module_sf_sfclay.F
References to this file elsewhere.
1 !WRF:MODEL_LAYER:PHYSICS
2 !
3 MODULE module_sf_sfclay
4
5 REAL , PARAMETER :: VCONVC=1.
6 REAL , PARAMETER :: CZO=0.0185
7 REAL , PARAMETER :: OZO=1.59E-5
8
9 REAL, DIMENSION(0:1000 ),SAVE :: PSIMTB,PSIHTB
10
11 CONTAINS
12
13 !-------------------------------------------------------------------
14 SUBROUTINE SFCLAY(U3D,V3D,T3D,QV3D,P3D,dz8w, &
15 CP,G,ROVCP,R,XLV,PSFC,CHS,CHS2,CQS2,CPM, &
16 ZNT,UST,PBLH,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, &
17 XLAND,HFX,QFX,LH,TSK,FLHC,FLQC,QGH,QSFC,RMOL, &
18 uratx,vratx,tratx, &
19 U10,V10,TH2,T2,Q2, &
20 GZ1OZ0,WSPD,BR,ISFFLX,DX, &
21 SVP1,SVP2,SVP3,SVPT0,EP1,EP2, &
22 KARMAN,EOMEG,STBOLT, &
23 ids,ide, jds,jde, kds,kde, &
24 ims,ime, jms,jme, kms,kme, &
25 its,ite, jts,jte, kts,kte )
26 !-------------------------------------------------------------------
27 IMPLICIT NONE
28 !-------------------------------------------------------------------
29 !-- U3D 3D u-velocity interpolated to theta points (m/s)
30 !-- V3D 3D v-velocity interpolated to theta points (m/s)
31 !-- T3D temperature (K)
32 !-- QV3D 3D water vapor mixing ratio (Kg/Kg)
33 !-- P3D 3D pressure (Pa)
34 !-- dz8w dz between full levels (m)
35 !-- CP heat capacity at constant pressure for dry air (J/kg/K)
36 !-- G acceleration due to gravity (m/s^2)
37 !-- ROVCP R/CP
38 !-- R gas constant for dry air (J/kg/K)
39 !-- XLV latent heat of vaporization for water (J/kg)
40 !-- PSFC surface pressure (Pa)
41 !-- ZNT roughness length (m)
42 !-- UST u* in similarity theory (m/s)
43 !-- PBLH PBL height from previous time (m)
44 !-- MAVAIL surface moisture availability (between 0 and 1)
45 !-- ZOL z/L height over Monin-Obukhov length
46 !-- MOL T* (similarity theory) (K)
47 !-- REGIME flag indicating PBL regime (stable, unstable, etc.)
48 !-- PSIM similarity stability function for momentum
49 !-- PSIH similarity stability function for heat
50 !-- XLAND land mask (1 for land, 2 for water)
51 !-- HFX upward heat flux at the surface (W/m^2)
52 !-- QFX upward moisture flux at the surface (kg/m^2/s)
53 !-- LH net upward latent heat flux at surface (W/m^2)
54 !-- TSK surface temperature (K)
55 !-- FLHC exchange coefficient for heat (m/s)
56 !-- FLQC exchange coefficient for moisture (m/s)
57 !-- QGH lowest-level saturated mixing ratio
58 !-- uratx ratio of surface U to U10
59 !-- vratx ratio of surface V to V10
60 !-- tratx ratio of surface T to TH2
61 !-- U10 diagnostic 10m u wind
62 !-- V10 diagnostic 10m v wind
63 !-- TH2 diagnostic 2m theta (K)
64 !-- T2 diagnostic 2m temperature (K)
65 !-- Q2 diagnostic 2m mixing ratio (kg/kg)
66 !-- GZ1OZ0 log(z/z0) where z0 is roughness length
67 !-- WSPD wind speed at lowest model level (m/s)
68 !-- BR bulk Richardson number in surface layer
69 !-- ISFFLX isfflx=1 for surface heat and moisture fluxes
70 !-- DX horizontal grid size (m)
71 !-- SVP1 constant for saturation vapor pressure (kPa)
72 !-- SVP2 constant for saturation vapor pressure (dimensionless)
73 !-- SVP3 constant for saturation vapor pressure (K)
74 !-- SVPT0 constant for saturation vapor pressure (K)
75 !-- EP1 constant for virtual temperature (R_v/R_d - 1) (dimensionless)
76 !-- EP2 constant for specific humidity calculation
77 ! (R_d/R_v) (dimensionless)
78 !-- KARMAN Von Karman constant
79 !-- EOMEG angular velocity of earth's rotation (rad/s)
80 !-- STBOLT Stefan-Boltzmann constant (W/m^2/K^4)
81 !-- ids start index for i in domain
82 !-- ide end index for i in domain
83 !-- jds start index for j in domain
84 !-- jde end index for j in domain
85 !-- kds start index for k in domain
86 !-- kde end index for k in domain
87 !-- ims start index for i in memory
88 !-- ime end index for i in memory
89 !-- jms start index for j in memory
90 !-- jme end index for j in memory
91 !-- kms start index for k in memory
92 !-- kme end index for k in memory
93 !-- its start index for i in tile
94 !-- ite end index for i in tile
95 !-- jts start index for j in tile
96 !-- jte end index for j in tile
97 !-- kts start index for k in tile
98 !-- kte end index for k in tile
99 !-------------------------------------------------------------------
100 INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
101 ims,ime, jms,jme, kms,kme, &
102 its,ite, jts,jte, kts,kte
103 !
