module_initialize_squall2d_x.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3 
4 !  This MODULE holds the routines which are used to perform various initializations
5 !  for the individual domains.  
6 
7 !  This MODULE CONTAINS the following routines:
8 
9 !  initialize_field_test - 1. Set different fields to different constant
10 !                             values.  This is only a test.  If the correct
11 !                             domain is not found (based upon the "id")
12 !                             then a fatal error is issued.               
13 
14 !-----------------------------------------------------------------------
15 
16 MODULE module_initialize_ideal
17 
18    USE module_domain
19    USE module_io_domain
20    USE module_state_description
21    USE module_model_constants
22    USE module_bc
23    USE module_timing
24    USE module_configure
25    USE module_init_utilities
26 #ifdef DM_PARALLEL
27    USE module_dm
28 #endif
29 
30 
31 CONTAINS
32 
33 
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the 
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
42 ! NOTE:  Modified to remove all but arrays of rank 4 or more from the 
43 !        argument list.  Arrays with rank>3 are still problematic due to the 
44 !        above-noted fie- and pox-ities.  TBH 20061129.  
45 
46    SUBROUTINE init_domain ( grid )
47 
48    IMPLICIT NONE
49 
50    !  Input data.
51    TYPE (domain), POINTER :: grid 
52    !  Local data.
53    INTEGER                :: dyn_opt 
54    INTEGER :: idum1, idum2
55 
56    CALL nl_get_dyn_opt( 1, dyn_opt )
57    
58    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
59 
60    IF (      dyn_opt .eq. 1 &
61         .or. dyn_opt .eq. 2 &
62         .or. dyn_opt .eq. 3 &
63                                        ) THEN
64      CALL init_domain_rk( grid &
65 !
66 #include <em_actual_new_args.inc>
67 !
68                         )
69 
70    ELSE
71      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
72      CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
73    ENDIF
74 
75    END SUBROUTINE init_domain
76 
77 !-------------------------------------------------------------------
78 
79    SUBROUTINE init_domain_rk ( grid &
80 !
81 # include <em_dummy_new_args.inc>
82 !
83 )
84    IMPLICIT NONE
85 
86    !  Input data.
87    TYPE (domain), POINTER :: grid
88 
89 # include <em_dummy_new_decl.inc>
90 
91    TYPE (grid_config_rec_type)              :: config_flags
92 
93    !  Local data
94    INTEGER                             ::                       &
95                                   ids, ide, jds, jde, kds, kde, &
96                                   ims, ime, jms, jme, kms, kme, &
97                                   its, ite, jts, jte, kts, kte, &
98                                   i, j, k
99 
100    ! Local data
101 
102    INTEGER, PARAMETER :: nl_max = 1000
103    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
104    INTEGER :: nl_in
105 
106 
107    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
108    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
109    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
110 !   REAL, EXTERNAL :: interp_0
111    REAL    :: hm
112    REAL    :: pi
113 
114 !  stuff from original initialization that has been dropped from the Registry 
115    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
116    REAL    :: qvf1, qvf2, pd_surf
117    INTEGER :: it
118    real :: thtmp, ptmp, temp(3)
119 
120    LOGICAL :: moisture_init
121    LOGICAL :: stretch_grid, dry_sounding
122 
123    
124 #ifdef DM_PARALLEL
125 #    include <em_data_calls.inc>
126 #endif
127 
128 
129    SELECT CASE ( model_data_order )
130          CASE ( DATA_ORDER_ZXY )
131    kds = grid%sd31 ; kde = grid%ed31 ;
132    ids = grid%sd32 ; ide = grid%ed32 ;
133    jds = grid%sd33 ; jde = grid%ed33 ;
134 
135    kms = grid%sm31 ; kme = grid%em31 ;
136    ims = grid%sm32 ; ime = grid%em32 ;
137    jms = grid%sm33 ; jme = grid%em33 ;
138 
139    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
140    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
141    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
142          CASE ( DATA_ORDER_XYZ )
143    ids = grid%sd31 ; ide = grid%ed31 ;
144    jds = grid%sd32 ; jde = grid%ed32 ;
145    kds = grid%sd33 ; kde = grid%ed33 ;
146 
147    ims = grid%sm31 ; ime = grid%em31 ;
148    jms = grid%sm32 ; jme = grid%em32 ;
149    kms = grid%sm33 ; kme = grid%em33 ;
150 
151    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
152    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
153    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
154          CASE ( DATA_ORDER_XZY )
155    ids = grid%sd31 ; ide = grid%ed31 ;
156    kds = grid%sd32 ; kde = grid%ed32 ;
157    jds = grid%sd33 ; jde = grid%ed33 ;
158 
159    ims = grid%sm31 ; ime = grid%em31 ;
160    kms = grid%sm32 ; kme = grid%em32 ;
161    jms = grid%sm33 ; jme = grid%em33 ;
162 
163    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
164    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
165    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
166 
167    END SELECT
168 
169 
170    stretch_grid = .true.
