module_initialize_squall2d_y.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3 
4 !  This MODULE holds the routines which are used to perform various initializations
5 !  for the individual domains.  
6 
7 !  This MODULE CONTAINS the following routines:
8 
9 !  initialize_field_test - 1. Set different fields to different constant
10 !                             values.  This is only a test.  If the correct
11 !                             domain is not found (based upon the "id")
12 !                             then a fatal error is issued.               
13 
14 !-----------------------------------------------------------------------
15 
16 MODULE module_initialize_ideal
17 
18    USE module_domain
19    USE module_io_domain
20    USE module_state_description
21    USE module_model_constants
22    USE module_bc
23    USE module_timing
24    USE module_configure
25    USE module_init_utilities
26 #ifdef DM_PARALLEL
27    USE module_dm
28 #endif
29 
30 
31 CONTAINS
32 
33 
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the 
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
42 
43    SUBROUTINE init_domain ( grid )
44 
45    IMPLICIT NONE
46 
47    !  Input data.
48    TYPE (domain), POINTER :: grid 
49    !  Local data.
50    INTEGER                :: dyn_opt 
51    INTEGER :: idum1, idum2
52 
53    CALL nl_get_dyn_opt( 1, dyn_opt )
54    
55    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56 
57    IF (      dyn_opt .eq. 1 &
58         .or. dyn_opt .eq. 2 &
59         .or. dyn_opt .eq. 3 &
60                                        ) THEN
61      CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65                         )
66 
67    ELSE
68      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69      CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70    ENDIF
71 
72    END SUBROUTINE init_domain
73 
74 !-------------------------------------------------------------------
75 
76    SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81    IMPLICIT NONE
82 
83    !  Input data.
84    TYPE (domain), POINTER :: grid
85 
86 # include <em_dummy_new_decl.inc>
87 
88    TYPE (grid_config_rec_type)              :: config_flags
89 
90    !  Local data
91    INTEGER                             ::                       &
92                                   ids, ide, jds, jde, kds, kde, &
93                                   ims, ime, jms, jme, kms, kme, &
94                                   its, ite, jts, jte, kts, kte, &
95                                   i, j, k
96 
97    ! Local data
98 
99    INTEGER, PARAMETER :: nl_max = 1000
100    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101    INTEGER :: nl_in
102 
103 
104    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
107 !   REAL, EXTERNAL :: interp_0
108    REAL    :: hm
109    REAL    :: pi
110 
111 !  stuff from original initialization that has been dropped from the Registry 
112    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113    REAL    :: qvf1, qvf2, pd_surf
114    INTEGER :: it
115    real :: thtmp, ptmp, temp(3)
116 
117    LOGICAL :: moisture_init
118    LOGICAL :: stretch_grid, dry_sounding
119 
120    
121 #ifdef DM_PARALLEL
122 #    include <em_data_calls.inc>
123 #endif
124 
125 
126    SELECT CASE ( model_data_order )
127          CASE ( DATA_ORDER_ZXY )
128    kds = grid%sd31 ; kde = grid%ed31 ;
129    ids = grid%sd32 ; ide = grid%ed32 ;
130    jds = grid%sd33 ; jde = grid%ed33 ;
131 
132    kms = grid%sm31 ; kme = grid%em31 ;
133    ims = grid%sm32 ; ime = grid%em32 ;
134    jms = grid%sm33 ; jme = grid%em33 ;
135 
136    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
137    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
138    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
139          CASE ( DATA_ORDER_XYZ )
140    ids = grid%sd31 ; ide = grid%ed31 ;
141    jds = grid%sd32 ; jde = grid%ed32 ;
142    kds = grid%sd33 ; kde = grid%ed33 ;
143 
144    ims = grid%sm31 ; ime = grid%em31 ;
145    jms = grid%sm32 ; jme = grid%em32 ;
146    kms = grid%sm33 ; kme = grid%em33 ;
147 
148    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
149    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
150    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
151          CASE ( DATA_ORDER_XZY )
152    ids = grid%sd31 ; ide = grid%ed31 ;
153    kds = grid%sd32 ; kde = grid%ed32 ;
154    jds = grid%sd33 ; jde = grid%ed33 ;
155 
156    ims = grid%sm31 ; ime = grid%em31 ;
157    kms = grid%sm32 ; kme = grid%em32 ;
158    jms = grid%sm33 ; jme = grid%em33 ;
159 
160    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
161    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
162    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
163 
164    END SELECT
165 
166 
167    stretch_grid = .true.