104 INTEGER, INTENT(IN ) :: ISFFLX
105 REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0
106 REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT
107 !
108 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
109 INTENT(IN ) :: dz8w
110
111 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
112 INTENT(IN ) :: QV3D, &
113 P3D, &
114 T3D
115
116 REAL, DIMENSION( ims:ime, jms:jme ) , &
117 INTENT(IN ) :: MAVAIL, &
118 PBLH, &
119 XLAND, &
120 TSK
121 REAL, DIMENSION( ims:ime, jms:jme ) , &
122 INTENT(OUT ) :: U10, &
123 V10, &
124 TH2, &
125 T2, &
126 Q2, &
127 QSFC
128
129 REAL, DIMENSION( ims:ime, jms:jme ) , &
130 INTENT(OUT) :: uratx,vratx,tratx
131 !
132 REAL, DIMENSION( ims:ime, jms:jme ) , &
133 INTENT(INOUT) :: REGIME, &
134 HFX, &
135 QFX, &
136 LH, &
137 MOL,RMOL
138 !m the following 5 are change to memory size
139 !
140 REAL, DIMENSION( ims:ime, jms:jme ) , &
141 INTENT(INOUT) :: GZ1OZ0,WSPD,BR, &
142 PSIM,PSIH
143
144 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , &
145 INTENT(IN ) :: U3D, &
146 V3D
147
148 REAL, DIMENSION( ims:ime, jms:jme ) , &
149 INTENT(IN ) :: PSFC
150
151 REAL, DIMENSION( ims:ime, jms:jme ) , &
152 INTENT(INOUT) :: ZNT, &
153 ZOL, &
154 UST, &
155 CPM, &
156 CHS2, &
157 CQS2, &
158 CHS
159
160 REAL, DIMENSION( ims:ime, jms:jme ) , &
161 INTENT(INOUT) :: FLHC,FLQC
162
163 REAL, DIMENSION( ims:ime, jms:jme ) , &
164 INTENT(INOUT) :: &
165 QGH
166
167
168
169 REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX
170
171 ! LOCAL VARS
172
173 REAL, DIMENSION( its:ite ) :: U1D, &
174 V1D, &
175 QV1D, &
176 P1D, &
177 T1D
178
179 REAL, DIMENSION( its:ite ) :: dz8w1d
180
181 INTEGER :: I,J
182
183 DO J=jts,jte
184 DO i=its,ite
185 dz8w1d(I) = dz8w(i,1,j)
186 ENDDO
187
188 DO i=its,ite
189 U1D(i) =U3D(i,1,j)
190 V1D(i) =V3D(i,1,j)
191 QV1D(i)=QV3D(i,1,j)
192 P1D(i) =P3D(i,1,j)
193 T1D(i) =T3D(i,1,j)
194 ENDDO
195
196 CALL SFCLAY1D(J,U1D,V1D,T1D,QV1D,P1D,dz8w1d, &
197 CP,G,ROVCP,R,XLV,PSFC(ims,j),CHS(ims,j),CHS2(ims,j),&
198 CQS2(ims,j),CPM(ims,j),PBLH(ims,j), RMOL(ims,j), &
199 ZNT(ims,j),UST(ims,j),MAVAIL(ims,j),ZOL(ims,j), &
200 MOL(ims,j),REGIME(ims,j),PSIM(ims,j),PSIH(ims,j), &
201 XLAND(ims,j),HFX(ims,j),QFX(ims,j),TSK(ims,j), &
202 uratx(ims,j),vratx(ims,j),tratx(ims,j), &
203 U10(ims,j),V10(ims,j),TH2(ims,j),T2(ims,j), &
204 Q2(ims,j),FLHC(ims,j),FLQC(ims,j),QGH(ims,j), &
205 QSFC(ims,j),LH(ims,j), &
206 GZ1OZ0(ims,j),WSPD(ims,j),BR(ims,j),ISFFLX,DX, &
207 SVP1,SVP2,SVP3,SVPT0,EP1,EP2,KARMAN,EOMEG,STBOLT, &
208 ids,ide, jds,jde, kds,kde, &
209 ims,ime, jms,jme, kms,kme, &
