module_initialize_quarter_ss.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3 
4 !  This MODULE holds the routines which are used to perform various initializations
5 !  for the individual domains.  
6 
7 !  This MODULE CONTAINS the following routines:
8 
9 !  initialize_field_test - 1. Set different fields to different constant
10 !                             values.  This is only a test.  If the correct
11 !                             domain is not found (based upon the "id")
12 !                             then a fatal error is issued.               
13 
14 !-----------------------------------------------------------------------
15 
16 MODULE module_initialize_ideal
17 
18    USE module_domain
19    USE module_io_domain
20    USE module_state_description
21    USE module_model_constants
22    USE module_bc
23    USE module_timing
24    USE module_configure
25    USE module_init_utilities
26 #ifdef DM_PARALLEL
27    USE module_dm
28 #endif
29 
30 
31 CONTAINS
32 
33 
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the 
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
42 
43    SUBROUTINE init_domain ( grid )
44 
45    IMPLICIT NONE
46 
47    !  Input data.
48    TYPE (domain), POINTER :: grid 
49    !  Local data.
50    INTEGER                :: dyn_opt 
51    INTEGER :: idum1, idum2
52 
53    CALL nl_get_dyn_opt( 1, dyn_opt )
54    
55    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56 
57    IF (      dyn_opt .eq. 1 &
58         .or. dyn_opt .eq. 2 &
59         .or. dyn_opt .eq. 3 &
60                                        ) THEN
61      CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65                         )
66 
67    ELSE
68      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69      CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70    ENDIF
71 
72    END SUBROUTINE init_domain
73 
74 !-------------------------------------------------------------------
75 
76    SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81    IMPLICIT NONE
82 
83    !  Input data.
84    TYPE (domain), POINTER :: grid
85 
86 # include <em_dummy_new_decl.inc>
87 
88    TYPE (grid_config_rec_type)              :: config_flags
89 
90    !  Local data
91    INTEGER                             ::                       &
92                                   ids, ide, jds, jde, kds, kde, &
93                                   ims, ime, jms, jme, kms, kme, &
94                                   its, ite, jts, jte, kts, kte, &
95                                   i, j, k
96 
97    ! Local data
98 
99    INTEGER, PARAMETER :: nl_max = 1000
100    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101    INTEGER :: nl_in
102 
103 
104    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
107 !   REAL, EXTERNAL :: interp_0
108    REAL    :: hm
109    REAL    :: pi
110 
111 !  stuff from original initialization that has been dropped from the Registry 
112    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113    REAL    :: qvf1, qvf2, pd_surf
114    INTEGER :: it
115    real :: thtmp, ptmp, temp(3)
116 
117    LOGICAL :: moisture_init
118    LOGICAL :: stretch_grid, dry_sounding
119 
120   INTEGER :: xs , xe , ys , ye
121   REAL :: mtn_ht
122    LOGICAL, EXTERNAL :: wrf_dm_on_monitor
123 
124 #ifdef DM_PARALLEL
125 #    include <em_data_calls.inc>
126 #endif
127 
128 
129    SELECT CASE ( model_data_order )
130          CASE ( DATA_ORDER_ZXY )
131    kds = grid%sd31 ; kde = grid%ed31 ;
132    ids = grid%sd32 ; ide = grid%ed32 ;
133    jds = grid%sd33 ; jde = grid%ed33 ;
134 
135    kms = grid%sm31 ; kme = grid%em31 ;
136    ims = grid%sm32 ; ime = grid%em32 ;
137    jms = grid%sm33 ; jme = grid%em33 ;
138 
139    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
140    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
141    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
142          CASE ( DATA_ORDER_XYZ )
143    ids = grid%sd31 ; ide = grid%ed31 ;
144    jds = grid%sd32 ; jde = grid%ed32 ;
145    kds = grid%sd33 ; kde = grid%ed33 ;
146 
147    ims = grid%sm31 ; ime = grid%em31 ;
148    jms = grid%sm32 ; jme = grid%em32 ;
149    kms = grid%sm33 ; kme = grid%em33 ;
150 
151    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
152    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
153    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
154          CASE ( DATA_ORDER_XZY )
155    ids = grid%sd31 ; ide = grid%ed31 ;
156    kds = grid%sd32 ; kde = grid%ed32 ;
157    jds = grid%sd33 ; jde = grid%ed33 ;
158 
159    ims = grid%sm31 ; ime = grid%em31 ;
160    kms = grid%sm32 ; kme = grid%em32 ;
161    jms = grid%sm33 ; jme = grid%em33 ;
162 
163    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
164    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
165    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
166 
167    END SELECT
168 
169 
170    stretch_grid = .true.