168    delt = 3.
169 !   z_scale = .50
170    z_scale = .40
171    pi = 2.*asin(1.0)
172    write(6,*) ' pi is ',pi
173    nxc = (ide-ids)/2
174    nyc = (jde-jds)/2
175 
176    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
177 
178 ! here we check to see if the boundary conditions are set properly
179 
180    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
181 
182    moisture_init = .true.
183 
184     grid%itimestep=0
185 
186 #ifdef DM_PARALLEL
187    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
188    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
189 #endif
190 
191     CALL nl_set_mminlu(1, '    ')
192     CALL nl_set_iswater(1,0)
193     CALL nl_set_cen_lat(1,40.)
194     CALL nl_set_cen_lon(1,-105.)
195     CALL nl_set_truelat1(1,0.)
196     CALL nl_set_truelat2(1,0.)
197     CALL nl_set_moad_cen_lat (1,0.)
198     CALL nl_set_stand_lon (1,0.)
199     CALL nl_set_map_proj(1,0)
200 
201 
202 !  here we initialize data we currently is not initialized 
203 !  in the input data
204 
205     DO j = jts, jte
206       DO i = its, ite
207          grid%msftx(i,j)    = 1.
208          grid%msfty(i,j)    = 1.
209          grid%msfux(i,j)    = 1.
210          grid%msfuy(i,j)    = 1.
211          grid%msfvx(i,j)    = 1.
212          grid%msfvx_inv(i,j)= 1.
213          grid%msfvy(i,j)    = 1.
214          grid%sina(i,j)     = 0.
215          grid%cosa(i,j)     = 1.
216          grid%e(i,j)        = 0.
217          grid%f(i,j)        = 0.
218 
219       END DO
220    END DO
221 
222     DO j = jts, jte
223     DO k = kts, kte
224       DO i = its, ite
225          grid%em_ww(i,k,j)     = 0.
226       END DO
227    END DO
228    END DO
229 
230    grid%step_number = 0
231 
232 ! set up the grid
233 
234    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
235      DO k=1, kde
236       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
237                                 (1.-exp(-1./z_scale))
238      ENDDO
239    ELSE
240      DO k=1, kde
241       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
242      ENDDO
243    ENDIF
244 
245    DO k=1, kde-1
246     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
247     grid%em_rdnw(k) = 1./grid%em_dnw(k)
248     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
249    ENDDO
250    DO k=2, kde-1
251     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
252     grid%em_rdn(k) = 1./grid%em_dn(k)
253     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
254     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
255    ENDDO
256 
257    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
258    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
259    grid%cf1  = grid%em_fnp(2) + cof1
260    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
261    grid%cf3  = cof2       
262 
263    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
264    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
265    grid%rdx = 1./config_flags%dx
266    grid%rdy = 1./config_flags%dy
267 
268 !  get the sounding from the ascii sounding file, first get dry sounding and 
269 !  calculate base state
270 
271   write(6,*) ' getting dry sounding for base state '
272   dry_sounding = .true.
273   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
274 
275   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
276 
277 !  find ptop for the desired ztop (ztop is input from the namelist),
278 !  and find surface pressure
279 
280   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
281 
282   DO j=jts,jte
283   DO i=its,ite  ! flat surface
284     grid%em_phb(i,1,j) = 0.
285     grid%em_php(i,1,j) = 0.
286     grid%em_ph0(i,1,j) = 0.
287     grid%ht(i,j) = 0.
288   ENDDO
289   ENDDO
290 
291   DO J = jts, jte
292   DO I = its, ite
293 
294     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
295     grid%em_mub(i,j) = p_surf-grid%p_top
296 
297 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
298 !  interp theta (from interp) and compute 1/rho from eqn. of state
299 
300     DO K = 1, kte-1
301       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
302       grid%em_pb(i,k,j) = p_level
303       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
304       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
305     ENDDO
306 
307 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
308 !  sounding, but this assures that the base state is in exact hydrostatic balance with
309 !  respect to the model eqns.