210 its,ite, jts,jte, kts,kte )
211 ENDDO
212
213
214 END SUBROUTINE SFCLAY
215
216
217 !-------------------------------------------------------------------
218 SUBROUTINE SFCLAY1D(J,UX,VX,T1D,QV1D,P1D,dz8w1d, &
219 CP,G,ROVCP,R,XLV,PSFCPA,CHS,CHS2,CQS2,CPM,PBLH,RMOL, &
220 ZNT,UST,MAVAIL,ZOL,MOL,REGIME,PSIM,PSIH, &
221 XLAND,HFX,QFX,TSK, &
222 uratx,vratx,tratx, &
223 U10,V10,TH2,T2,Q2,FLHC,FLQC,QGH, &
224 QSFC,LH,GZ1OZ0,WSPD,BR,ISFFLX,DX, &
225 SVP1,SVP2,SVP3,SVPT0,EP1,EP2, &
226 KARMAN,EOMEG,STBOLT, &
227 ids,ide, jds,jde, kds,kde, &
228 ims,ime, jms,jme, kms,kme, &
229 its,ite, jts,jte, kts,kte )
230 !-------------------------------------------------------------------
231 IMPLICIT NONE
232 !-------------------------------------------------------------------
233 REAL, PARAMETER :: XKA=2.4E-5
234 REAL, PARAMETER :: PRT=1.
235
236 INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, &
237 ims,ime, jms,jme, kms,kme, &
238 its,ite, jts,jte, kts,kte, &
239 J
240 !
241 INTEGER, INTENT(IN ) :: ISFFLX
242 REAL, INTENT(IN ) :: SVP1,SVP2,SVP3,SVPT0
243 REAL, INTENT(IN ) :: EP1,EP2,KARMAN,EOMEG,STBOLT
244
245 !
246 REAL, DIMENSION( ims:ime ) , &
247 INTENT(IN ) :: MAVAIL, &
248 PBLH, &
249 XLAND, &
250 TSK
251 !
252 REAL, DIMENSION( ims:ime ) , &
253 INTENT(IN ) :: PSFCPA
254
255 REAL, DIMENSION( ims:ime ) , &
256 INTENT(INOUT) :: REGIME, &
257 HFX, &
258 QFX, &
259 MOL,RMOL
260 !m the following 5 are changed to memory size---
261 !
262 REAL, DIMENSION( ims:ime ) , &
263 INTENT(INOUT) :: GZ1OZ0,WSPD,BR, &
264 PSIM,PSIH
265
266 REAL, DIMENSION( ims:ime ) , &
267 INTENT(INOUT) :: ZNT, &
268 ZOL, &
269 UST, &
270 CPM, &
271 CHS2, &
272 CQS2, &
273 CHS
274
275 REAL, DIMENSION( ims:ime ) , &
276 INTENT(INOUT) :: FLHC,FLQC
277
278 REAL, DIMENSION( ims:ime ) , &
279 INTENT(INOUT) :: &
280 QGH
281
282 REAL, DIMENSION( ims:ime ) , &
283 INTENT(OUT) :: U10,V10, &
284 TH2,T2,Q2,QSFC,LH
285
286 REAL, DIMENSION( ims:ime ) , &
287 INTENT(OUT) :: uratx,vratx,tratx
288
289 REAL, INTENT(IN ) :: CP,G,ROVCP,R,XLV,DX
290
291 ! MODULE-LOCAL VARIABLES, DEFINED IN SUBROUTINE SFCLAY
292 REAL, DIMENSION( its:ite ), INTENT(IN ) :: dz8w1d
293
294 REAL, DIMENSION( its:ite ), INTENT(IN ) :: UX, &
295 VX, &
296 QV1D, &
297 P1D, &
298 T1D
299
300 ! LOCAL VARS
301
302 REAL, DIMENSION( its:ite ) :: ZA, &
303 THVX,ZQKL, &
304 ZQKLP1, &
305 THX,QX, &
306 PSIH2, &
307 PSIM2, &
308 PSIH10, &
309 PSIM10, &
310 GZ2OZ0, &
311 GZ10OZ0
312 !
313 REAL, DIMENSION( its:ite ) :: &
314 RHOX,GOVRTH, &
315 TGDSA
316 !
317 REAL, DIMENSION( its:ite) :: SCR3,SCR4
318 REAL, DIMENSION( its:ite ) :: THGB, PSFC
319 !