171    delt = 3.
172 !   z_scale = .50
173    z_scale = .40
174    pi = 2.*asin(1.0)
175    write(6,*) ' pi is ',pi
176    nxc = (ide-ids)/2
177    nyc = (jde-jds)/2
178 
179    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
180 
181 ! here we check to see if the boundary conditions are set properly
182 
183    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
184 
185    moisture_init = .true.
186 
187     grid%itimestep=0
188 
189 #ifdef DM_PARALLEL
190    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
191    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
192 #endif
193 
194     CALL nl_set_mminlu(1, '    ')
195     CALL nl_set_iswater(1,0)
196     CALL nl_set_cen_lat(1,40.)
197     CALL nl_set_cen_lon(1,-105.)
198     CALL nl_set_truelat1(1,0.)
199     CALL nl_set_truelat2(1,0.)
200     CALL nl_set_moad_cen_lat (1,0.)
201     CALL nl_set_stand_lon (1,0.)
202     CALL nl_set_map_proj(1,0)
203 
204 
205 !  here we initialize data we currently is not initialized 
206 !  in the input data
207 
208     DO j = jts, jte
209       DO i = its, ite
210          grid%msftx(i,j)    = 1.
211          grid%msfty(i,j)    = 1.
212          grid%msfux(i,j)    = 1.
213          grid%msfuy(i,j)    = 1.
214          grid%msfvx(i,j)    = 1.
215          grid%msfvx_inv(i,j)= 1.
216          grid%msfvy(i,j)    = 1.
217          grid%sina(i,j)     = 0.
218          grid%cosa(i,j)     = 1.
219          grid%e(i,j)        = 0.
220          grid%f(i,j)        = 0.
221 
222       END DO
223    END DO
224 
225     DO j = jts, jte
226     DO k = kts, kte
227       DO i = its, ite
228          grid%em_ww(i,k,j)     = 0.
229       END DO
230    END DO
231    END DO
232 
233    grid%step_number = 0
234 
235 ! set up the grid
236 
237    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
238      DO k=1, kde
239       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
240                                 (1.-exp(-1./z_scale))
241      ENDDO
242    ELSE
243      DO k=1, kde
244       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
245      ENDDO
246    ENDIF
247 
248    DO k=1, kde-1
249     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
250     grid%em_rdnw(k) = 1./grid%em_dnw(k)
251     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
252    ENDDO
253    DO k=2, kde-1
254     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
255     grid%em_rdn(k) = 1./grid%em_dn(k)
256     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
257     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
258    ENDDO
259 
260    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
261    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
262    grid%cf1  = grid%em_fnp(2) + cof1
263    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
264    grid%cf3  = cof2       
265 
266    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
267    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
268    grid%rdx = 1./config_flags%dx
269    grid%rdy = 1./config_flags%dy
270 
271 !  get the sounding from the ascii sounding file, first get dry sounding and 
272 !  calculate base state
273 
274   dry_sounding = .true.
