module_initialize_grav2d_x.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42
43 SUBROUTINE init_domain ( grid )
44
45 IMPLICIT NONE
46
47 ! Input data.
48 TYPE (domain), POINTER :: grid
49 ! Local data.
50 INTEGER :: dyn_opt
51 INTEGER :: idum1, idum2
52
53 CALL nl_get_dyn_opt( 1, dyn_opt )
54
55 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56
57 IF ( dyn_opt .eq. 1 &
58 .or. dyn_opt .eq. 2 &
59 .or. dyn_opt .eq. 3 &
60 ) THEN
61 CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65 )
66
67 ELSE
68 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70 ENDIF
71
72 END SUBROUTINE init_domain
73
74 !-------------------------------------------------------------------
75
76 SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81 IMPLICIT NONE
82
83 ! Input data.
84 TYPE (domain), POINTER :: grid
85
86 # include <em_dummy_new_decl.inc>
87
88 TYPE (grid_config_rec_type) :: config_flags
89
90 ! Local data
91 INTEGER :: &
92 ids, ide, jds, jde, kds, kde, &
93 ims, ime, jms, jme, kms, kme, &
94 its, ite, jts, jte, kts, kte, &
95 i, j, k
96
97 ! Local data
98
99 INTEGER, PARAMETER :: nl_max = 1000
100 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101 INTEGER :: nl_in
102
103
104 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2, t_min, t_max
107 ! REAL, EXTERNAL :: interp_0
108 REAL :: hm, xa, xpos, xposml, xpospl
109 REAL :: pi
110
111 ! stuff from original initialization that has been dropped from the Registry
112 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113 REAL :: qvf1, qvf2, pd_surf
114 INTEGER :: it
115 real :: thtmp, ptmp, temp(3)
116
117 LOGICAL :: moisture_init
118 LOGICAL :: stretch_grid, dry_sounding
119
120 REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale
121
122 #ifdef DM_PARALLEL
123 # include <em_data_calls.inc>
124 #endif
125
126
127 SELECT CASE ( model_data_order )
128 CASE ( DATA_ORDER_ZXY )
129 kds = grid%sd31 ; kde = grid%ed31 ;
130 ids = grid%sd32 ; ide = grid%ed32 ;
131 jds = grid%sd33 ; jde = grid%ed33 ;
132
133 kms = grid%sm31 ; kme = grid%em31 ;
134 ims = grid%sm32 ; ime = grid%em32 ;
135 jms = grid%sm33 ; jme = grid%em33 ;
136
137 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
138 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
139 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
140 CASE ( DATA_ORDER_XYZ )
141 ids = grid%sd31 ; ide = grid%ed31 ;
142 jds = grid%sd32 ; jde = grid%ed32 ;
143 kds = grid%sd33 ; kde = grid%ed33 ;
144
145 ims = grid%sm31 ; ime = grid%em31 ;
146 jms = grid%sm32 ; jme = grid%em32 ;
147 kms = grid%sm33 ; kme = grid%em33 ;
148
149 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
150 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
151 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
152 CASE ( DATA_ORDER_XZY )
153 ids = grid%sd31 ; ide = grid%ed31 ;
154 kds = grid%sd32 ; kde = grid%ed32 ;
155 jds = grid%sd33 ; jde = grid%ed33 ;
156
157 ims = grid%sm31 ; ime = grid%em31 ;
158 kms = grid%sm32 ; kme = grid%em32 ;
159 jms = grid%sm33 ; jme = grid%em33 ;
160
161 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
162 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
163 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
164
165 END SELECT
166
167
168 hm = 000.
169 xa = 5.0
170
171 icm = ide/2
172
173
174 xa1 = 5000./500.
175 xal1 = 4000./500.
176 pii = 2.*asin(1.0)
177 hm1 = 250.
178 ! hm1 = 1000.
179
180
181 stretch_grid = .true.
182 ! z_scale = .50
183 z_scale = 1.675
184 pi = 2.*asin(1.0)
185 write(6,*) ' pi is ',pi
186 nxc = (ide-ids)/2
187 nyc = (jde-jds)/2
188
189 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
190
191 ! here we check to see if the boundary conditions are set properly
192
193 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
194
195 moisture_init = .true.