320 INTEGER :: KL
321
322 INTEGER :: N,I,K,KK,L,NZOL,NK,NZOL2,NZOL10
323
324 REAL :: PL,THCON,TVCON,E1
325 REAL :: ZL,TSKV,DTHVDZ,DTHVM,VCONV,RZOL,RZOL2,RZOL10,ZOL2,ZOL10
326 REAL :: DTG,PSIX,USTM,DTTHX,PSIX10,PSIT,PSIT2,PSIQ,PSIQ2
327 REAL :: FLUXC,VSGD
328 !-------------------------------------------------------------------
329 KL=kte
330
331 DO i=its,ite
332 ! PSFC cmb
333 PSFC(I)=PSFCPA(I)/1000.
334 ENDDO
335 !
336 !----CONVERT GROUND TEMPERATURE TO POTENTIAL TEMPERATURE:
337 !
338 DO 5 I=its,ite
339 TGDSA(I)=TSK(I)
340 ! PSFC cmb
341 THGB(I)=TSK(I)*(100./PSFC(I))**ROVCP
342 5 CONTINUE
343 !
344 !-----DECOUPLE FLUX-FORM VARIABLES TO GIVE U,V,T,THETA,THETA-VIR.,
345 ! T-VIR., QV, AND QC AT CROSS POINTS AND AT KTAU-1.
346 !
347 ! *** NOTE ***
348 ! THE BOUNDARY WINDS MAY NOT BE ADEQUATELY AFFECTED BY FRICTION,
349 ! SO USE ONLY INTERIOR VALUES OF UX AND VX TO CALCULATE
350 ! TENDENCIES.
351 !
352 10 CONTINUE
353
354 ! DO 24 I=its,ite
355 ! UX(I)=U1D(I)
356 ! VX(I)=V1D(I)
357 ! 24 CONTINUE
358
359 26 CONTINUE
360
361 !.....SCR3(I,K) STORE TEMPERATURE,
362 ! SCR4(I,K) STORE VIRTUAL TEMPERATURE.
363
364 DO 30 I=its,ite
365 ! PL cmb
366 PL=P1D(I)/1000.
367 SCR3(I)=T1D(I)
368 THCON=(100./PL)**ROVCP
369 THX(I)=SCR3(I)*THCON
370 SCR4(I)=SCR3(I)
371 THVX(I)=THX(I)
372 QX(I)=0.
373 30 CONTINUE
374 !
375 DO I=its,ite
376 QGH(I)=0.
377 FLHC(I)=0.
378 FLQC(I)=0.
379 CPM(I)=CP
380 ENDDO
381 !
382 ! IF(IDRY.EQ.1)GOTO 80
383 DO 50 I=its,ite
384 QX(I)=QV1D(I)
385 TVCON=(1.+EP1*QX(I))
386 THVX(I)=THX(I)*TVCON
387 SCR4(I)=SCR3(I)*TVCON
388 50 CONTINUE
389 !
390 DO 60 I=its,ite
391 E1=SVP1*EXP(SVP2*(TGDSA(I)-SVPT0)/(TGDSA(I)-SVP3))
392 QSFC(I)=EP2*E1/(PSFC(I)-E1)
393 ! QGH CHANGED TO USE LOWEST-LEVEL AIR TEMP CONSISTENT WITH MYJSFC CHANGE
394 ! Q2SAT = QGH IN LSM
395 E1=SVP1*EXP(SVP2*(T1D(I)-SVPT0)/(T1D(I)-SVP3))
396 QGH(I)=EP2*E1/(PSFC(I)-E1)
397 CPM(I)=CP*(1.+0.8*QX(I))
398 60 CONTINUE
399 80 CONTINUE
400
401 !-----COMPUTE THE HEIGHT OF FULL- AND HALF-SIGMA LEVELS ABOVE GROUND
402 ! LEVEL, AND THE LAYER THICKNESSES.
403
404 DO 90 I=its,ite
405 ZQKLP1(I)=0.
406 RHOX(I)=PSFC(I)*1000./(R*SCR4(I))
407 90 CONTINUE
408 !
409 DO 110 I=its,ite
410 ZQKL(I)=dz8w1d(I)+ZQKLP1(I)
411 110 CONTINUE
412 !
413 DO 120 I=its,ite
414 ZA(I)=0.5*(ZQKL(I)+ZQKLP1(I))
415 120 CONTINUE
416 !
417 DO 160 I=its,ite
418 GOVRTH(I)=G/THX(I)
419 160 CONTINUE
420
421 !-----CALCULATE BULK RICHARDSON NO. OF SURFACE LAYER, ACCORDING TO
422 ! AKB(1976), EQ(12).
