module_initialize_hill2d_x.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42 ! NOTE: Modified to remove all but arrays of rank 4 or more from the
43 ! argument list. Arrays with rank>3 are still problematic due to the
44 ! above-noted fie- and pox-ities. TBH 20061129.
45
46 SUBROUTINE init_domain ( grid )
47
48 IMPLICIT NONE
49
50 ! Input data.
51 TYPE (domain), POINTER :: grid
52 ! Local data.
53 INTEGER :: dyn_opt
54 INTEGER :: idum1, idum2
55
56 CALL nl_get_dyn_opt( 1,dyn_opt )
57
58 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
59
60 IF ( dyn_opt .eq. 1 &
61 .or. dyn_opt .eq. 2 &
62 .or. dyn_opt .eq. 3 &
63 ) THEN
64 CALL init_domain_rk( grid &
65 !
66 #include <em_actual_new_args.inc>
67 !
68 )
69
70 ELSE
71 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
72 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
73 ENDIF
74
75 END SUBROUTINE init_domain
76
77 !-------------------------------------------------------------------
78
79 SUBROUTINE init_domain_rk ( grid &
80 !
81 # include <em_dummy_new_args.inc>
82 !
83 )
84 IMPLICIT NONE
85
86 ! Input data.
87 TYPE (domain), POINTER :: grid
88
89 # include <em_dummy_new_decl.inc>
90
91 TYPE (grid_config_rec_type) :: config_flags
92
93 ! Local data
94 INTEGER :: &
95 ids, ide, jds, jde, kds, kde, &
96 ims, ime, jms, jme, kms, kme, &
97 its, ite, jts, jte, kts, kte, &
98 i, j, k
99
100 ! Local data
101
102 INTEGER, PARAMETER :: nl_max = 1000
103 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
104 INTEGER :: nl_in
105
106
107 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
108 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
109 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
110 ! REAL, EXTERNAL :: interp_0
111 REAL :: hm, xa
112 REAL :: pi
113
114 ! stuff from original initialization that has been dropped from the Registry
115 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
116 REAL :: qvf1, qvf2, pd_surf
117 INTEGER :: it
118 real :: thtmp, ptmp, temp(3)
119
120 LOGICAL :: moisture_init
121 LOGICAL :: stretch_grid, dry_sounding
122
123 REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale
124
125 #ifdef DM_PARALLEL
126 # include <em_data_calls.inc>
127 #endif
128
129
130 SELECT CASE ( model_data_order )
131 CASE ( DATA_ORDER_ZXY )
132 kds = grid%sd31 ; kde = grid%ed31 ;
133 ids = grid%sd32 ; ide = grid%ed32 ;
134 jds = grid%sd33 ; jde = grid%ed33 ;
135
136 kms = grid%sm31 ; kme = grid%em31 ;
137 ims = grid%sm32 ; ime = grid%em32 ;
138 jms = grid%sm33 ; jme = grid%em33 ;
139
140 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
141 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
142 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
143 CASE ( DATA_ORDER_XYZ )
144 ids = grid%sd31 ; ide = grid%ed31 ;
145 jds = grid%sd32 ; jde = grid%ed32 ;
146 kds = grid%sd33 ; kde = grid%ed33 ;
147
148 ims = grid%sm31 ; ime = grid%em31 ;
149 jms = grid%sm32 ; jme = grid%em32 ;
150 kms = grid%sm33 ; kme = grid%em33 ;
151
152 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
153 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
154 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
155 CASE ( DATA_ORDER_XZY )
156 ids = grid%sd31 ; ide = grid%ed31 ;
157 kds = grid%sd32 ; kde = grid%ed32 ;
158 jds = grid%sd33 ; jde = grid%ed33 ;
159
160 ims = grid%sm31 ; ime = grid%em31 ;
161 kms = grid%sm32 ; kme = grid%em32 ;
162 jms = grid%sm33 ; jme = grid%em33 ;
163
164 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
165 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
166 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
167
168 END SELECT
169
170
171 hm = 100.
172 xa = 5.0
173
174 icm = ide/2
175
176
177 xa1 = 5000./500.
178 xal1 = 4000./500.
179 pii = 2.*asin(1.0)
180 hm1 = 250.
181 ! hm1 = 1000.
182
183
184 stretch_grid = .true.
185 ! z_scale = .50
186 z_scale = .40
187 pi = 2.*asin(1.0)
188 write(6,*) ' pi is ',pi
189 nxc = (ide-ids)/4
190 nyc = (jde-jds)/2
191
192 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
193
194 ! here we check to see if the boundary conditions are set properly
195
196 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
197
198 moisture_init = .true.