171    delt = 3.
172 !   z_scale = .50
173    z_scale = .40
174    pi = 2.*asin(1.0)
175    write(6,*) ' pi is ',pi
176    nxc = (ide-ids)/2
177    nyc = jde/2
178 
179    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
180 
181 ! here we check to see if the boundary conditions are set properly
182 
183    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
184 
185    moisture_init = .true.
186 
187     grid%itimestep=0
188 
189 #ifdef DM_PARALLEL
190    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
191    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
192 #endif
193 
194     CALL nl_set_mminlu(1, '    ')
195     CALL nl_set_iswater(1,0)
196     CALL nl_set_cen_lat(1,40.)
197     CALL nl_set_cen_lon(1,-105.)
198     CALL nl_set_truelat1(1,0.)
199     CALL nl_set_truelat2(1,0.)
200     CALL nl_set_moad_cen_lat (1,0.)
201     CALL nl_set_stand_lon (1,0.)
202     CALL nl_set_map_proj(1,0)
203 
204 
205 !  here we initialize data we currently is not initialized 
206 !  in the input data
207 
208     DO j = jts, jte
209       DO i = its, ite
210          grid%msftx(i,j)    = 1.
211          grid%msfty(i,j)    = 1.
212          grid%msfux(i,j)    = 1.
213          grid%msfuy(i,j)    = 1.
214          grid%msfvx(i,j)    = 1.
215          grid%msfvx_inv(i,j)= 1.
216          grid%msfvy(i,j)    = 1.
217          grid%sina(i,j)     = 0.
218          grid%cosa(i,j)     = 1.
219          grid%e(i,j)        = 0.
220          grid%f(i,j)        = 0.
221 
222       END DO
223    END DO
224 
225     DO j = jts, jte
226     DO k = kts, kte
227       DO i = its, ite
228          grid%em_ww(i,k,j)     = 0.
229       END DO
230    END DO
231    END DO
232 
233    grid%step_number = 0
234 
235 ! set up the grid
236 
237    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
238      DO k=1, kde
239       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
240                                 (1.-exp(-1./z_scale))
241      ENDDO
242    ELSE
243      DO k=1, kde
244       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
245      ENDDO
246    ENDIF
247 
248    DO k=1, kde-1
249     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
250     grid%em_rdnw(k) = 1./grid%em_dnw(k)
251     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
252    ENDDO
253    DO k=2, kde-1
254     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
255     grid%em_rdn(k) = 1./grid%em_dn(k)
256     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
257     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
258    ENDDO
259 
260    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
261    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
262    grid%cf1  = grid%em_fnp(2) + cof1
263    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
264    grid%cf3  = cof2       
265 
266    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
267    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
268    grid%rdx = 1./config_flags%dx
269    grid%rdy = 1./config_flags%dy
270 
271 !  get the sounding from the ascii sounding file, first get dry sounding and 
272 !  calculate base state
273 
274   write(6,*) ' getting dry sounding for base state '
275   dry_sounding = .true.
276   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
277 
278   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
279 
280 !  find ptop for the desired ztop (ztop is input from the namelist),
281 !  and find surface pressure
282 
283   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
284 
285   DO j=jts,jte
286   DO i=its,ite  ! flat surface
287     grid%em_phb(i,1,j) = 0.
288     grid%em_php(i,1,j) = 0.
289     grid%em_ph0(i,1,j) = 0.
290     grid%ht(i,j) = 0.