423
424 DO 260 I=its,ite
425 GZ1OZ0(I)=ALOG(ZA(I)/ZNT(I))
426 GZ2OZ0(I)=ALOG(2./ZNT(I))
427 GZ10OZ0(I)=ALOG(10./ZNT(I))
428 IF((XLAND(I)-1.5).GE.0)THEN
429 ZL=ZNT(I)
430 ELSE
431 ZL=0.01
432 ENDIF
433 WSPD(I)=SQRT(UX(I)*UX(I)+VX(I)*VX(I))
434
435 TSKV=THGB(I)*(1.+EP1*QSFC(I)*MAVAIL(I))
436 DTHVDZ=(THVX(I)-TSKV)
437 ! Convective velocity scale Vc and subgrid-scale velocity Vsg
438 ! following Beljaars (1995, QJRMS) and Mahrt and Sun (1995, MWR)
439 ! ... HONG Aug. 2001
440 !
441 ! VCONV = 0.25*sqrt(g/tskv*pblh(i)*dthvm)
442 fluxc = max(hfx(i)/rhox(i)/cp &
443 + ep1*tskv*qfx(i)/rhox(i),0.)
444 VCONV = vconvc*(g/tgdsa(i)*pblh(i)*fluxc)**.33
445 ! IF(-DTHVDZ.GE.0)THEN
446 ! DTHVM=-DTHVDZ
447 ! ELSE
448 ! DTHVM=0.
449 ! ENDIF
450 ! VCONV = max(vconv,VCONVC*SQRT(DTHVM))
451 ! VCONV comes from Beljaars only
452 VSGD = 0.32 * (max(dx/5000.-1.,0.))**.33
453 WSPD(I)=SQRT(WSPD(I)*WSPD(I)+VCONV*VCONV+vsgd*vsgd)
454 WSPD(I)=AMAX1(WSPD(I),0.1)
455 BR(I)=GOVRTH(I)*ZA(I)*DTHVDZ/(WSPD(I)*WSPD(I))
456 ! IF PREVIOUSLY UNSTABLE, DO NOT LET INTO REGIMES 1 AND 2
457 IF(MOL(I).LT.0.)BR(I)=AMIN1(BR(I),0.0)
458 !jdf
459 RMOL(I)=-GOVRTH(I)*DTHVDZ*ZA(I)*KARMAN
460 !jdf
461
462 260 CONTINUE
463
464 !
465 !-----DIAGNOSE BASIC PARAMETERS FOR THE APPROPRIATED STABILITY CLASS:
466 !
467 !
468 ! THE STABILITY CLASSES ARE DETERMINED BY BR (BULK RICHARDSON NO.)
469 ! AND HOL (HEIGHT OF PBL/MONIN-OBUKHOV LENGTH).
470 !
471 ! CRITERIA FOR THE CLASSES ARE AS FOLLOWS:
472 !
473 ! 1. BR .GE. 0.2;
474 ! REPRESENTS NIGHTTIME STABLE CONDITIONS (REGIME=1),
475 !
476 ! 2. BR .LT. 0.2 .AND. BR .GT. 0.0;
477 ! REPRESENTS DAMPED MECHANICAL TURBULENT CONDITIONS
478 ! (REGIME=2),
479 !
480 ! 3. BR .EQ. 0.0
481 ! REPRESENTS FORCED CONVECTION CONDITIONS (REGIME=3),
482 !
483 ! 4. BR .LT. 0.0
484 ! REPRESENTS FREE CONVECTION CONDITIONS (REGIME=4).
485 !
486 !CCCCC
487
488 DO 320 I=its,ite
489 !CCCCC
490 !CC REMOVE REGIME 3 DEPENDENCE ON PBL HEIGHT
491 !CC IF(BR(I).LT.0..AND.HOL(I,J).GT.1.5)GOTO 310
492 IF(BR(I).LT.0.)GOTO 310
493 !
494 !-----CLASS 1; STABLE (NIGHTTIME) CONDITIONS:
495 !
496 IF(BR(I).LT.0.2)GOTO 270
497 REGIME(I)=1.
498 PSIM(I)=-10.*GZ1OZ0(I)
499 ! LOWER LIMIT ON PSI IN STABLE CONDITIONS
500 PSIM(I)=AMAX1(PSIM(I),-10.)
501 PSIH(I)=PSIM(I)
502 PSIM10(I)=10./ZA(I)*PSIM(I)
503 PSIM10(I)=AMAX1(PSIM10(I),-10.)
504 PSIH10(I)=PSIM10(I)
505 PSIM2(I)=2./ZA(I)*PSIM(I)
506 PSIM2(I)=AMAX1(PSIM2(I),-10.)
507 PSIH2(I)=PSIM2(I)
508
509 ! 1.0 over Monin-Obukhov length
510 IF(UST(I).LT.0.01)THEN
511 RMOL(I)=BR(I)*GZ1OZ0(I) !ZA/L
512 ELSE
513 RMOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I)) !ZA/L
514 ENDIF
515 RMOL(I)=AMIN1(RMOL(I),9.999) ! ZA/L
516 RMOL(I) = RMOL(I)/ZA(I) !1.0/L
517
518 GOTO 320
519 !