199
200 grid%itimestep=0
201
202 #ifdef DM_PARALLEL
203 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
204 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
205 #endif
206
207 CALL nl_set_mminlu(1,' ')
208 CALL nl_set_iswater(1,0)
209 CALL nl_set_cen_lat(1,40.)
210 CALL nl_set_cen_lon(1,-105.)
211 CALL nl_set_truelat1(1,0.)
212 CALL nl_set_truelat2(1,0.)
213 CALL nl_set_moad_cen_lat (1,0.)
214 CALL nl_set_stand_lon (1,0.)
215 CALL nl_set_map_proj(1,0)
216
217
218 ! here we initialize data we currently is not initialized
219 ! in the input data
220
221 DO j = jts, jte
222 DO i = its, ite
223 grid%msftx(i,j) = 1.
224 grid%msfty(i,j) = 1.
225 grid%msfux(i,j) = 1.
226 grid%msfuy(i,j) = 1.
227 grid%msfvx(i,j) = 1.
228 grid%msfvx_inv(i,j)= 1.
229 grid%msfvy(i,j) = 1.
230 grid%sina(i,j) = 0.
231 grid%cosa(i,j) = 1.
232 grid%e(i,j) = 0.
233 grid%f(i,j) = 0.
234
235 END DO
236 END DO
237
238 DO j = jts, jte
239 DO k = kts, kte
240 DO i = its, ite
241 grid%em_ww(i,k,j) = 0.
242 END DO
243 END DO
244 END DO
245
246 grid%step_number = 0
247
248 ! set up the grid
249
250 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
251 DO k=1, kde
252 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
253 (1.-exp(-1./z_scale))
254 ENDDO
255 ELSE
256 DO k=1, kde
257 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
258 ENDDO
259 ENDIF
260
261 DO k=1, kde-1
262 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
263 grid%em_rdnw(k) = 1./grid%em_dnw(k)
264 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
265 ENDDO
266 DO k=2, kde-1
267 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
268 grid%em_rdn(k) = 1./grid%em_dn(k)
269 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
270 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
271 ENDDO
272
273 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
274 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
275 grid%cf1 = grid%em_fnp(2) + cof1
276 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
277 grid%cf3 = cof2
278
279 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
280 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
281 grid%rdx = 1./config_flags%dx
282 grid%rdy = 1./config_flags%dy
283
284 ! get the sounding from the ascii sounding file, first get dry sounding and
285 ! calculate base state
286
287 write(6,*) ' getting dry sounding for base state '
288 dry_sounding = .true.
289 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
290 nl_max, nl_in, .true.)
291
292 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
293
294
295 ! find ptop for the desired ztop (ztop is input from the namelist),
296 ! and find surface pressure
297
298 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
299
300 DO j=jts,jte
301 DO i=its,ite ! flat surface
302 !! grid%ht(i,j) = 0.
303 grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
304 ! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) &
305 ! *( (cos(pii*float(i-icm)/xal1))**2 )
306 grid%em_phb(i,1,j) = g*grid%ht(i,j)
307 grid%em_php(i,1,j) = 0.
308 grid%em_ph0(i,1,j) = grid%em_phb(i,1,j)
309 ENDDO
310 ENDDO
311
312 DO J = jts, jte
313 DO I = its, ite
314
315 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
316 grid%em_mub(i,j) = p_surf-grid%p_top
317
318 ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
319 ! interp theta (from interp) and compute 1/rho from eqn. of state
320
321 DO K = 1, kte-1
322 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
323 grid%em_pb(i,k,j) = p_level
324 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
325 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
326 ENDDO
327
328 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
329 ! sounding, but this assures that the base state is in exact hydrostatic balance with
330 ! respect to the model eqns.
331
332 DO k = 2,kte
333 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
334 ENDDO
335
336 ENDDO
337 ENDDO
338
339 write(6,*) ' ptop is ',grid%p_top
340 write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
341
342 ! calculate full state for each column - this includes moisture.
343
344 write(6,*) ' getting moist sounding for full state '
345 dry_sounding = .false.
346 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
347 nl_max, nl_in, .false. )
348
349 DO J = jts, min(jde-1,jte)
350 DO I = its, min(ide-1,ite)
351
352 ! At this point grid%p_top is already set. find the DRY mass in the column
353 ! by interpolating the DRY pressure.
354
355 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
356
357 ! compute the perturbation mass and the full mass
358
359 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
360 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
361 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
362
363 ! given the dry pressure and coordinate system, interp the potential
364 ! temperature and qv
365
366 do k=1,kde-1
367
368 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
369
370 moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
371 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
372 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
373
374
375 enddo
376
377 ! integrate the hydrostatic equation (from the RHS of the bigstep
378 ! vertical momentum equation) down from the top to get grid%em_p.