291   ENDDO
292   ENDDO
293 
294   DO J = jts, jte
295   DO I = its, ite
296 
297     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
298     grid%em_mub(i,j) = p_surf-grid%p_top
299 
300 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
301 !  interp theta (from interp) and compute 1/rho from eqn. of state
302 
303     DO K = 1, kte-1
304       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
305       grid%em_pb(i,k,j) = p_level
306       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
307       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
308     ENDDO
309 
310 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
311 !  sounding, but this assures that the base state is in exact hydrostatic balance with
312 !  respect to the model eqns.
313 
314     DO k  = 2,kte
315       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
316     ENDDO
317 
318   ENDDO
319   ENDDO
320 
321   write(6,*) ' ptop is ',grid%p_top
322   write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
323 
324 !  calculate full state for each column - this includes moisture.
325 
326   write(6,*) ' getting moist sounding for full state '
327   dry_sounding = .false.
328   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
329 
330   DO J = jts, min(jde-1,jte)
331   DO I = its, min(ide-1,ite)
332 
333 !  At this point grid%p_top is already set. find the DRY mass in the column 
334 !  by interpolating the DRY pressure.  
335 
336    pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
337 
338 !  compute the perturbation mass and the full mass
339 
340     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
341     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
342     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
343 
344 ! given the dry pressure and coordinate system, interp the potential
345 ! temperature and qv
346 
347     do k=1,kde-1
348 
349       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
350 
351       moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
352       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
353       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
354       
355 
356     enddo
357 
358 !  integrate the hydrostatic equation (from the RHS of the bigstep
359 !  vertical momentum equation) down from the top to get grid%em_p.
360 !  first from the top of the model to the top pressure
361 
362     k = kte-1  ! top level
363 
364     qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
365     qvf2 = 1./(1.+qvf1)
366     qvf1 = qvf1*qvf2
367 
368 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
369     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
370     qvf = 1. + rvovrd*moist(i,k,j,P_QV)
371     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
372                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
373     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
374 
375 !  down the column
376 
377     do k=kte-2,1,-1
378       qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
379       qvf2 = 1./(1.+qvf1)
380       qvf1 = qvf1*qvf2
381       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
382       qvf = 1. + rvovrd*moist(i,k,j,P_QV)
383       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
384                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
385       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
386     enddo
387 
388 !  this is the hydrostatic equation used in the model after the
389 !  small timesteps.  In the model, grid%em_al (inverse density)
390 !  is computed from the geopotential.
391 
392 
393     grid%em_ph_1(i,1,j) = 0.
394     DO k  = 2,kte
395       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
396                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
397                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
398                                                    
399       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
400       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
401     ENDDO
402 
403     if((i==2) .and. (j==2)) then
404      write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
405                               grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
406                               grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
407     endif
408 
409   ENDDO
410   ENDDO
411 
412 !#if 0
413 
414 !  thermal perturbation to kick off convection
415 
416   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
417   write(6,*) ' delt for perturbation ',delt
418 
419   DO J = jts, min(jde-1,jte)
420 !    yrad = config_flags%dy*float(j-nyc)/4000.
421      yrad = 0.
422     DO I = its, min(ide-1,ite)
423       xrad = config_flags%dx*float(i-nxc)/4000.
424 !     xrad = 0.
425       DO K = 1, kte-1
426 
427 !  put in preturbation theta (bubble) and recalc density.  note,
428 !  the mass in the column is not changing, so when theta changes,
429 !  we recompute density and geopotential
430 
431         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
432                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
433         zrad = (zrad-1500.)/1500.