520 !-----CLASS 2; DAMPED MECHANICAL TURBULENCE:
521 !
522 270 IF(BR(I).EQ.0.0)GOTO 280
523 REGIME(I)=2.
524 PSIM(I)=-5.0*BR(I)*GZ1OZ0(I)/(1.1-5.0*BR(I))
525 ! LOWER LIMIT ON PSI IN STABLE CONDITIONS
526 PSIM(I)=AMAX1(PSIM(I),-10.)
527 !.....AKB(1976), EQ(16).
528 PSIH(I)=PSIM(I)
529 PSIM10(I)=10./ZA(I)*PSIM(I)
530 PSIM10(I)=AMAX1(PSIM10(I),-10.)
531 PSIH10(I)=PSIM10(I)
532 PSIM2(I)=2./ZA(I)*PSIM(I)
533 PSIM2(I)=AMAX1(PSIM2(I),-10.)
534 PSIH2(I)=PSIM2(I)
535
536 ! Linear form: PSIM = -0.5*ZA/L; e.g, see eqn 16 of
537 ! Blackadar, Modeling the nocturnal boundary layer, Preprints,
538 ! Third Symposium on Atmospheric Turbulence Diffusion and Air Quality,
539 ! Raleigh, NC, 1976
540 ZOL(I) = BR(I)*GZ1OZ0(I)/(1.00001-5.0*BR(I))
541
542 if ( ZOL(I) .GT. 0.5 ) then ! linear form ok
543 ! Holtslag and de Bruin, J. App. Meteor 27, 689-704, 1988;
544 ! see also, Launiainen, Boundary-Layer Meteor 76,165-179, 1995
545 ! Eqn (8) of Launiainen, 1995
546 ZOL(I) = ( 1.89*GZ1OZ0(I) + 44.2 ) * BR(I)*BR(I) &
547 + ( 1.18*GZ1OZ0(I) - 1.37 ) * BR(I)
548 ZOL(I)=AMIN1(ZOL(I),9.999)
549 end if
550
551 ! 1.0 over Monin-Obukhov length
552 RMOL(I)= ZOL(I)/ZA(I)
553
554 GOTO 320
555 !
556 !-----CLASS 3; FORCED CONVECTION:
557 !
558 280 REGIME(I)=3.
559 PSIM(I)=0.0
560 PSIH(I)=PSIM(I)
561 PSIM10(I)=0.
562 PSIH10(I)=PSIM10(I)
563 PSIM2(I)=0.
564 PSIH2(I)=PSIM2(I)
565
566
567 IF(UST(I).LT.0.01)THEN
568 ZOL(I)=BR(I)*GZ1OZ0(I)
569 ELSE
570 ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I))
571 ENDIF
572
573 RMOL(I) = ZOL(I)/ZA(I)
574
575 GOTO 320
576 !
577 !-----CLASS 4; FREE CONVECTION:
578 !