275   IF ( wrf_dm_on_monitor() ) THEN
276   write(6,*) ' getting dry sounding for base state '
277 
278   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
279   ENDIF
280   CALL wrf_dm_bcast_real( zk , nl_max )
281   CALL wrf_dm_bcast_real( p_in , nl_max )
282   CALL wrf_dm_bcast_real( pd_in , nl_max )
283   CALL wrf_dm_bcast_real( theta , nl_max )
284   CALL wrf_dm_bcast_real( rho , nl_max )
285   CALL wrf_dm_bcast_real( u , nl_max )
286   CALL wrf_dm_bcast_real( v , nl_max )
287   CALL wrf_dm_bcast_real( qv , nl_max )
288   CALL wrf_dm_bcast_integer ( nl_in , 1 ) 
289 
290   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
291 
292 !  find ptop for the desired ztop (ztop is input from the namelist),
293 !  and find surface pressure
294 
295   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
296 
297   DO j=jts,jte
298   DO i=its,ite
299     grid%ht(i,j) = 0.
300   ENDDO
301   ENDDO
302 
303   xs=ide/2 -3
304   xs=ids   -3
305   xe=xs + 6
306   ys=jde/2 -3
307   ye=ys + 6
308   mtn_ht = 500
309 #ifdef MTN
310   DO j=max(ys,jds),min(ye,jde-1)
311   DO i=max(xs,ids),min(xe,ide-1)
312      grid%ht(i,j) = mtn_ht * 0.25 * &
313                ( 1. + COS ( 2*pi/(xe-xs) * ( i-xs ) + pi ) ) * &
314                ( 1. + COS ( 2*pi/(ye-ys) * ( j-ys ) + pi ) )
315   ENDDO
316   ENDDO
317 #endif
318 #ifdef EW_RIDGE
319   DO j=max(ys,jds),min(ye,jde-1)
320   DO i=ids,ide
321      grid%ht(i,j) = mtn_ht * 0.50 * &
322                ( 1. + COS ( 2*pi/(ye-ys) * ( j-ys ) + pi ) )
323   ENDDO
324   ENDDO
325 #endif
326 #ifdef NS_RIDGE
327   DO j=jds,jde
328   DO i=max(xs,ids),min(xe,ide-1)
329      grid%ht(i,j) = mtn_ht * 0.50 * &
330                ( 1. + COS ( 2*pi/(xe-xs) * ( i-xs ) + pi ) )
331   ENDDO
332   ENDDO
333 #endif
334   DO j=jts,jte
335   DO i=its,ite
336     grid%em_phb(i,1,j) = g * grid%ht(i,j)
337     grid%em_ph0(i,1,j) = g * grid%ht(i,j)
338   ENDDO
339   ENDDO
340 
341   DO J = jts, jte
342   DO I = its, ite
343 
344     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
345     grid%em_mub(i,j) = p_surf-grid%p_top
346 
347 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
348 !  interp theta (from interp) and compute 1/rho from eqn. of state
349 
350     DO K = 1, kte-1
351       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
352       grid%em_pb(i,k,j) = p_level
353       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
354       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
355     ENDDO
356 
357 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
358 !  sounding, but this assures that the base state is in exact hydrostatic balance with
359 !  respect to the model eqns.
360 
361     DO k  = 2,kte
362       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
363     ENDDO
364 
365   ENDDO
366   ENDDO
367 
368   IF ( wrf_dm_on_monitor() ) THEN
369     write(6,*) ' ptop is ',grid%p_top
370     write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
371   ENDIF
372 
373 !  calculate full state for each column - this includes moisture.
374 
375   write(6,*) ' getting moist sounding for full state '
376   dry_sounding = .false.
377   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
378 
379   DO J = jts, min(jde-1,jte)
380   DO I = its, min(ide-1,ite)
381 
382 !  At this point grid%p_top is already set. find the DRY mass in the column 
383 !  by interpolating the DRY pressure.  
384 
385    pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
386 
387 !  compute the perturbation mass and the full mass
388 
389     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
390     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
391     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
392 
393 ! given the dry pressure and coordinate system, interp the potential
394 ! temperature and qv
395 
396     do k=1,kde-1
397 
398       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
399 
400       moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
401       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
402       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
403       
404 
405     enddo
406 
407 !  integrate the hydrostatic equation (from the RHS of the bigstep
408 !  vertical momentum equation) down from the top to get grid%em_p.