379 ! first from the top of the model to the top pressure
380
381 k = kte-1 ! top level
382
383 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
384 qvf2 = 1./(1.+qvf1)
385 qvf1 = qvf1*qvf2
386
387 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
388 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
389 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
390 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
391 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
392 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
393
394 ! down the column
395
396 do k=kte-2,1,-1
397 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
398 qvf2 = 1./(1.+qvf1)
399 qvf1 = qvf1*qvf2
400 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
401 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
402 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
403 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
404 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
405 enddo
406
407 ! this is the hydrostatic equation used in the model after the
408 ! small timesteps. In the model, grid%em_al (inverse density)
409 ! is computed from the geopotential.
410
411
412 grid%em_ph_1(i,1,j) = 0.
413 DO k = 2,kte
414 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
415 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
416 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
417
418 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
419 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
420 ENDDO
421
422 if((i==2) .and. (j==2)) then
423 write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
424 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
425 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
426 endif
427
428 ENDDO
429 ENDDO
430
431 write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
432 write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
433 do k=1,kde-1
434 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
435 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
436 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
437 enddo
438
439 write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
440 do k=1,kde-1
441 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
442 grid%em_p(1,k,1), grid%em_al(1,k,1), &
443 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
444 enddo
445
446 ! interp v
447
448 DO J = jts, jte
449 DO I = its, min(ide-1,ite)
450
451 IF (j == jds) THEN
452 z_at_v = grid%em_phb(i,1,j)/g
453 ELSE IF (j == jde) THEN
454 z_at_v = grid%em_phb(i,1,j-1)/g
455 ELSE
456 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
457 END IF
458
459 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
460
461 DO K = 1, kte
462 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
463 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
464 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
465 ENDDO
466
467 ENDDO
468 ENDDO
469
470 ! interp u
471
472 DO J = jts, min(jde-1,jte)
473 DO I = its, ite
474
475 IF (i == ids) THEN
476 z_at_u = grid%em_phb(i,1,j)/g
477 ELSE IF (i == ide) THEN
478 z_at_u = grid%em_phb(i-1,1,j)/g
479 ELSE
480 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
481 END IF
482
483 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
484
485 DO K = 1, kte
486 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
487 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
488 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
489 ENDDO
490
491 ENDDO
492 ENDDO
493
494 ! set w
495
496 DO J = jts, min(jde-1,jte)
497 DO K = kts, kte
498 DO I = its, min(ide-1,ite)
499 grid%em_w_1(i,k,j) = 0.
500 grid%em_w_2(i,k,j) = 0.
501 ENDDO
502 ENDDO
503 ENDDO
504
505 ! set a few more things
506
507 DO J = jts, min(jde-1,jte)
508 DO K = kts, kte-1
509 DO I = its, min(ide-1,ite)
510 grid%h_diabatic(i,k,j) = 0.
511 ENDDO
512 ENDDO
513 ENDDO
514
515 DO k=1,kte-1
516 grid%em_t_base(k) = grid%em_t_1(1,k,1)
517 grid%qv_base(k) = moist(1,k,1,P_QV)
518 grid%u_base(k) = grid%em_u_1(1,k,1)
519 grid%v_base(k) = grid%em_v_1(1,k,1)
520 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
521 ENDDO
522
523 DO J = jts, min(jde-1,jte)
524 DO I = its, min(ide-1,ite)
525 thtmp = grid%em_t_2(i,1,j)+t0
526 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
527 temp(1) = thtmp * (ptmp/p1000mb)**rcp
528 thtmp = grid%em_t_2(i,2,j)+t0
529 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
530 temp(2) = thtmp * (ptmp/p1000mb)**rcp
531 thtmp = grid%em_t_2(i,3,j)+t0
532 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
533 temp(3) = thtmp * (ptmp/p1000mb)**rcp
534
535 grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
536 grid%tmn(I,J)=grid%tsk(I,J)-0.5
537 ENDDO
538 ENDDO
539
540 RETURN
541
542 END SUBROUTINE init_domain_rk
543
544 SUBROUTINE init_module_initialize
545 END SUBROUTINE init_module_initialize
546
547 !---------------------------------------------------------------------
548
549 ! test driver for get_sounding
550 !
551 ! implicit none
552 ! integer n
553 ! parameter(n = 1000)
554 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
555 ! logical dry
556 ! integer nl,k
557 !
558 ! dry = .false.
559 ! dry = .true.
560 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
561 ! write(6,*) ' input levels ',nl
562 ! write(6,*) ' sounding '
563 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
564 ! do k=1,nl
565 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
566 ! enddo
567 ! end
568 !
569 !---------------------------------------------------------------------------
570
571 subroutine get_sounding( zk, p, p_dry, theta, rho, &
572 u, v, qv, dry, nl_max, nl_in, base_state )
573 implicit none
574
575 integer nl_max, nl_in
576 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
577 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
578 logical dry
579 logical base_state
580
581 integer n, iz
582 parameter(n=1000)
583 logical debug
584 parameter( debug = .false.)
