module_initialize_b_wave.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 
3 !  This MODULE holds the routines which are used to perform various initializations
4 !  for the individual domains.  
5 
6 !-----------------------------------------------------------------------
7 
8 MODULE module_initialize_ideal
9 
10    USE module_domain
11    USE module_io_domain
12    USE module_state_description
13    USE module_model_constants
14    USE module_bc
15    USE module_timing
16    USE module_configure
17    USE module_init_utilities
18 #ifdef DM_PARALLEL
19    USE module_dm
20 #endif
21 
22 
23 CONTAINS
24 
25 
26 !-------------------------------------------------------------------
27 ! this is a wrapper for the solver-specific init_domain routines.
28 ! Also dereferences the grid variables and passes them down as arguments.
29 ! This is crucial, since the lower level routines may do message passing
30 ! and this will get fouled up on machines that insist on passing down
31 ! copies of assumed-shape arrays (by passing down as arguments, the 
32 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
33 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
34 
35    SUBROUTINE init_domain ( grid )
36 
37    IMPLICIT NONE
38 
39    !  Input data.
40    TYPE (domain), POINTER :: grid 
41    !  Local data.
42    INTEGER                :: dyn_opt 
43    INTEGER :: idum1, idum2
44 
45    CALL nl_get_dyn_opt( 1, dyn_opt )
46    
47    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
48 
49    IF (      dyn_opt .eq. 1 &
50         .or. dyn_opt .eq. 2 &
51         .or. dyn_opt .eq. 3 &
52                                        ) THEN
53      CALL init_domain_rk( grid &
54 !
55 #include <em_actual_new_args.inc>
56 !
57                         )
58 
59    ELSE
60      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
61      call wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
62    ENDIF
63 
64    END SUBROUTINE init_domain
65 
66 !-------------------------------------------------------------------
67 
68    SUBROUTINE init_domain_rk ( grid &
69 !
70 # include <em_dummy_new_args.inc>
71 !
72 )
73    IMPLICIT NONE
74 
75    !  Input data.
76    TYPE (domain), POINTER :: grid
77 
78 # include <em_dummy_decl.inc>
79 
80    TYPE (grid_config_rec_type)              :: config_flags
81 
82    !  Local data
83    INTEGER                             ::                       &
84                                   ids, ide, jds, jde, kds, kde, &
85                                   ims, ime, jms, jme, kms, kme, &
86                                   its, ite, jts, jte, kts, kte, &
87                                   i, j, k
88 
89    ! Local data
90 
91    INTEGER, PARAMETER :: nl_max = 1000
92    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
93    INTEGER :: nl_in
94 
95    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
96    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
97    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
98 !   REAL, EXTERNAL :: interp_0
99    REAL    :: hm
100    REAL    :: pi
101 
102 !  stuff from original initialization that has been dropped from the Registry 
103    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
104    REAL    :: qvf1, qvf2, pd_surf
105    INTEGER :: it
106 
107    LOGICAL :: moisture_init
108    LOGICAL :: stretch_grid, dry_sounding, debug
109 
110 !  kludge space for initial jet
111 
112    INTEGER, parameter :: nz_jet=64, ny_jet=80
113    REAL, DIMENSION(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet
114 
115 !  perturbation parameters
116 
117    REAL, PARAMETER :: htbub=8000., radbub=2000000., radz=8000., tpbub=1.0
118    REAL :: piov2, tp
119    INTEGER :: icen, jcen
120    real :: thtmp, ptmp, temp(3)
121 
122 #ifdef DM_PARALLEL
123 #    include <em_data_calls.inc>
124 #endif
125 
126    SELECT CASE ( model_data_order )
127          CASE ( DATA_ORDER_ZXY )
128    kds = grid%sd31 ; kde = grid%ed31 ;
129    ids = grid%sd32 ; ide = grid%ed32 ;
130    jds = grid%sd33 ; jde = grid%ed33 ;
131 
132    kms = grid%sm31 ; kme = grid%em31 ;
133    ims = grid%sm32 ; ime = grid%em32 ;
134    jms = grid%sm33 ; jme = grid%em33 ;
135 
136    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
137    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
138    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
139          CASE ( DATA_ORDER_XYZ )
140    ids = grid%sd31 ; ide = grid%ed31 ;
141    jds = grid%sd32 ; jde = grid%ed32 ;
142    kds = grid%sd33 ; kde = grid%ed33 ;
143 
144    ims = grid%sm31 ; ime = grid%em31 ;
145    jms = grid%sm32 ; jme = grid%em32 ;
146    kms = grid%sm33 ; kme = grid%em33 ;
147 
148    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
149    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
150    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
151          CASE ( DATA_ORDER_XZY )
152    ids = grid%sd31 ; ide = grid%ed31 ;
153    kds = grid%sd32 ; kde = grid%ed32 ;
154    jds = grid%sd33 ; jde = grid%ed33 ;
155 
156    ims = grid%sm31 ; ime = grid%em31 ;
157    kms = grid%sm32 ; kme = grid%em32 ;
158    jms = grid%sm33 ; jme = grid%em33 ;
159 
160    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
161    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
162    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
163 
164    END SELECT
165 
166    piov2 = 2.*atan(1.0)
167    icen = ide/4
168    jcen = jde/2
169 
170    stretch_grid = .true.