196
197 grid%itimestep=0
198
199 #ifdef DM_PARALLEL
200 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
201 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
202 #endif
203
204 CALL nl_set_mminlu(1, ' ')
205 CALL nl_set_iswater(1,0)
206 CALL nl_set_cen_lat(1,40.)
207 CALL nl_set_cen_lon(1,-105.)
208 CALL nl_set_truelat1(1,0.)
209 CALL nl_set_truelat2(1,0.)
210 CALL nl_set_moad_cen_lat (1,0.)
211 CALL nl_set_stand_lon (1,0.)
212 CALL nl_set_map_proj(1,0)
213
214
215 ! here we initialize data we currently is not initialized
216 ! in the input data
217
218 DO j = jts, jte
219 DO i = its, ite
220 grid%msftx(i,j) = 1.
221 grid%msfty(i,j) = 1.
222 grid%msfux(i,j) = 1.
223 grid%msfuy(i,j) = 1.
224 grid%msfvx(i,j) = 1.
225 grid%msfvx_inv(i,j)= 1.
226 grid%msfvy(i,j) = 1.
227 grid%sina(i,j) = 0.
228 grid%cosa(i,j) = 1.
229 grid%e(i,j) = 0.
230 grid%f(i,j) = 0.
231
232 END DO
233 END DO
234
235 DO j = jts, jte
236 DO k = kts, kte
237 DO i = its, ite
238 grid%em_ww(i,k,j) = 0.
239 END DO
240 END DO
241 END DO
242
243 grid%step_number = 0
244
245 ! set up the grid
246
247 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
248 DO k=1, kde
249 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
250 (1.-exp(-1./z_scale))
251 ENDDO
252 ELSE
253 DO k=1, kde
254 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
255 ENDDO
256 ENDIF
257
258 DO k=1, kde-1
259 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
260 grid%em_rdnw(k) = 1./grid%em_dnw(k)
261 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
262 ENDDO
263 DO k=2, kde-1
264 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
265 grid%em_rdn(k) = 1./grid%em_dn(k)
266 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
267 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
268 ENDDO
269
270 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
271 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
272 grid%cf1 = grid%em_fnp(2) + cof1
273 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
274 grid%cf3 = cof2
275
276 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
277 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
278 grid%rdx = 1./config_flags%dx
279 grid%rdy = 1./config_flags%dy
280
281 ! get the sounding from the ascii sounding file, first get dry sounding and
282 ! calculate base state
283
284 write(6,*) ' getting dry sounding for base state '
285 dry_sounding = .true.
286 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
287 nl_max, nl_in, .true.)
288
289 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
290
291
292 ! find ptop for the desired ztop (ztop is input from the namelist),
293 ! and find surface pressure
294
295 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
296
297 DO j=jts,jte
298 DO i=its,ite ! flat surface
299 !! grid%ht(i,j) = 0.
300 grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
301 ! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) &
302 ! *( (cos(pii*float(i-icm)/xal1))**2 )
303 grid%em_phb(i,1,j) = g*grid%ht(i,j)
304 grid%em_php(i,1,j) = 0.
305 grid%em_ph0(i,1,j) = grid%em_phb(i,1,j)
306 ENDDO
307 ENDDO
308
309 DO J = jts, jte
310 DO I = its, ite
311
312 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
313 grid%em_mub(i,j) = p_surf-grid%p_top
314
315 ! this is dry hydrostatic sounding (base state), so given p (coordinate),
316 ! interp theta (from interp) and compute 1/rho from eqn. of state
317
318 DO K = 1, kte-1
319 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
320 grid%em_pb(i,k,j) = p_level
321 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
322 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
323 ENDDO
324
325 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
326 ! sounding, but this assures that the base state is in exact hydrostatic balance with
327 ! respect to the model eqns.
328
329 DO k = 2,kte
330 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
331 ENDDO
332
333 ENDDO
334 ENDDO
335
336 write(6,*) ' ptop is ',grid%p_top
337 write(6,*) ' base state mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
338
339 ! calculate full state for each column - this includes moisture.
340
341 write(6,*) ' getting moist sounding for full state '
342 dry_sounding = .false.
343 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
344 nl_max, nl_in, .false. )
345
346 DO J = jts, min(jde-1,jte)
347 DO I = its, min(ide-1,ite)
348
349 ! At this point grid%p_top is already set. find the DRY mass in the column
350 ! by interpolating the DRY pressure.