585
586 ! input sounding data
587
588 real p_surf, th_surf, qv_surf
589 real pi_surf, pi(n)
590 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
591
592 ! diagnostics
593
594 real rho_surf, p_input(n), rho_input(n)
595 real pm_input(n) ! this are for full moist sounding
596
597 ! local data
598
599 real p1000mb,cv,cp,r,cvpm,g
600 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
601 integer k, it, nl
602 real qvf, qvf1, dz
603
604 ! first, read the sounding
605
606 call read_sounding( p_surf, th_surf, qv_surf, &
607 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
608
609 ! iz = 1
610 ! do k=2,nl
611 ! if(h_input(k) .lt. 12000.) iz = k
612 ! enddo
613 ! write(6,*) " tropopause ",iz,h_input(iz)
614 ! if(dry) then
615 ! write(6,*) ' nl is ',nl
616 ! do k=1,nl
617 ! th_input(k) = th_input(k)+10.+10*float(k)/nl
618 ! enddo
619 ! write(6,*) ' finished adjusting theta '
620 ! endif
621
622 ! do k=1,nl
623 ! u_input(k) = 2*u_input(k)
624 ! enddo
625 !
626 ! end if
627
628 if(dry) then
629 do k=1,nl
630 qv_input(k) = 0.
631 enddo
632 endif
633
634 if(debug) write(6,*) ' number of input levels = ',nl
635
636 nl_in = nl
637 if(nl_in .gt. nl_max ) then
638 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
639 call wrf_error_fatal ( ' too many levels for input arrays ' )
640 end if
641
642 ! compute diagnostics,
643 ! first, convert qv(g/kg) to qv(g/g)
644
645 do k=1,nl
646 qv_input(k) = 0.001*qv_input(k)
647 enddo
648
649 p_surf = 100.*p_surf ! convert to pascals
650 qvf = 1. + rvovrd*qv_input(1)
651 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
652 pi_surf = (p_surf/p1000mb)**(r/cp)
653
654 if(debug) then
655 write(6,*) ' surface density is ',rho_surf
656 write(6,*) ' surface pi is ',pi_surf
657 end if
658
659
660 ! integrate moist sounding hydrostatically, starting from the
661 ! specified surface pressure
662 ! -> first, integrate from surface to lowest level
663
664 qvf = 1. + rvovrd*qv_input(1)
665 qvf1 = 1. + qv_input(1)
666 rho_input(1) = rho_surf
667 dz = h_input(1)
668 do it=1,10
669 pm_input(1) = p_surf &
670 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
671 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
672 enddo
673
674 ! integrate up the column
675
676 do k=2,nl
677 rho_input(k) = rho_input(k-1)
678 dz = h_input(k)-h_input(k-1)
679 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
680 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
681
682 do it=1,20
683 pm_input(k) = pm_input(k-1) &
684 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
685 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
686 enddo
687 enddo
688
689 ! we have the moist sounding
690
691 ! next, compute the dry sounding using p at the highest level from the
692 ! moist sounding and integrating down.
693
694 p_input(nl) = pm_input(nl)
695
696 do k=nl-1,1,-1
697 dz = h_input(k+1)-h_input(k)
698 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
699 enddo
700
701 ! write(6,*) ' zeroing u input '
702
703 do k=1,nl
704
705 zk(k) = h_input(k)
706 p(k) = pm_input(k)
707 p_dry(k) = p_input(k)
708 theta(k) = th_input(k)
709 rho(k) = rho_input(k)
710 u(k) = u_input(k)
711 ! u(k) = 0.
712 v(k) = v_input(k)
713 qv(k) = qv_input(k)
714
715 enddo
716
717 if(debug) then
718 write(6,*) ' sounding '
719 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
720 do k=1,nl
721 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
722 enddo
723
724 end if
725
726 end subroutine get_sounding
727
728 !-------------------------------------------------------
729
730 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
731 implicit none
732 integer n,nl
733 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
734 logical end_of_file
735 logical debug
736
737 integer k
738
739 open(unit=10,file='input_sounding',form='formatted',status='old')
740 rewind(10)
741 read(10,*) ps, ts, qvs
742 if(debug) then
743 write(6,*) ' input sounding surface parameters '
744 write(6,*) ' surface pressure (mb) ',ps
745 write(6,*) ' surface pot. temp (K) ',ts
746 write(6,*) ' surface mixing ratio (g/kg) ',qvs
747 end if
748
749 end_of_file = .false.
750 k = 0
751
752 do while (.not. end_of_file)
753
754 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
755 k = k+1
756 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
757 go to 110
758 100 end_of_file = .true.
759 110 continue
760 enddo
761
762 nl = k
763
764 close(unit=10,status = 'keep')
765
766 end subroutine read_sounding
767
768 END MODULE module_initialize_ideal