434         RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
435         IF(RAD <= 1.) THEN
436            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
437            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
438            qvf = 1. + rvovrd*moist(i,k,j,P_QV)
439            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
440                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
441            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
442         ENDIF
443       ENDDO
444 
445 !  rebalance hydrostatically
446 
447       DO k  = 2,kte
448         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
449                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
450                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
451                                                    
452         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
453         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
454       ENDDO
455 
456     ENDDO
457   ENDDO
458 
459 !#endif
460 
461    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
462    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
463    do k=1,kde-1
464      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
465                                       grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
466                                       grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
467    enddo
468 
469    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
470    do k=1,kde-1
471      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
472                                       grid%em_p(1,k,1), grid%em_al(1,k,1), &
473                                       grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
474    enddo
475 
476 ! interp v
477 
478   DO J = jts, jte
479   DO I = its, min(ide-1,ite)
480 
481     IF (j == jds) THEN
482       z_at_v = grid%em_phb(i,1,j)/g
483     ELSE IF (j == jde) THEN
484       z_at_v = grid%em_phb(i,1,j-1)/g
485     ELSE
486       z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
487     END IF
488 
489     p_surf = interp_0( p_in, zk, z_at_v, nl_in )
490 
491     DO K = 1, kte
492       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
493       grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
494       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
495     ENDDO
496 
497   ENDDO
498   ENDDO
499 
500 ! interp u
501 
502   DO J = jts, min(jde-1,jte)
503   DO I = its, ite
504 
505     IF (i == ids) THEN
506       z_at_u = grid%em_phb(i,1,j)/g
507     ELSE IF (i == ide) THEN
508       z_at_u = grid%em_phb(i-1,1,j)/g
509     ELSE
510       z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
511     END IF
512 
513     p_surf = interp_0( p_in, zk, z_at_u, nl_in )
514 
515     DO K = 1, kte
516       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
517       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
518       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
519     ENDDO
520 
521   ENDDO
522   ENDDO
523 
524 !  set w
525 
526   DO J = jts, min(jde-1,jte)
527   DO K = kts, kte
528   DO I = its, min(ide-1,ite)
529     grid%em_w_1(i,k,j) = 0.
530     grid%em_w_2(i,k,j) = 0.
531   ENDDO
532   ENDDO
533   ENDDO
534 
535 !  set a few more things
536 
537   DO J = jts, min(jde-1,jte)
538   DO K = kts, kte-1
539   DO I = its, min(ide-1,ite)
540     grid%h_diabatic(i,k,j) = 0.
541   ENDDO
542   ENDDO
543   ENDDO
544 
545   DO k=1,kte-1
546     grid%em_t_base(k) = grid%em_t_1(1,k,1)
547     grid%qv_base(k) = moist(1,k,1,P_QV)
548     grid%u_base(k) = grid%em_u_1(1,k,1)
549     grid%v_base(k) = grid%em_v_1(1,k,1)
550     grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
551   ENDDO
552 
553   DO J = jts, min(jde-1,jte)
554   DO I = its, min(ide-1,ite)
555      thtmp   = grid%em_t_2(i,1,j)+t0
556      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
557      temp(1) = thtmp * (ptmp/p1000mb)**rcp
558      thtmp   = grid%em_t_2(i,2,j)+t0
559      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
560      temp(2) = thtmp * (ptmp/p1000mb)**rcp
561      thtmp   = grid%em_t_2(i,3,j)+t0
562      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
563      temp(3) = thtmp * (ptmp/p1000mb)**rcp
564 
565      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
566      grid%tmn(I,J)=grid%tsk(I,J)-0.5
567   ENDDO
568   ENDDO
569 
570   RETURN
571 
572  END SUBROUTINE init_domain_rk
573 
574    SUBROUTINE init_module_initialize
575    END SUBROUTINE init_module_initialize
576 
577 !---------------------------------------------------------------------
578 
579 !  test driver for get_sounding
580 !
581 !      implicit none
582 !      integer n
583 !      parameter(n = 1000)
584 !      real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
585 !      logical dry
586 !      integer nl,k
587 !
588 !      dry = .false.
589 !      dry = .true.
590 !      call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
591 !      write(6,*) ' input levels ',nl
592 !      write(6,*) ' sounding '
593 !      write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
594 !      do k=1,nl
595 !        write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
596 !      enddo
597 !      end
598 !
599 !---------------------------------------------------------------------------
600 
601       subroutine get_sounding( zk, p, p_dry, theta, rho, &
602                                u, v, qv, dry, nl_max, nl_in )
603       implicit none
604 
605       integer nl_max, nl_in
606       real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
607            u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
608       logical dry
609 
610       integer n
611       parameter(n=1000)
612       logical debug
613       parameter( debug = .true.)