171    delt = 0.
172    z_scale = .50
173    pi = 2.*asin(1.0)
174    write(6,*) ' pi is ',pi
175    nxc = (ide-ids)/4
176    nyc = (jde-jds)/2
177 
178    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
179 
180 ! here we check to see if the boundary conditions are set properly
181 
182    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
183 
184    moisture_init = .true.
185 
186     grid%itimestep=0
187 
188 #ifdef DM_PARALLEL
189    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
190    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
191 #endif
192 
193     CALL nl_set_mminlu(1,'    ')
194     CALL nl_set_iswater(1,0)
195     CALL nl_set_cen_lat(1,40.)
196     CALL nl_set_cen_lon(1,-105.)
197     CALL nl_set_truelat1(1,0.)
198     CALL nl_set_truelat2(1,0.)
199     CALL nl_set_moad_cen_lat (1,0.)
200     CALL nl_set_stand_lon (1,0.)
201     CALL nl_set_map_proj(1,0)
202 
203 
204 !  here we initialize data we currently is not initialized 
205 !  in the input data
206 
207     DO j = jts, jte
208       DO i = its, ite
209 
210          grid%ht(i,j)       = 0.
211          grid%msft(i,j)     = 1.
212          grid%msfu(i,j)     = 1.
213          grid%msfv(i,j)     = 1.
214          grid%sina(i,j)     = 0.
215          grid%cosa(i,j)     = 1.
216          grid%e(i,j)        = 0.
217          grid%f(i,j)        = 1.e-04
218 
219       END DO
220    END DO
221 
222     DO j = jts, jte
223     DO k = kts, kte
224       DO i = its, ite
225          grid%em_ww(i,k,j)     = 0.
226       END DO
227    END DO
228    END DO
229 
230    grid%step_number = 0
231 
232 ! set up the grid
233 
234    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
235      DO k=1, kde
236       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
237                                 (1.-exp(-1./z_scale))
238      ENDDO
239    ELSE
240      DO k=1, kde
241       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
242      ENDDO
243    ENDIF
244 
245    DO k=1, kde-1
246     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
247     grid%em_rdnw(k) = 1./grid%em_dnw(k)
248     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
249    ENDDO
250    DO k=2, kde-1
251     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
252     grid%em_rdn(k) = 1./grid%em_dn(k)
253     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
254     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
255    ENDDO
256 
257    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
258    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
259    grid%cf1  = grid%em_fnp(2) + cof1
260    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
261    grid%cf3  = cof2       
262 
263    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
264    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
265    grid%rdx = 1./config_flags%dx
266    grid%rdy = 1./config_flags%dy
267 
268 !  get the sounding from the ascii sounding file, first get dry sounding and 
269 !  calculate base state
270 
271   write(6,*) ' reading input jet sounding '
272   call read_input_jet( u_jet, rho_jet, th_jet, z_jet, nz_jet, ny_jet )
273 
274   write(6,*) ' getting dry sounding for base state '
275   write(6,*) ' using middle column in jet sounding, j = ',ny_jet/2
276   dry_sounding = .true.
