
2878 do j=1, n
2879 do i=1, m
2880 flxdn(i,j,1)=1.0-rra(i,j,1,im,is)
2881 flxdnu(i,j,1)=-rra(i,j,1,im,is)
2882 flxdnd(i,j,1)=1.0
2883 enddo
2884 enddo
2885
2886 !-----summation of fluxes over all (eight) sky situations.
2887
2888 do k=1,np+1
2889 do j=1,n
2890 do i=1,m
2891 if(ih.eq.1 .and. im.eq.1 .and. is.eq.1) then
2892 fclr(i,j,k)=flxdn(i,j,k)
2893 endif
2894 fall(i,j,k)=fall(i,j,k)+flxdn(i,j,k)*ct(i,j)
2895 fallu(i,j,k)=fallu(i,j,k)+flxdnu(i,j,k)*ct(i,j)
2896 falld(i,j,k)=falld(i,j,k)+flxdnd(i,j,k)*ct(i,j)
2897 enddo
2898 enddo
2899 enddo
2900
2901 do j=1,n
2902 do i=1,m
2903 fsdir(i,j)=fsdir(i,j)+fdndir(i,j)*ct(i,j)
2904 fsdif(i,j)=fsdif(i,j)+fdndif(i,j)*ct(i,j)
2905 enddo
2906 enddo
2907
2908 100 continue
2909
2910 end subroutine cldflx
2911
2912 !*****************************************************************
2913
2914 subroutine flxco2(m,n,np,swc,swh,csm,df)
2915
2916 !*****************************************************************
2917
2918 !-----compute the reduction of clear-sky downward solar flux
2919 ! due to co2 absorption.
2920
2921 implicit none
2922
2923 !-----input parameters
2924
2925 integer m,n,np
2926 real csm(m,n),swc(m,n,np+1),swh(m,n,np+1),cah(22,19)
2927
2928 !-----output (undated) parameter
2929
2930 real df(m,n,np+1)
2931
2932 !-----temporary array
2933
2934 integer i,j,k,ic,iw
2935 real xx,clog,wlog,dc,dw,x1,x2,y2
2936
2937 !********************************************************************
2938 !-----include co2 look-up table
2939
2940 data ((cah(i,j),i=1,22),j= 1, 5)/ &
2941 0.9923, 0.9922, 0.9921, 0.9920, 0.9916, 0.9910, 0.9899, 0.9882, &
2942 0.9856, 0.9818, 0.9761, 0.9678, 0.9558, 0.9395, 0.9188, 0.8945, &
2943 0.8675, 0.8376, 0.8029, 0.7621, 0.7154, 0.6647, 0.9876, 0.9876, &
2944 0.9875, 0.9873, 0.9870, 0.9864, 0.9854, 0.9837, 0.9811, 0.9773, &
2945 0.9718, 0.9636, 0.9518, 0.9358, 0.9153, 0.8913, 0.8647, 0.8350, &
2946 0.8005, 0.7599, 0.7133, 0.6627, 0.9808, 0.9807, 0.9806, 0.9805, &
2947 0.9802, 0.9796, 0.9786, 0.9769, 0.9744, 0.9707, 0.9653, 0.9573, &
2948 0.9459, 0.9302, 0.9102, 0.8866, 0.8604, 0.8311, 0.7969, 0.7565, &
2949 0.7101, 0.6596, 0.9708, 0.9708, 0.9707, 0.9705, 0.9702, 0.9697, &
2950 0.9687, 0.9671, 0.9647, 0.9612, 0.9560, 0.9483, 0.9372, 0.9221, &
2951 0.9027, 0.8798, 0.8542, 0.8253, 0.7916, 0.7515, 0.7054, 0.6551, &
2952 0.9568, 0.9568, 0.9567, 0.9565, 0.9562, 0.9557, 0.9548, 0.9533, &
2953 0.9510, 0.9477, 0.9428, 0.9355, 0.9250, 0.9106, 0.8921, 0.8700, &
2954 0.8452, 0.8171, 0.7839, 0.7443, 0.6986, 0.6486/
2955
2956 data ((cah(i,j),i=1,22),j= 6,10)/ &
2957 0.9377, 0.9377, 0.9376, 0.9375, 0.9372, 0.9367, 0.9359, 0.9345, &
2958 0.9324, 0.9294, 0.9248, 0.9181, 0.9083, 0.8948, 0.8774, 0.8565, &
2959 0.8328, 0.8055, 0.7731, 0.7342, 0.6890, 0.6395, 0.9126, 0.9126, &
2960 0.9125, 0.9124, 0.9121, 0.9117, 0.9110, 0.9098, 0.9079, 0.9052, &