614 
615 ! input sounding data
616 
617       real p_surf, th_surf, qv_surf
618       real pi_surf, pi(n)
619       real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
620 
621 ! diagnostics
622 
623       real rho_surf, p_input(n), rho_input(n)
624       real pm_input(n)  !  this are for full moist sounding
625 
626 ! local data
627 
628       real p1000mb,cv,cp,r,cvpm,g
629       parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
630       integer k, it, nl
631       real qvf, qvf1, dz
632 
633 !  first, read the sounding
634 
635       call read_sounding( p_surf, th_surf, qv_surf, &
636                           h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
637 
638       if(dry) then
639        do k=1,nl
640          qv_input(k) = 0.
641        enddo
642       endif
643 
644       if(debug) write(6,*) ' number of input levels = ',nl
645 
646         nl_in = nl
647         if(nl_in .gt. nl_max ) then
648           write(6,*) ' too many levels for input arrays ',nl_in,nl_max
649           call wrf_error_fatal ( ' too many levels for input arrays ' )
650         end if
651 
652 !  compute diagnostics,
653 !  first, convert qv(g/kg) to qv(g/g)
654 
655       do k=1,nl
656         qv_input(k) = 0.001*qv_input(k)
657       enddo
658 
659       p_surf = 100.*p_surf  ! convert to pascals
660       qvf = 1. + rvovrd*qv_input(1) 
661       rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
662       pi_surf = (p_surf/p1000mb)**(r/cp)
663 
664       if(debug) then
665         write(6,*) ' surface density is ',rho_surf
666         write(6,*) ' surface pi is      ',pi_surf
667       end if
668 
669 
670 !  integrate moist sounding hydrostatically, starting from the
671 !  specified surface pressure
672 !  -> first, integrate from surface to lowest level
673 
674           qvf = 1. + rvovrd*qv_input(1) 
675           qvf1 = 1. + qv_input(1)
676           rho_input(1) = rho_surf
677           dz = h_input(1)
678           do it=1,10
679             pm_input(1) = p_surf &
680                     - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
681             rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
682           enddo
683 
684 ! integrate up the column
685 
686           do k=2,nl
687             rho_input(k) = rho_input(k-1)
688             dz = h_input(k)-h_input(k-1)
689             qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
690             qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
691  
692             do it=1,10
693               pm_input(k) = pm_input(k-1) &
694                       - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
695               rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
696             enddo
697           enddo
698 
699 !  we have the moist sounding
700 
701 !  next, compute the dry sounding using p at the highest level from the
702 !  moist sounding and integrating down.
703 
704         p_input(nl) = pm_input(nl)
705 
706           do k=nl-1,1,-1
707             dz = h_input(k+1)-h_input(k)
708             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
709           enddo
710 
711 
712         do k=1,nl
713 
714           zk(k) = h_input(k)
715           p(k) = pm_input(k)
716           p_dry(k) = p_input(k)
717           theta(k) = th_input(k)
718           rho(k) = rho_input(k)
719           u(k) = u_input(k)
720           v(k) = v_input(k)
721           qv(k) = qv_input(k)
722 
723         enddo
724 
725      if(debug) then
726       write(6,*) ' sounding '
727       write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
728       do k=1,nl
729         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
730       enddo
731 
732      end if
733 
734       end subroutine get_sounding
735 
736 !-------------------------------------------------------
737 
738       subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
739       implicit none
740       integer n,nl
741       real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
742       logical end_of_file
743       logical debug
744 
745       integer k
746 
747       open(unit=10,file='input_sounding',form='formatted',status='old')
748       rewind(10)
749       read(10,*) ps, ts, qvs
750       if(debug) then
751         write(6,*) ' input sounding surface parameters '
752         write(6,*) ' surface pressure (mb) ',ps
753         write(6,*) ' surface pot. temp (K) ',ts
754         write(6,*) ' surface mixing ratio (g/kg) ',qvs
755       end if
756 
757       end_of_file = .false.
758       k = 0
759 
760       do while (.not. end_of_file)
761 
762         read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
763         k = k+1
764         if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
765         go to 110
766  100    end_of_file = .true.
767  110    continue
768       enddo
769 
770       nl = k
771 
772       close(unit=10,status = 'keep')
773 
774       end subroutine read_sounding
775 
776 END MODULE module_initialize_ideal