277 
278   dry_sounding   = .true.
279   debug = .true.  !  this will produce print of the sounding
280   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
281                       nl_max, nl_in, u_jet, rho_jet, th_jet, z_jet,      &
282                       nz_jet, ny_jet, ny_jet/2, debug                   )
283 
284   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
285 
286 !  find ptop for the desired ztop (ztop is input from the namelist),
287 !  and find surface pressure
288 
289 !  For the jet, using the middle column for the base state means that
290 !  we will be extrapolating above the highest height data to the south
291 !  of the centerline.
292 
293   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
294 
295   DO j=jts,jte
296   DO i=its,ite  ! flat surface
297     grid%em_phb(i,1,j) = 0.
298     grid%em_php(i,1,j) = 0.
299     grid%em_ph0(i,1,j) = 0.
300     grid%ht(i,j) = 0.
301   ENDDO
302   ENDDO
303 
304   DO J = jts, jte
305   DO I = its, ite
306 
307     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
308     grid%em_mub(i,j) = p_surf-grid%p_top
309 
310 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
311 !  interp theta (from interp) and compute 1/rho from eqn. of state
312 
313     DO K = 1, kte-1
314       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
315       grid%em_pb(i,k,j) = p_level
316       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
317       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
318     ENDDO
319 
320 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
321 !  sounding, but this assures that the base state is in exact hydrostatic balance with
322 !  respect to the model eqns.
323 
324     DO k  = 2,kte
325       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
326     ENDDO
327 
328   ENDDO
329   ENDDO
330 
331   write(6,*) ' ptop is ',grid%p_top
332   write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
333 
334 !  calculate full state for each column - this includes moisture.
335 
336   write(6,*) ' getting grid%moist sounding for full state '
337 
338   dry_sounding = .true.
339   IF (config_flags%mp_physics /= 0)  dry_sounding = .false.
340 
341   DO J = jts, min(jde-1,jte)
342 
343 !  get sounding for this point
344 
345   debug = .false.  !  this will turn off print of the sounding
346   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
347                       nl_max, nl_in, u_jet, rho_jet, th_jet, z_jet,      &
348                       nz_jet, ny_jet, j, debug                          )
349 
350   DO I = its, min(ide-1,ite)
351 
352 !   we could just do the first point in "i" and copy from there, but we'll
353 !   be lazy and do all the points as if they are all, independent
354 
355 !   At this point grid%p_top is already set. find the DRY mass in the column 
356 !   by interpolating the DRY pressure.  
357 
358     pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
359 
360 !   compute the perturbation mass and the full mass
361 
362     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
363     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
364     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
365 
366 !   given the dry pressure and coordinate system, interp the potential
367 !   temperature and qv
368 
369     do k=1,kde-1
370 
371       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
372 
373       grid%moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
374       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
375       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
376       
377 
378     enddo
379 
380 !   integrate the hydrostatic equation (from the RHS of the bigstep
381 !   vertical momentum equation) down from the top to get grid%em_p.
382 !   first from the top of the model to the top pressure
383 
384     k = kte-1  ! top level
385 
386     qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV))
387     qvf2 = 1./(1.+qvf1)
388     qvf1 = qvf1*qvf2
389 
390 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
391     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
392     qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV)
393     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
394                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
395     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
396 
397 !  down the column
398 
399     do k=kte-2,1,-1
400       qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k+1,j,P_QV))
401       qvf2 = 1./(1.+qvf1)
402       qvf1 = qvf1*qvf2
403       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
404       qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV)
405       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
406                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
407       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
408     enddo
409 
410 !  this is the hydrostatic equation used in the model after the
411 !  small timesteps.  In the model, grid%em_al (inverse density)
412 !  is computed from the geopotential.
413 
414 
415     grid%em_ph_1(i,1,j) = 0.