2961 0.9012, 0.8951, 0.8862, 0.8739, 0.8579, 0.8385, 0.8161, 0.7900, &
2962 0.7585, 0.7205, 0.6760, 0.6270, 0.8809, 0.8809, 0.8808, 0.8807, &
2963 0.8805, 0.8802, 0.8796, 0.8786, 0.8770, 0.8747, 0.8712, 0.8659, &
2964 0.8582, 0.8473, 0.8329, 0.8153, 0.7945, 0.7697, 0.7394, 0.7024, &
2965 0.6588, 0.6105, 0.8427, 0.8427, 0.8427, 0.8426, 0.8424, 0.8422, &
2966 0.8417, 0.8409, 0.8397, 0.8378, 0.8350, 0.8306, 0.8241, 0.8148, &
2967 0.8023, 0.7866, 0.7676, 0.7444, 0.7154, 0.6796, 0.6370, 0.5897, &
2968 0.7990, 0.7990, 0.7990, 0.7989, 0.7988, 0.7987, 0.7983, 0.7978, &
2969 0.7969, 0.7955, 0.7933, 0.7899, 0.7846, 0.7769, 0.7664, 0.7528, &
2970 0.7357, 0.7141, 0.6866, 0.6520, 0.6108, 0.5646/
2971
2972 data ((cah(i,j),i=1,22),j=11,15)/ &
2973 0.7515, 0.7515, 0.7515, 0.7515, 0.7514, 0.7513, 0.7511, 0.7507, &
2974 0.7501, 0.7491, 0.7476, 0.7450, 0.7409, 0.7347, 0.7261, 0.7144, &
2975 0.6992, 0.6793, 0.6533, 0.6203, 0.5805, 0.5357, 0.7020, 0.7020, &
2976 0.7020, 0.7019, 0.7019, 0.7018, 0.7017, 0.7015, 0.7011, 0.7005, &
2977 0.6993, 0.6974, 0.6943, 0.6894, 0.6823, 0.6723, 0.6588, 0.6406, &
2978 0.6161, 0.5847, 0.5466, 0.5034, 0.6518, 0.6518, 0.6518, 0.6518, &
2979 0.6518, 0.6517, 0.6517, 0.6515, 0.6513, 0.6508, 0.6500, 0.6485, &
2980 0.6459, 0.6419, 0.6359, 0.6273, 0.6151, 0.5983, 0.5755, 0.5458, &
2981 0.5095, 0.4681, 0.6017, 0.6017, 0.6017, 0.6017, 0.6016, 0.6016, &
2982 0.6016, 0.6015, 0.6013, 0.6009, 0.6002, 0.5989, 0.5967, 0.5932, &
2983 0.5879, 0.5801, 0.5691, 0.5535, 0.5322, 0.5043, 0.4700, 0.4308, &
2984 0.5518, 0.5518, 0.5518, 0.5518, 0.5518, 0.5518, 0.5517, 0.5516, &
2985 0.5514, 0.5511, 0.5505, 0.5493, 0.5473, 0.5441, 0.5393, 0.5322, &
2986 0.5220, 0.5076, 0.4878, 0.4617, 0.4297, 0.3929/
2987
2988 data ((cah(i,j),i=1,22),j=16,19)/ &
2989 0.5031, 0.5031, 0.5031, 0.5031, 0.5031, 0.5030, 0.5030, 0.5029, &
2990 0.5028, 0.5025, 0.5019, 0.5008, 0.4990, 0.4960, 0.4916, 0.4850, &
2991 0.4757, 0.4624, 0.4441, 0.4201, 0.3904, 0.3564, 0.4565, 0.4565, &
2992 0.4565, 0.4564, 0.4564, 0.4564, 0.4564, 0.4563, 0.4562, 0.4559, &
2993 0.4553, 0.4544, 0.4527, 0.4500, 0.4460, 0.4400, 0.4315, 0.4194, &
2994 0.4028, 0.3809, 0.3538, 0.3227, 0.4122, 0.4122, 0.4122, 0.4122, &
2995 0.4122, 0.4122, 0.4122, 0.4121, 0.4120, 0.4117, 0.4112, 0.4104, &
2996 0.4089, 0.4065, 0.4029, 0.3976, 0.3900, 0.3792, 0.3643, 0.3447, &
2997 0.3203, 0.2923, 0.3696, 0.3696, 0.3696, 0.3696, 0.3696, 0.3696, &
2998 0.3695, 0.3695, 0.3694, 0.3691, 0.3687, 0.3680, 0.3667, 0.3647, &
2999 0.3615, 0.3570, 0.3504, 0.3409, 0.3279, 0.3106, 0.2892, 0.2642/
3000
3001 !********************************************************************
3002 !-----table look-up for the reduction of clear-sky solar
3003 ! radiation due to co2. The fraction 0.0343 is the
3004 ! extraterrestrial solar flux in the co2 bands.