351
352 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
353
354 ! compute the perturbation mass and the full mass
355
356 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
357 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
358 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
359
360 ! given the dry pressure and coordinate system, interp the potential
361 ! temperature and qv
362
363 do k=1,kde-1
364
365 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
366
367 grid%moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
368 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
369 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
370
371
372 enddo
373
374 ! integrate the hydrostatic equation (from the RHS of the bigstep
375 ! vertical momentum equation) down from the top to get p.
376 ! first from the top of the model to the top pressure
377
378 k = kte-1 ! top level
379
380 qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV))
381 qvf2 = 1./(1.+qvf1)
382 qvf1 = qvf1*qvf2
383
384 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
385 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
386 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
387 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
388 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
389 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
390
391 ! down the column
392
393 do k=kte-2,1,-1
394 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
395 qvf2 = 1./(1.+qvf1)
396 qvf1 = qvf1*qvf2
397 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
398 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
399 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
400 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
401 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
402 enddo
403
404 ! this is the hydrostatic equation used in the model after the
405 ! small timesteps. In the model, al (inverse density)
406 ! is computed from the geopotential.
407
408
409 grid%em_ph_1(i,1,j) = 0.
410 DO k = 2,kte
411 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
412 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
413 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
414
415 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
416 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
417 ENDDO
418
419 if((i==2) .and. (j==2)) then
420 write(6,*) ' ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
421 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
422 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
423 endif
424
425 ENDDO
426 ENDDO
427
428 ! cold bubble input (from straka et al, IJNMF, vol 17, 1993 pp 1-22)
429
430 t_min = grid%em_t_1(its,kts,jts)
431 t_max = t_min
432 u_mean = 00.
433
434 xpos = config_flags%dx*nxc - u_mean*900.
435 xposml = xpos - config_flags%dx*(ide-1)
436 xpospl = xpos + config_flags%dx*(ide-1)
437
438 DO J = jts, min(jde-1,jte)
439 DO I = its, min(ide-1,ite)
440 ! xrad = config_flags%dx*float(i-nxc)/4000. ! 4000 meter horizontal radius
441 ! ! centered in the domain
442
443 xrad = min( abs(config_flags%dx*float(i)-xpos), &
444 abs(config_flags%dx*float(i)-xposml), &
445 abs(config_flags%dx*float(i)-xpospl))/4000.
446
447 DO K = 1, kte-1
448
449 ! put in preturbation theta (bubble) and recalc density. note,
450 ! the mass in the column is not changing, so when theta changes,
451 ! we recompute density and geopotential
452
453 zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) &
454 +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
455 zrad = (zrad-3000.)/2000. ! 2000 meter vertical radius,
456 ! centered at z=3000,
457 RAD=SQRT(xrad*xrad+zrad*zrad)
458 IF(RAD <= 1.) THEN
459
460 ! perturbation temperature is 15 C, convert to potential temperature
461
462 delt = -15.0 / ((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**rcp
463
464 grid%em_T_1(i,k,j)=grid%em_T_1(i,k,j)+delt*(COS(PI*RAD)+1.0)/2.
465 grid%em_T_2(i,k,j)=grid%em_T_1(i,k,j)
466 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
467 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
468 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
469 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
470 ENDIF
471
472 t_min = min(t_min, grid%em_t_1(i,k,j))
473 t_max = max(t_max, grid%em_t_1(i,k,j))
474 ENDDO
475
476 ! rebalance hydrostatically
477
478 DO k = 2,kte
479 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
480 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
481 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
482
483 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
484 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
485 ENDDO
486
487 ENDDO
488 ENDDO
489