416     DO k  = 2,kte
417       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
418                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
419                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
420                                                    
421       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
422       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
423     ENDDO
424 
425 ! interp u
426 
427     DO K = 1, kte
428       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
429       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
430       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
431     ENDDO
432 
433   ENDDO
434   ENDDO
435 
436 !  thermal perturbation to kick off convection
437 
438   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
439   write(6,*) ' delt for perturbation ',tpbub
440 
441   DO J = jts, min(jde-1,jte)
442     yrad = config_flags%dy*float(j-jde/2-1)/radbub
443     DO I = its, min(ide-1,ite)
444       xrad = float(i-1)/float(ide-ids)
445 
446       DO K = 1, kte-1
447 
448 !  put in preturbation theta (bubble) and recalc density.  note,
449 !  the mass in the column is not changing, so when theta changes,
450 !  we recompute density and geopotential
451 
452         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
453                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
454         zrad = (zrad-htbub)/radz
455         RAD=SQRT(yrad*yrad+zrad*zrad)
456         IF(RAD <= 1.) THEN
457            tp = tpbub*cos(rad*piov2)*cos(rad*piov2)*cos(xrad*2*pi+pi)
458            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+tp
459            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
460            qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV)
461            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
462                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
463            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
464         ENDIF
465       ENDDO
466 
467 !  rebalance hydrostatically
468 
469       DO k  = 2,kte
470         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
471                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
472                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
473                                                    
474         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
475         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
476       ENDDO
477 
478     ENDDO
479   ENDDO
480 
481 !#endif
482 
483    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
484    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, grid%em_al, grid%em_t_1, qv '
485    do k=1,kde-1
486      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1),grid%em_p(1,k,1), grid%em_al(1,k,1), &
487                      grid%em_t_1(1,k,1), grid%moist(1,k,1,P_QV)
488    enddo
489 
490    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
491    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
492    write(6,*) ' at j = 1 '
493    do k=1,kde-1
494      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
495                      grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_al(1,k,1)+grid%em_alb(1,k,1), &
496                      grid%em_t_1(1,k,1)+t0, grid%moist(1,k,1,P_QV)
497    enddo
498 
499 
500    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
501    write(6,*) ' at j = jde/2 '
502    do k=1,kde-1
503      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,jde/2)+grid%em_phb(1,k,jde/2), &
504                      grid%em_p(1,k,jde/2)+grid%em_pb(1,k,jde/2), grid%em_al(1,k,jde/2)+grid%em_alb(1,k,jde/2), &
505                      grid%em_t_1(1,k,jde/2)+t0, grid%moist(1,k,jde/2,P_QV)
506    enddo
507 
508    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
509    write(6,*) ' at j = jde-1 '
510    do k=1,kde-1
511      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,jde-1)+grid%em_phb(1,k,jde-1), &
512                      grid%em_p(1,k,jde-1)+grid%em_pb(1,k,jde-1), grid%em_al(1,k,jde-1)+grid%em_alb(1,k,jde-1), &
513                      grid%em_t_1(1,k,jde-1)+t0, grid%moist(1,k,jde-1,P_QV)
514    enddo
515 
516 ! set v
517 
518   DO J = jts, jte
519   DO I = its, min(ide-1,ite)
520 
521     DO K = 1, kte
522       grid%em_v_1(i,k,j) = 0.
523       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
524     ENDDO
525 
526   ENDDO
527   ENDDO
528 
529 !  fill out last i row for u
530 
531   DO J = jts, min(jde-1,jte)
532   DO I = ite, ite
533 
534     DO K = 1, kte
535       grid%em_u_1(i,k,j) = grid%em_u_1(its,k,j)
536       grid%em_u_2(i,k,j) = grid%em_u_2(its,k,j)
537     ENDDO
538 
539   ENDDO
540   ENDDO
541 
542 !  set w
543 
544   DO J = jts, min(jde-1,jte)
545   DO K = kts, kte
546   DO I = its, min(ide-1,ite)
547     grid%em_w_1(i,k,j) = 0.
548     grid%em_w_2(i,k,j) = 0.
549   ENDDO
550   ENDDO
551   ENDDO
552 
553 !  set a few more things
554 
555   DO J = jts, min(jde-1,jte)
556   DO K = kts, kte-1
557   DO I = its, min(ide-1,ite)
558     grid%h_diabatic(i,k,j) = 0.