310 
311     DO k  = 2,kte
312       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
313     ENDDO
314 
315   ENDDO
316   ENDDO
317 
318   write(6,*) ' ptop is ',grid%p_top
319   write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
320 
321 !  calculate full state for each column - this includes moisture.
322 
323   write(6,*) ' getting moist sounding for full state '
324   dry_sounding = .false.
325   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
326 
327   DO J = jts, min(jde-1,jte)
328   DO I = its, min(ide-1,ite)
329 
330 !  At this point grid%p_top is already set. find the DRY mass in the column 
331 !  by interpolating the DRY pressure.  
332 
333    pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
334 
335 !  compute the perturbation mass and the full mass
336 
337     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
338     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
339     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
340 
341 ! given the dry pressure and coordinate system, interp the potential
342 ! temperature and qv
343 
344     do k=1,kde-1
345 
346       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
347 
348       moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
349       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
350       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
351       
352 
353     enddo
354 
355 !  integrate the hydrostatic equation (from the RHS of the bigstep
356 !  vertical momentum equation) down from the top to get grid%em_p.
357 !  first from the top of the model to the top pressure
358 
359     k = kte-1  ! top level
360 
361     qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
362     qvf2 = 1./(1.+qvf1)
363     qvf1 = qvf1*qvf2
364 
365 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
366     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
367     qvf = 1. + rvovrd*moist(i,k,j,P_QV)
368     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
369                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
370     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
371 
372 !  down the column
373 
374     do k=kte-2,1,-1
375       qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
376       qvf2 = 1./(1.+qvf1)
377       qvf1 = qvf1*qvf2
378       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
379       qvf = 1. + rvovrd*moist(i,k,j,P_QV)
380       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
381                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
382       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
383     enddo
384 
385 !  this is the hydrostatic equation used in the model after the
386 !  small timesteps.  In the model, grid%em_al (inverse density)
387 !  is computed from the geopotential.
388 
389 
390     grid%em_ph_1(i,1,j) = 0.
391     DO k  = 2,kte
392       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
393                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
394                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
395                                                    
396       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
397       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
398     ENDDO
399 
400     if((i==2) .and. (j==2)) then
401      write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
402                               grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
403                               grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
404     endif
405 
406   ENDDO
407   ENDDO
408 
409 !#if 0
410 
411 !  thermal perturbation to kick off convection
412 
413   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
414   write(6,*) ' delt for perturbation ',delt
415 
416   DO J = jts, min(jde-1,jte)
417     yrad = config_flags%dy*float(j-nyc)/4000.
418 !     yrad = 0.
419     DO I = its, min(ide-1,ite)
420 !      xrad = config_flags%dx*float(i-nxc)/4000.
421      xrad = 0.
422       DO K = 1, kte-1
423 
424 !  put in preturbation theta (bubble) and recalc density.  note,
425 !  the mass in the column is not changing, so when theta changes,
426 !  we recompute density and geopotential
427 
428         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
429                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
430         zrad = (zrad-1500.)/1500.