490 write(6,*) ' min and max theta perturbation ',t_min,t_max
491
492
493
494
495 ! -- end bubble insert
496
497 write(6,*) ' mu_1 from comp ', grid%em_mu_1(1,1)
498 write(6,*) ' full state sounding from comp, ph, p, al, t_1, qv '
499 do k=1,kde-1
500 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
501 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
502 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
503 enddo
504
505 write(6,*) ' pert state sounding from comp, ph_1, pp, alp, t_1, qv '
506 do k=1,kde-1
507 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
508 grid%em_p(1,k,1), grid%em_al(1,k,1), &
509 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
510 enddo
511
512 write(6,*) ' '
513 write(6,*) ' k, model level, dz '
514 do k=1,kde-1
515 write(6,'(i3,1x,e12.5,1x,f10.2)') k, &
516 .5*(grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1)+grid%em_ph_1(1,k+1,1)+grid%em_phb(1,k+1,1))/g, &
517 (grid%em_ph_1(1,k+1,1)+grid%em_phb(1,k+1,1)-grid%em_ph_1(1,k,1)-grid%em_phb(1,k,1))/g
518 enddo
519 write(6,*) ' model top (m) is ', (grid%em_ph_1(1,kde,1)+grid%em_phb(1,kde,1))/g
520
521
522 ! interp v
523
524 DO J = jts, jte
525 DO I = its, min(ide-1,ite)
526
527 IF (j == jds) THEN
528 z_at_v = grid%em_phb(i,1,j)/g
529 ELSE IF (j == jde) THEN
530 z_at_v = grid%em_phb(i,1,j-1)/g
531 ELSE
532 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
533 END IF
534
535 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
536
537 DO K = 1, kte
538 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
539 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
540 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
541 ENDDO
542
543 ENDDO
544 ENDDO
545
546 ! interp u
547
548 DO J = jts, min(jde-1,jte)
549 DO I = its, ite
550
551 IF (i == ids) THEN
552 z_at_u = grid%em_phb(i,1,j)/g
553 ELSE IF (i == ide) THEN
554 z_at_u = grid%em_phb(i-1,1,j)/g
555 ELSE
556 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
557 END IF
558
559 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
560
561 DO K = 1, kte
562 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
563 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
564 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
565 ENDDO
566
567 ENDDO
568 ENDDO
569
570 ! set w
571
572 DO J = jts, min(jde-1,jte)
573 DO K = kts, kte
574 DO I = its, min(ide-1,ite)
575 grid%em_w_1(i,k,j) = 0.
576 grid%em_w_2(i,k,j) = 0.
577 ENDDO
578 ENDDO
579 ENDDO
580
581 ! set a few more things
582
583 DO J = jts, min(jde-1,jte)
584 DO K = kts, kte-1
585 DO I = its, min(ide-1,ite)
586 grid%h_diabatic(i,k,j) = 0.
587 ENDDO
588 ENDDO
589 ENDDO
590
591 DO k=1,kte-1
592 grid%em_t_base(k) = grid%em_t_1(1,k,1)
593 grid%qv_base(k) = moist(1,k,1,P_QV)
594 grid%u_base(k) = grid%em_u_1(1,k,1)
595 grid%v_base(k) = grid%em_v_1(1,k,1)
596 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
597 ENDDO
598
599 DO J = jts, min(jde-1,jte)
600 DO I = its, min(ide-1,ite)
601 thtmp = grid%em_t_2(i,1,j)+t0
602 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
603 temp(1) = thtmp * (ptmp/p1000mb)**rcp
604 thtmp = grid%em_t_2(i,2,j)+t0
605 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
606 temp(2) = thtmp * (ptmp/p1000mb)**rcp
607 thtmp = grid%em_t_2(i,3,j)+t0
608 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
609 temp(3) = thtmp * (ptmp/p1000mb)**rcp
610
611 grid%TSK(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
612 grid%TMN(I,J)=grid%TSK(I,J)-0.5
613 ENDDO
614 ENDDO
615
616 RETURN
617
618 END SUBROUTINE init_domain_rk
619
620 SUBROUTINE init_module_initialize
621 END SUBROUTINE init_module_initialize
622
623 !---------------------------------------------------------------------
624
625 ! test driver for get_sounding
626 !
627 ! implicit none
628 ! integer n
629 ! parameter(n = 1000)
630 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
631 ! logical dry
632 ! integer nl,k
633 !
634 ! dry = .false.
635 ! dry = .true.
636 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
637 ! write(6,*) ' input levels ',nl
638 ! write(6,*) ' sounding '
639 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
640 ! do k=1,nl
641 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
642 ! enddo
643 ! end
644 !
645 !---------------------------------------------------------------------------
646
647 subroutine get_sounding( zk, p, p_dry, theta, rho, &
648 u, v, qv, dry, nl_max, nl_in, base_state )
649 implicit none
650
651 integer nl_max, nl_in
652 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
653 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
654 logical dry
655 logical base_state
656
657 integer n, iz
658 parameter(n=1000)
659 logical debug
660 parameter( debug = .false.)