579 310 CONTINUE
580 REGIME(I)=4.
581 IF(UST(I).LT.0.01)THEN
582 ZOL(I)=BR(I)*GZ1OZ0(I)
583 ELSE
584 ZOL(I)=KARMAN*GOVRTH(I)*ZA(I)*MOL(I)/(UST(I)*UST(I))
585 ENDIF
586 ZOL10=10./ZA(I)*ZOL(I)
587 ZOL2=2./ZA(I)*ZOL(I)
588 ZOL(I)=AMIN1(ZOL(I),0.)
589 ZOL(I)=AMAX1(ZOL(I),-9.9999)
590 ZOL10=AMIN1(ZOL10,0.)
591 ZOL10=AMAX1(ZOL10,-9.9999)
592 ZOL2=AMIN1(ZOL2,0.)
593 ZOL2=AMAX1(ZOL2,-9.9999)
594 NZOL=INT(-ZOL(I)*100.)
595 RZOL=-ZOL(I)*100.-NZOL
596 NZOL10=INT(-ZOL10*100.)
597 RZOL10=-ZOL10*100.-NZOL10
598 NZOL2=INT(-ZOL2*100.)
599 RZOL2=-ZOL2*100.-NZOL2
600 PSIM(I)=PSIMTB(NZOL)+RZOL*(PSIMTB(NZOL+1)-PSIMTB(NZOL))
601 PSIH(I)=PSIHTB(NZOL)+RZOL*(PSIHTB(NZOL+1)-PSIHTB(NZOL))
602 PSIM10(I)=PSIMTB(NZOL10)+RZOL10*(PSIMTB(NZOL10+1)-PSIMTB(NZOL10))
603 PSIH10(I)=PSIHTB(NZOL10)+RZOL10*(PSIHTB(NZOL10+1)-PSIHTB(NZOL10))
604 PSIM2(I)=PSIMTB(NZOL2)+RZOL2*(PSIMTB(NZOL2+1)-PSIMTB(NZOL2))
605 PSIH2(I)=PSIHTB(NZOL2)+RZOL2*(PSIHTB(NZOL2+1)-PSIHTB(NZOL2))
606
607 !---LIMIT PSIH AND PSIM IN THE CASE OF THIN LAYERS AND HIGH ROUGHNESS
608 !--- THIS PREVENTS DENOMINATOR IN FLUXES FROM GETTING TOO SMALL
609 ! PSIH(I)=AMIN1(PSIH(I),0.9*GZ1OZ0(I))
610 ! PSIM(I)=AMIN1(PSIM(I),0.9*GZ1OZ0(I))
611 PSIH(I)=AMIN1(PSIH(I),0.9*GZ1OZ0(I))
612 PSIM(I)=AMIN1(PSIM(I),0.9*GZ1OZ0(I))
613 PSIH2(I)=AMIN1(PSIH2(I),0.9*GZ2OZ0(I))
614 PSIM10(I)=AMIN1(PSIM10(I),0.9*GZ10OZ0(I))
615
616 RMOL(I) = ZOL(I)/ZA(I)
617
618 320 CONTINUE
619 !
620 !-----COMPUTE THE FRICTIONAL VELOCITY:
621 ! ZA(1982) EQS(2.60),(2.61).
622 !
623 DO 330 I=its,ite
624 DTG=THX(I)-THGB(I)
625 PSIX=GZ1OZ0(I)-PSIM(I)
626 PSIX10=GZ10OZ0(I)-PSIM10(I)
627 ! LOWER LIMIT ADDED TO PREVENT LARGE FLHC IN SOIL MODEL
628 ! ACTIVATES IN UNSTABLE CONDITIONS WITH THIN LAYERS OR HIGH Z0
629 PSIT=AMAX1(GZ1OZ0(I)-PSIH(I),2.)
630
631 IF((XLAND(I)-1.5).GE.0)THEN
632 ZL=ZNT(I)
633 ELSE
634 ZL=0.01
635 ENDIF
636 PSIQ=ALOG(KARMAN*UST(I)*ZA(I)/XKA+ZA(I)/ZL)-PSIH(I)
637 PSIT2=GZ2OZ0(I)-PSIH2(I)
638 PSIQ2=ALOG(KARMAN*UST(I)*2./XKA+2./ZL)-PSIH2(I)
639 ! TO PREVENT OSCILLATIONS AVERAGE WITH OLD VALUE
640 UST(I)=0.5*UST(I)+0.5*KARMAN*WSPD(I)/PSIX
641 U10(I)=UX(I)*PSIX10/PSIX
642 V10(I)=VX(I)*PSIX10/PSIX
643 TH2(I)=THGB(I)+DTG*PSIT2/PSIT
644 Q2(I)=QSFC(I)+(QX(I)-QSFC(I))*PSIQ2/PSIQ
645 T2(I) = TH2(I)*(PSFC(I)/100.)**ROVCP
646 ! LATER Q2 WILL BE OVERWRITTEN FOR LAND POINTS IN SURFCE
647 ! QA2(I,J) = Q2(I)
648 ! UA10(I,J) = U10(I)
649 ! VA10(I,J) = V10(I)
650 ! write(*,1002)UST(I),KARMAN*WSPD(I),PSIX,KARMAN*WSPD(I)/PSIX
651 !
652 IF(ABS(U10(I)) .GT. 1.E-10) THEN
653 uratx(I) = UX(I)/U10(I)
654 ELSE
655 uratx(I) = 1.2
656 END IF
657 IF(ABS(V10(I)) .GT. 1.E-10) THEN
658 vratx(I) = VX(I)/V10(I)
659 ELSE
660 vratx(I) = 1.2
661 END IF
662 tratx(I) = THX(I)/TH2(I)
663
664 USTM=AMAX1(UST(I),0.1)
665 IF((XLAND(I)-1.5).GE.0)THEN
666 UST(I)=UST(I)
667 ELSE
668 UST(I)=USTM
669 ENDIF
670 ! write(*,1002)UST(I),USTM,I,J
671 1002 format(f15.12,2x,f15.12,2x,f15.12,2x,f15.12,2x,f15.12)
672 MOL(I)=KARMAN*DTG/PSIT/PRT
673 330 CONTINUE
674 !