409 !  first from the top of the model to the top pressure
410 
411     k = kte-1  ! top level
412 
413     qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
414     qvf2 = 1./(1.+qvf1)
415     qvf1 = qvf1*qvf2
416 
417 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
418     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
419     qvf = 1. + rvovrd*moist(i,k,j,P_QV)
420     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
421                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
422     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
423 
424 !  down the column
425 
426     do k=kte-2,1,-1
427       qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
428       qvf2 = 1./(1.+qvf1)
429       qvf1 = qvf1*qvf2
430       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
431       qvf = 1. + rvovrd*moist(i,k,j,P_QV)
432       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
433                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
434       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
435     enddo
436 
437 !  this is the hydrostatic equation used in the model after the
438 !  small timesteps.  In the model, grid%em_al (inverse density)
439 !  is computed from the geopotential.
440 
441 
442     grid%em_ph_1(i,1,j) = 0.
443     DO k  = 2,kte
444       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
445                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
446                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
447                                                    
448       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
449       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
450     ENDDO
451 
452     IF ( wrf_dm_on_monitor() ) THEN
453     if((i==2) .and. (j==2)) then
454      write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
455                               grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
456                               grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
457     endif
458     ENDIF
459 
460   ENDDO
461   ENDDO
462 
463 !#if 0
464 
465 !  thermal perturbation to kick off convection
466 
467   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
468   write(6,*) ' delt for perturbation ',delt
469 
470   DO J = jts, min(jde-1,jte)
471     yrad = config_flags%dy*float(j-nyc)/10000.
472 !   yrad = 0.
473     DO I = its, min(ide-1,ite)
474       xrad = config_flags%dx*float(i-nxc)/10000.
475 !     xrad = 0.
476       DO K = 1, kte-1
477 
478 !  put in preturbation theta (bubble) and recalc density.  note,
479 !  the mass in the column is not changing, so when theta changes,
480 !  we recompute density and geopotential
481 
482         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
483                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
484         zrad = (zrad-1500.)/1500.
485         RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
486         IF(RAD <= 1.) THEN
487            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
488            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
489            qvf = 1. + rvovrd*moist(i,k,j,P_QV)
490            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
491                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
492            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
493         ENDIF
494       ENDDO
495 
496 !  rebalance hydrostatically
497 
498       DO k  = 2,kte
499         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
500                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
501                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
502                                                    
503         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
504         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
505       ENDDO
506 
507     ENDDO
508   ENDDO
509 
510 !#endif
511 
512    IF ( wrf_dm_on_monitor() ) THEN
513    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
514    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
515    do k=1,kde-1
516      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
517                                       grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
518                                       grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
519    enddo
520 
521    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
522    do k=1,kde-1
523      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
524                                       grid%em_p(1,k,1), grid%em_al(1,k,1), &
525                                       grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
526    enddo
527    ENDIF
528 
529 ! interp v
530 
531   DO J = jts, jte
532   DO I = its, min(ide-1,ite)
533 
534     IF (j == jds) THEN
535       z_at_v = grid%em_phb(i,1,j)/g
536     ELSE IF (j == jde) THEN
537       z_at_v = grid%em_phb(i,1,j-1)/g
538     ELSE
539       z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
540     END IF
541     p_surf = interp_0( p_in, zk, z_at_v, nl_in )
542 
543     DO K = 1, kte-1
544       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
545       grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
546       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
547     ENDDO
548 
549   ENDDO
550   ENDDO
551 
552 ! interp u
553 
554   DO J = jts, min(jde-1,jte)
555   DO I = its, ite
556 
557     IF (i == ids) THEN
558       z_at_u = grid%em_phb(i,1,j)/g
559     ELSE IF (i == ide) THEN
560       z_at_u = grid%em_phb(i-1,1,j)/g
561     ELSE
562       z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
563     END IF
564 
565     p_surf = interp_0( p_in, zk, z_at_u, nl_in )
566 
567     DO K = 1, kte-1
568       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
569       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
570       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
571     ENDDO
572 
573   ENDDO
574   ENDDO
575 
576 !  set w
577 
578   DO J = jts, min(jde-1,jte)
579   DO K = kts, kte
580   DO I = its, min(ide-1,ite)
581     grid%em_w_1(i,k,j) = 0.