431         RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
432         IF(RAD <= 1.) THEN
433            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
434            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
435            qvf = 1. + rvovrd*moist(i,k,j,P_QV)
436            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
437                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
438            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
439         ENDIF
440       ENDDO
441 
442 !  rebalance hydrostatically
443 
444       DO k  = 2,kte
445         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
446                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
447                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
448                                                    
449         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
450         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
451       ENDDO
452 
453     ENDDO
454   ENDDO
455 
456 !#endif
457 
458    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
459    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
460    do k=1,kde-1
461      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
462                                       grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
463                                       grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
464    enddo
465 
466    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
467    do k=1,kde-1
468      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
469                                       grid%em_p(1,k,1), grid%em_al(1,k,1), &
470                                       grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
471    enddo
472 
473 ! interp v
474 
475   DO J = jts, jte
476   DO I = its, min(ide-1,ite)
477 
478     IF (j == jds) THEN
479       z_at_v = grid%em_phb(i,1,j)/g
480     ELSE IF (j == jde) THEN
481       z_at_v = grid%em_phb(i,1,j-1)/g
482     ELSE
483       z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
484     END IF
485 
486     p_surf = interp_0( p_in, zk, z_at_v, nl_in )
487 
488     DO K = 1, kte
489       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
490       grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
491       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
492     ENDDO
493 
494   ENDDO
495   ENDDO
496 
497 ! interp u
498 
499   DO J = jts, min(jde-1,jte)
500   DO I = its, ite
501 
502     IF (i == ids) THEN
503       z_at_u = grid%em_phb(i,1,j)/g
504     ELSE IF (i == ide) THEN
505       z_at_u = grid%em_phb(i-1,1,j)/g
506     ELSE
507       z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
508     END IF
509 
510     p_surf = interp_0( p_in, zk, z_at_u, nl_in )
511 
512     DO K = 1, kte
513       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
514       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
515       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
516     ENDDO
517 
518   ENDDO
519   ENDDO
520 
521 !  set w
522 
523   DO J = jts, min(jde-1,jte)
524   DO K = kts, kte
525   DO I = its, min(ide-1,ite)
526     grid%em_w_1(i,k,j) = 0.
527     grid%em_w_2(i,k,j) = 0.
528   ENDDO
529   ENDDO
530   ENDDO
531 
532 !  set a few more things
533 
534   DO J = jts, min(jde-1,jte)
535   DO K = kts, kte-1
536   DO I = its, min(ide-1,ite)
537     grid%h_diabatic(i,k,j) = 0.
538   ENDDO
539   ENDDO
540   ENDDO
541 
542   DO k=1,kte-1
543     grid%em_t_base(k) = grid%em_t_1(1,k,1)
544     grid%qv_base(k) = moist(1,k,1,P_QV)
545     grid%u_base(k) = grid%em_u_1(1,k,1)
546     grid%v_base(k) = grid%em_v_1(1,k,1)
547     grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
548   ENDDO
549 
550   DO J = jts, min(jde-1,jte)
551   DO I = its, min(ide-1,ite)
552      thtmp   = grid%em_t_2(i,1,j)+t0
553      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
554      temp(1) = thtmp * (ptmp/p1000mb)**rcp
555      thtmp   = grid%em_t_2(i,2,j)+t0
556      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
557      temp(2) = thtmp * (ptmp/p1000mb)**rcp
558      thtmp   = grid%em_t_2(i,3,j)+t0
559      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
560      temp(3) = thtmp * (ptmp/p1000mb)**rcp
561 
562      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
563      grid%tmn(I,J)=grid%tsk(I,J)-0.5
564   ENDDO
565   ENDDO
566 
567   RETURN
568 
569  END SUBROUTINE init_domain_rk
570 
571    SUBROUTINE init_module_initialize
572    END SUBROUTINE init_module_initialize
573 
574 !---------------------------------------------------------------------
575 
576 !  test driver for get_sounding
577 !
578 !      implicit none
579 !      integer n
580 !      parameter(n = 1000)
581 !      real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
582 !      logical dry
583 !      integer nl,k
584 !
585 !      dry = .false.
586 !      dry = .true.
587 !      call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
588 !      write(6,*) ' input levels ',nl
589 !      write(6,*) ' sounding '
590 !      write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
591 !      do k=1,nl
592 !        write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
593 !      enddo
594 !      end
595 !
596 !---------------------------------------------------------------------------
597 
598       subroutine get_sounding( zk, p, p_dry, theta, rho, &
599                                u, v, qv, dry, nl_max, nl_in )
600       implicit none
601 
602       integer nl_max, nl_in
603       real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
604            u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
605       logical dry
606 
607       integer n
608       parameter(n=1000)
609       logical debug
610       parameter( debug = .true.)