675 335 CONTINUE
676
677 !-----COMPUTE THE SURFACE SENSIBLE AND LATENT HEAT FLUXES:
678
679 DO i=its,ite
680 QFX(i)=0.
681 HFX(i)=0.
682 ENDDO
683
684 IF (ISFFLX.EQ.0) GOTO 410
685
686 !-----OVER WATER, ALTER ROUGHNESS LENGTH (ZNT) ACCORDING TO WIND (UST).
687
688 DO 360 I=its,ite
689 IF((XLAND(I)-1.5).GE.0)THEN
690 ZNT(I)=CZO*UST(I)*UST(I)/G+OZO
691 ENDIF
692 IF((XLAND(I)-1.5).GE.0)THEN
693 ZL=ZNT(I)
694 ELSE
695 ZL=0.01
696 ENDIF
697 FLQC(I)=RHOX(I)*MAVAIL(I)*UST(I)*KARMAN/( &
698 ALOG(KARMAN*UST(I)*ZA(I)/XKA+ZA(I)/ZL)-PSIH(I))
699 DTTHX=ABS(THX(I)-THGB(I))
700 IF(DTTHX.GT.1.E-5)THEN
701 FLHC(I)=CPM(I)*RHOX(I)*UST(I)*MOL(I)/(THX(I)-THGB(I))
702 ! write(*,1001)FLHC(I),CPM(I),RHOX(I),UST(I),MOL(I),THX(I),THGB(I),I
703 1001 format(f8.5,2x,f12.7,2x,f12.10,2x,f12.10,2x,f13.10,2x,f12.8,f12.8,2x,i3)
704 ELSE
705 FLHC(I)=0.
706 ENDIF
707 360 CONTINUE
708
709 !
710 !-----COMPUTE SURFACE MOIST FLUX:
711 !
712 ! IF(IDRY.EQ.1)GOTO 390
713 !
714 DO 370 I=its,ite
715 QFX(I)=FLQC(I)*(QSFC(I)-QX(I))
716 QFX(I)=AMAX1(QFX(I),0.)
717 LH(I)=XLV*QFX(I)
718 370 CONTINUE
719
720 !-----COMPUTE SURFACE HEAT FLUX:
721 !
722 390 CONTINUE
723 DO 400 I=its,ite
724 IF(XLAND(I)-1.5.GT.0.)THEN
725 HFX(I)=FLHC(I)*(THGB(I)-THX(I))
726 ELSEIF(XLAND(I)-1.5.LT.0.)THEN
727 HFX(I)=FLHC(I)*(THGB(I)-THX(I))
728 HFX(I)=AMAX1(HFX(I),-250.)
729 ENDIF
730 400 CONTINUE
731
732 DO I=its,ite
733 IF((XLAND(I)-1.5).GE.0)THEN
734 ZL=ZNT(I)
735 ELSE
736 ZL=0.01
737 ENDIF
738 CHS(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*ZA(I) &
739 /XKA+ZA(I)/ZL)-PSIH(I))
740 ! GZ2OZ0(I)=ALOG(2./ZNT(I))
741 ! PSIM2(I)=-10.*GZ2OZ0(I)
742 ! PSIM2(I)=AMAX1(PSIM2(I),-10.)
743 ! PSIH2(I)=PSIM2(I)
744 CQS2(I)=UST(I)*KARMAN/(ALOG(KARMAN*UST(I)*2.0 &
745 /XKA+2.0/ZL)-PSIH2(I))
746 CHS2(I)=UST(I)*KARMAN/(GZ2OZ0(I)-PSIH2(I))
747 ENDDO
748
749 410 CONTINUE
750 !jdf
751 ! DO I=its,ite
752 ! IF(UST(I).GE.0.1) THEN
753 ! RMOL(I)=RMOL(I)*(-FLHC(I))/(UST(I)*UST(I)*UST(I))
754 ! ELSE
755 ! RMOL(I)=RMOL(I)*(-FLHC(I))/(0.1*0.1*0.1)
756 ! ENDIF
757 ! ENDDO
758 !jdf
759
760 !
761 END SUBROUTINE SFCLAY1D
762
763 !====================================================================
764 SUBROUTINE sfclayinit( allowed_to_read )
765
766 LOGICAL , INTENT(IN) :: allowed_to_read
767 INTEGER :: N
768 REAL :: ZOLN,X,Y
769
770 DO N=0,1000
771 ZOLN=-FLOAT(N)*0.01
772 X=(1-16.*ZOLN)**0.25
773 PSIMTB(N)=2*ALOG(0.5*(1+X))+ALOG(0.5*(1+X*X))- &
774 2.*ATAN(X)+2.*ATAN(1.)
775 Y=(1-16*ZOLN)**0.5
776 PSIHTB(N)=2*ALOG(0.5*(1+Y))
777 ENDDO
778
779 END SUBROUTINE sfclayinit
780
781 !-------------------------------------------------------------------
782
783 END MODULE module_sf_sfclay