582     grid%em_w_2(i,k,j) = 0.
583   ENDDO
584   ENDDO
585   ENDDO
586 
587 !  set a few more things
588 
589   DO J = jts, min(jde-1,jte)
590   DO K = kts, kte-1
591   DO I = its, min(ide-1,ite)
592     grid%h_diabatic(i,k,j) = 0.
593   ENDDO
594   ENDDO
595   ENDDO
596 
597   IF ( wrf_dm_on_monitor() ) THEN
598   DO k=1,kte-1
599     grid%em_t_base(k) = grid%em_t_1(1,k,1)
600     grid%qv_base(k) = moist(1,k,1,P_QV)
601     grid%u_base(k) = grid%em_u_1(1,k,1)
602     grid%v_base(k) = grid%em_v_1(1,k,1)
603     grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
604   ENDDO
605   ENDIF
606   CALL wrf_dm_bcast_real( grid%em_t_base , kte )
607   CALL wrf_dm_bcast_real( grid%qv_base , kte )
608   CALL wrf_dm_bcast_real( grid%u_base , kte )
609   CALL wrf_dm_bcast_real( grid%v_base , kte )
610   CALL wrf_dm_bcast_real( grid%z_base , kte )
611 
612   DO J = jts, min(jde-1,jte)
613   DO I = its, min(ide-1,ite)
614      thtmp   = grid%em_t_2(i,1,j)+t0
615      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
616      temp(1) = thtmp * (ptmp/p1000mb)**rcp
617      thtmp   = grid%em_t_2(i,2,j)+t0
618      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
619      temp(2) = thtmp * (ptmp/p1000mb)**rcp
620      thtmp   = grid%em_t_2(i,3,j)+t0
621      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
622      temp(3) = thtmp * (ptmp/p1000mb)**rcp
623 
624      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
625      grid%tmn(I,J)=grid%tsk(I,J)-0.5
626   ENDDO
627   ENDDO
628 
629  END SUBROUTINE init_domain_rk
630 
631    SUBROUTINE init_module_initialize
632    END SUBROUTINE init_module_initialize
633 
634 !---------------------------------------------------------------------
635 
636 !  test driver for get_sounding
637 !
638 !      implicit none
639 !      integer n
640 !      parameter(n = 1000)
641 !      real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
642 !      logical dry
643 !      integer nl,k
644 !
645 !      dry = .false.
646 !      dry = .true.
647 !      call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
648 !      write(6,*) ' input levels ',nl
649 !      write(6,*) ' sounding '
650 !      write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
651 !      do k=1,nl
652 !        write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
653 !      enddo
654 !      end
655 !
656 !---------------------------------------------------------------------------
657 
658       subroutine get_sounding( zk, p, p_dry, theta, rho, &
659                                u, v, qv, dry, nl_max, nl_in )
660       implicit none
661 
662       integer nl_max, nl_in
663       real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
664            u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
665       logical dry
666 
667       integer n
668       parameter(n=1000)
669       logical debug
670       parameter( debug = .true.)
671 
672 ! input sounding data
673 
674       real p_surf, th_surf, qv_surf
675       real pi_surf, pi(n)
676       real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
677 
678 ! diagnostics
679 
680       real rho_surf, p_input(n), rho_input(n)
681       real pm_input(n)  !  this are for full moist sounding
682 
683 ! local data
684 
685       real p1000mb,cv,cp,r,cvpm,g
686       parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
687       integer k, it, nl
688       real qvf, qvf1, dz
689 
690 !  first, read the sounding
691 
692       call read_sounding( p_surf, th_surf, qv_surf, &
693                           h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
694 
695       if(dry) then
696        do k=1,nl
697          qv_input(k) = 0.