3005
3006 do k= 2, np+1
3007 do j= 1, n
3008 do i= 1, m
3009 xx=1./.3
3010 clog=log10(swc(i,j,k)*csm(i,j))
3011 wlog=log10(swh(i,j,k)*csm(i,j))
3012 ic=int( (clog+3.15)*xx+1.)
3013 iw=int( (wlog+4.15)*xx+1.)
3014 if(ic.lt.2)ic=2
3015 if(iw.lt.2)iw=2
3016 if(ic.gt.22)ic=22
3017 if(iw.gt.19)iw=19
3018 dc=clog-float(ic-2)*.3+3.
3019 dw=wlog-float(iw-2)*.3+4.
3020 x1=cah(1,iw-1)+(cah(1,iw)-cah(1,iw-1))*xx*dw
3021 x2=cah(ic-1,iw-1)+(cah(ic-1,iw)-cah(ic-1,iw-1))*xx*dw
3022 y2=x2+(cah(ic,iw-1)-cah(ic-1,iw-1))*xx*dc
3023 if (x1.lt.y2) x1=y2
3024 df(i,j,k)=df(i,j,k)+0.0343*(x1-y2)
3025 enddo
3026 enddo
3027 enddo
3028
3029 end subroutine flxco2
3030
3031 !*****************************************************************
3032
3033 subroutine o3prof (np, pres, ozone, its, ite, kts, kte, p, o3)
3034
3035 !*****************************************************************
3036 implicit none
3037 !*****************************************************************
3038 !
3039 integer iprof,m,np,its,ite,kts,kte
3040 integer i,k,ko,kk
3041 real pres(np),ozone(np)
3042 real p(its:ite,kts:kte),o3(its:ite,kts:kte)
3043
3044 ! Statement function
3045
3046 real Linear, x1, y1, x2, y2, x
3047 Linear(x1, y1, x2, y2, x) = &
3048 (y1 * (x2 - x) + y2 * (x - x1)) / (x2 - x1)
3049 !
3050 do k = 1,np
3051 pres(k) = alog(pres(k))
3052 enddo
3053 do k = kts,kte
3054 do i = its, ite
3055 p(i,k) = alog(p(i,k))
3056 end do
3057 end do
3058
3059 ! assume the pressure at model top is greater than pres(1)
3060 ! if it is not, this part needs to change
3061
3062 do i = its, ite
3063 ko = 1
3064 do k = kts+1, kte
3065 do while (ko .lt. np .and. p(i,k) .gt. pres(ko))
3066 ko = ko + 1
3067 end do
3068 o3(i,k) = Linear (pres(ko), ozone(ko), &
3069 pres(ko-1), ozone(ko-1), &
3070 p(i,k))
3071 ko = ko - 1
3072 end do
3073 end do
3074
3075 ! calculate top lay O3
3076
3077 do i = its, ite
3078 ko = 1
3079 k = kts
3080 do while (ko .le. np .and. p(i,k) .gt. pres(ko))
3081 ko = ko + 1
3082 end do
3083 IF (ko-1 .le. 1) then
3084 O3(i,k)=ozone(k)
3085 ELSE
3086 O3(i,k)=0.
3087 do kk=ko-2,1,-1
3088 O3(i,k)=O3(i,k)+ozone(kk)*(pres(kk+1)-pres(kk))
3089 enddo
3090 O3(i,k)=O3(i,k)/(pres(ko-1)-pres(1))
3091 ENDIF
3092 ! print*,'O3=',i,k,ko,O3(i,k),p(i,k),ko,pres(ko),pres(ko-1)
3093 end do
3094
3095 end subroutine o3prof
3096
3097 !-----------------------------------------
3098 SUBROUTINE gsfc_swinit(cen_lat, allowed_to_read)
3099
3100 REAL, INTENT(IN ) :: cen_lat
3101 LOGICAL, INTENT(IN ) :: allowed_to_read
3102
3103 center_lat=cen_lat
3104
3105 END SUBROUTINE gsfc_swinit
3106
3107
3108 END MODULE module_ra_gsfcsw