661
662 ! input sounding data
663
664 real p_surf, th_surf, qv_surf
665 real pi_surf, pi(n)
666 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
667
668 ! diagnostics
669
670 real rho_surf, p_input(n), rho_input(n)
671 real pm_input(n) ! this are for full moist sounding
672
673 ! local data
674
675 real p1000mb,cv,cp,r,cvpm,g
676 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
677 integer k, it, nl
678 real qvf, qvf1, dz
679
680 ! first, read the sounding
681
682 call read_sounding( p_surf, th_surf, qv_surf, &
683 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
684
685 ! iz = 1
686 ! do k=2,nl
687 ! if(h_input(k) .lt. 12000.) iz = k
688 ! enddo
689 ! write(6,*) " tropopause ",iz,h_input(iz)
690 ! if(dry) then
691 ! write(6,*) ' nl is ',nl
692 ! do k=1,nl
693 ! th_input(k) = th_input(k)+10.+10*float(k)/nl
694 ! enddo
695 ! write(6,*) ' finished adjusting theta '
696 ! endif
697
698 ! do k=1,nl
699 ! u_input(k) = 2*u_input(k)
700 ! enddo
701 !
702 ! end if
703
704 if(dry) then
705 do k=1,nl
706 qv_input(k) = 0.
707 enddo
708 endif
709
710 if(debug) write(6,*) ' number of input levels = ',nl
711
712 nl_in = nl
713 if(nl_in .gt. nl_max ) then
714 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
715 call wrf_error_fatal ( ' too many levels for input arrays ' )
716 end if
717
718 ! compute diagnostics,
719 ! first, convert qv(g/kg) to qv(g/g)
720
721 do k=1,nl
722 qv_input(k) = 0.001*qv_input(k)
723 enddo
724
725 p_surf = 100.*p_surf ! convert to pascals
726 qvf = 1. + rvovrd*qv_input(1)
727 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
728 pi_surf = (p_surf/p1000mb)**(r/cp)
729
730 if(debug) then
731 write(6,*) ' surface density is ',rho_surf
732 write(6,*) ' surface pi is ',pi_surf
733 end if
734
735
736 ! integrate moist sounding hydrostatically, starting from the
737 ! specified surface pressure
738 ! -> first, integrate from surface to lowest level
739
740 qvf = 1. + rvovrd*qv_input(1)
741 qvf1 = 1. + qv_input(1)
742 rho_input(1) = rho_surf
743 dz = h_input(1)
744 do it=1,10
745 pm_input(1) = p_surf &
746 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
747 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
748 enddo
749
750 ! integrate up the column
751
752 do k=2,nl
753 rho_input(k) = rho_input(k-1)
754 dz = h_input(k)-h_input(k-1)
755 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
756 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
757
758 do it=1,20
759 pm_input(k) = pm_input(k-1) &
760 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
761 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
762 enddo
763 enddo
764
765 ! we have the moist sounding
766
767 ! next, compute the dry sounding using p at the highest level from the
768 ! moist sounding and integrating down.
769
770 p_input(nl) = pm_input(nl)
771
772 do k=nl-1,1,-1
773 dz = h_input(k+1)-h_input(k)
774 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
775 enddo
776
777 ! write(6,*) ' zeroing u input '
778
779 do k=1,nl
780
781 zk(k) = h_input(k)
782 p(k) = pm_input(k)
783 p_dry(k) = p_input(k)
784 theta(k) = th_input(k)
785 rho(k) = rho_input(k)
786 u(k) = u_input(k)
787 ! u(k) = 0.
788 v(k) = v_input(k)
789 qv(k) = qv_input(k)
790
791 enddo
792
793 if(debug) then
794 write(6,*) ' sounding '
795 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
796 do k=1,nl
797 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
798 enddo
799
800 end if
801
802 end subroutine get_sounding
803
804 !-------------------------------------------------------
805
806 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
807 implicit none
808 integer n,nl
809 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
810 logical end_of_file
811 logical debug
812
813 integer k
814
815 open(unit=10,file='input_sounding',form='formatted',status='old')
816 rewind(10)
817 read(10,*) ps, ts, qvs
818 if(debug) then
819 write(6,*) ' input sounding surface parameters '
820 write(6,*) ' surface pressure (mb) ',ps
821 write(6,*) ' surface pot. temp (K) ',ts
822 write(6,*) ' surface mixing ratio (g/kg) ',qvs
823 end if
824
825 end_of_file = .false.
826 k = 0
827
828 do while (.not. end_of_file)
829
830 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
831 k = k+1
832 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
833 go to 110
834 100 end_of_file = .true.
835 110 continue
836 enddo
837
838 nl = k
839
840 close(unit=10,status = 'keep')
841
842 end subroutine read_sounding
843
844 END MODULE module_initialize_ideal