698        enddo
699       endif
700 
701       if(debug) write(6,*) ' number of input levels = ',nl
702 
703         nl_in = nl
704         if(nl_in .gt. nl_max ) then
705           write(6,*) ' too many levels for input arrays ',nl_in,nl_max
706           call wrf_error_fatal ( ' too many levels for input arrays ' )
707         end if
708 
709 !  compute diagnostics,
710 !  first, convert qv(g/kg) to qv(g/g)
711 
712       do k=1,nl
713         qv_input(k) = 0.001*qv_input(k)
714       enddo
715 
716       p_surf = 100.*p_surf  ! convert to pascals
717       qvf = 1. + rvovrd*qv_input(1) 
718       rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
719       pi_surf = (p_surf/p1000mb)**(r/cp)
720 
721       if(debug) then
722         write(6,*) ' surface density is ',rho_surf
723         write(6,*) ' surface pi is      ',pi_surf
724       end if
725 
726 
727 !  integrate moist sounding hydrostatically, starting from the
728 !  specified surface pressure
729 !  -> first, integrate from surface to lowest level
730 
731           qvf = 1. + rvovrd*qv_input(1) 
732           qvf1 = 1. + qv_input(1)
733           rho_input(1) = rho_surf
734           dz = h_input(1)
735           do it=1,10
736             pm_input(1) = p_surf &
737                     - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
738             rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
739           enddo
740 
741 ! integrate up the column
742 
743           do k=2,nl
744             rho_input(k) = rho_input(k-1)
745             dz = h_input(k)-h_input(k-1)
746             qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
747             qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
748  
749             do it=1,10
750               pm_input(k) = pm_input(k-1) &
751                       - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
752               rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
753             enddo
754           enddo
755 
756 !  we have the moist sounding
757 
758 !  next, compute the dry sounding using p at the highest level from the
759 !  moist sounding and integrating down.
760 
761         p_input(nl) = pm_input(nl)
762 
763           do k=nl-1,1,-1
764             dz = h_input(k+1)-h_input(k)
765             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
766           enddo
767 
768 
769         do k=1,nl
770 
771           zk(k) = h_input(k)
772           p(k) = pm_input(k)
773           p_dry(k) = p_input(k)
774           theta(k) = th_input(k)
775           rho(k) = rho_input(k)
776           u(k) = u_input(k)
777           v(k) = v_input(k)
778           qv(k) = qv_input(k)
779 
780         enddo
781 
782      if(debug) then
783       write(6,*) ' sounding '
784       write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
785       do k=1,nl
786         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
787       enddo
788 
789      end if
790 
791       end subroutine get_sounding
792 
793 !-------------------------------------------------------
794 
795       subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
796       implicit none
797       integer n,nl
798       real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
799       logical end_of_file
800       logical debug
801 
802       integer k
803 
804       open(unit=10,file='input_sounding',form='formatted',status='old')
805       rewind(10)
806       read(10,*) ps, ts, qvs
807       if(debug) then
808         write(6,*) ' input sounding surface parameters '
809         write(6,*) ' surface pressure (mb) ',ps
810         write(6,*) ' surface pot. temp (K) ',ts
811         write(6,*) ' surface mixing ratio (g/kg) ',qvs
812       end if
813 
814       end_of_file = .false.
815       k = 0
816 
817       do while (.not. end_of_file)
818 
819         read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
820         k = k+1
821         if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
822         go to 110
823  100    end_of_file = .true.
824  110    continue
825       enddo
826 
827       nl = k
828 
829       close(unit=10,status = 'keep')
830 
831       end subroutine read_sounding
832 
833 END MODULE module_initialize_ideal