611 
612 ! input sounding data
613 
614       real p_surf, th_surf, qv_surf
615       real pi_surf, pi(n)
616       real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
617 
618 ! diagnostics
619 
620       real rho_surf, p_input(n), rho_input(n)
621       real pm_input(n)  !  this are for full moist sounding
622 
623 ! local data
624 
625       real p1000mb,cv,cp,r,cvpm,g
626       parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
627       integer k, it, nl
628       real qvf, qvf1, dz
629 
630 !  first, read the sounding
631 
632       call read_sounding( p_surf, th_surf, qv_surf, &
633                           h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
634 
635       if(dry) then
636        do k=1,nl
637          qv_input(k) = 0.
638        enddo
639       endif
640 
641       if(debug) write(6,*) ' number of input levels = ',nl
642 
643         nl_in = nl
644         if(nl_in .gt. nl_max ) then
645           write(6,*) ' too many levels for input arrays ',nl_in,nl_max
646           call wrf_error_fatal ( ' too many levels for input arrays ' )
647         end if
648 
649 !  compute diagnostics,
650 !  first, convert qv(g/kg) to qv(g/g)
651 
652       do k=1,nl
653         qv_input(k) = 0.001*qv_input(k)
654       enddo
655 
656       p_surf = 100.*p_surf  ! convert to pascals
657       qvf = 1. + rvovrd*qv_input(1) 
658       rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
659       pi_surf = (p_surf/p1000mb)**(r/cp)
660 
661       if(debug) then
662         write(6,*) ' surface density is ',rho_surf
663         write(6,*) ' surface pi is      ',pi_surf
664       end if
665 
666 
667 !  integrate moist sounding hydrostatically, starting from the
668 !  specified surface pressure
669 !  -> first, integrate from surface to lowest level
670 
671           qvf = 1. + rvovrd*qv_input(1) 
672           qvf1 = 1. + qv_input(1)
673           rho_input(1) = rho_surf
674           dz = h_input(1)
675           do it=1,10
676             pm_input(1) = p_surf &
677                     - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
678             rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
679           enddo
680 
681 ! integrate up the column
682 
683           do k=2,nl
684             rho_input(k) = rho_input(k-1)
685             dz = h_input(k)-h_input(k-1)
686             qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
687             qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
688  
689             do it=1,10
690               pm_input(k) = pm_input(k-1) &
691                       - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
692               rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
693             enddo
694           enddo
695 
696 !  we have the moist sounding
697 
698 !  next, compute the dry sounding using p at the highest level from the
699 !  moist sounding and integrating down.
700 
701         p_input(nl) = pm_input(nl)
702 
703           do k=nl-1,1,-1
704             dz = h_input(k+1)-h_input(k)
705             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
706           enddo
707 
708 
709         do k=1,nl
710 
711           zk(k) = h_input(k)
712           p(k) = pm_input(k)
713           p_dry(k) = p_input(k)
714           theta(k) = th_input(k)
715           rho(k) = rho_input(k)
716           u(k) = u_input(k)
717           v(k) = v_input(k)
718           qv(k) = qv_input(k)
719 
720         enddo
721 
722      if(debug) then
723       write(6,*) ' sounding '
724       write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
725       do k=1,nl
726         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
727       enddo
728 
729      end if
730 
731       end subroutine get_sounding
732 
733 !-------------------------------------------------------
734 
735       subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
736       implicit none
737       integer n,nl
738       real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
739       logical end_of_file
740       logical debug
741 
742       integer k
743 
744       open(unit=10,file='input_sounding',form='formatted',status='old')
745       rewind(10)
746       read(10,*) ps, ts, qvs
747       if(debug) then
748         write(6,*) ' input sounding surface parameters '
749         write(6,*) ' surface pressure (mb) ',ps
750         write(6,*) ' surface pot. temp (K) ',ts
751         write(6,*) ' surface mixing ratio (g/kg) ',qvs
752       end if
753 
754       end_of_file = .false.
755       k = 0
756 
757       do while (.not. end_of_file)
758 
759         read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
760         k = k+1
761         if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
762         go to 110
763  100    end_of_file = .true.
764  110    continue
765       enddo
766 
767       nl = k
768 
769       close(unit=10,status = 'keep')
770 
771       end subroutine read_sounding
772 
773 END MODULE module_initialize_ideal