559   ENDDO
560   ENDDO
561   ENDDO
562 
563   DO k=1,kte-1
564     grid%em_t_base(k) = grid%em_t_1(1,k,1)
565     grid%qv_base(k) = grid%moist(1,k,1,P_QV)
566     grid%u_base(k) = grid%em_u_1(1,k,1)
567     grid%v_base(k) = grid%em_v_1(1,k,1)
568   ENDDO
569 
570   DO J = jts, min(jde-1,jte)
571   DO I = its, min(ide-1,ite)
572      thtmp   = grid%em_t_2(i,1,j)+t0
573      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
574      temp(1) = thtmp * (ptmp/p1000mb)**rcp
575      thtmp   = grid%em_t_2(i,2,j)+t0
576      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
577      temp(2) = thtmp * (ptmp/p1000mb)**rcp
578      thtmp   = grid%em_t_2(i,3,j)+t0
579      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
580      temp(3) = thtmp * (ptmp/p1000mb)**rcp
581 
582      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
583      if (i .eq. 1) print*,'sfctem',j,temp(1),temp(2),temp(3),grid%tsk(I,J)
584      grid%tmn(I,J)=grid%tsk(I,J)-0.5
585   ENDDO
586   ENDDO
587 
588   RETURN
589 
590  END SUBROUTINE init_domain_rk
591 
592 !---------------------------------------------------------------------
593 
594  SUBROUTINE init_module_initialize
595  END SUBROUTINE init_module_initialize
596 
597 !---------------------------------------------------------------------
598 #if 0
599 ! TEST DRIVER FOR "read_input_jet" and "get_sounding"
600   implicit none 
601   integer, parameter :: nz_jet=64, ny_jet=80
602   real, dimension(nz_jet,ny_jet) :: u_jet, rho_jet, &
603                                     th_jet, z_jet
604 
605   real, dimension(nz_jet,ny_jet) :: zk,p,p_dry,theta,rho,u,v,qv
606   logical :: dry, debug
607   integer :: j, nl
608 
609   call read_input_jet( u_jet, rho_jet, th_jet, z_jet, nz_jet, ny_jet )
610 
611   call opngks
612   call parray( u_jet, nz_jet, ny_jet)
613   call parray( rho_jet, nz_jet, ny_jet)
614   call parray( th_jet, nz_jet, ny_jet)
615 !  call clsgks
616 
617 !  set up initial jet
618 
619   debug = .true.
620   dry = .true.
621   do j=1,ny_jet
622 
623     call get_sounding( zk(:,j),p(:,j),p_dry(:,j),theta(:,j),      &
624                        rho(:,j),u(:,j), v(:,j),  qv(:,j),        &
625                        dry, nz_jet, nl, u_jet, rho_jet, th_jet,  &
626                        z_jet, nz_jet, ny_jet, j, debug          )
627     debug = .false.
628 
629   enddo
630 
631   write(6,*) ' lowest level p, th, and rho, highest level p '
632 
633   do j=1,ny_jet
634     write(6,*) j, p(1,j),theta(1,j),rho(1,j), p(nz_jet,j)
635 !    write(6,*) j, p(1,j),theta(1,j)-th_jet(1,j),rho(1,j)-rho_jet(1,j)
636   enddo
637 
638   call parray( p, nz_jet, ny_jet)
639   call parray( p_dry, nz_jet, ny_jet)
640   call parray( theta, nz_jet, ny_jet)
641 
642   call clsgks
643 
644   end
645 
646 !---------------------------------
647 
648       subroutine parray(a,m,n)
649       dimension a(m,n)
650       dimension b(n,m)
651 
652     do i=1,m
653     do j=1,n
654       b(j,i) = a(i,j)
655     enddo
656     enddo
657       
658       write(6,'(''  dimensions m,n  '',2i6)')m,n
659         call set(.05,.95,.05,.95,0.,1.,0.,1.,1)
660         call perim(4,5,4,5)
661         call setusv('LW',2000)
662 !        CALL CONREC(a,m,m,n,cmax,cmin,cinc,-1,-638,-922)
663         CALL CONREC(b,n,n,m,0.,0.,0.,-1,-638,-922)
664         call frame
665       return
666       end
667 
668 ! END TEST DRIVER FOR "read_input_jet" and "get_sounding"
669 #endif
670 
671 !------------------------------------------------------------------
672 
673     subroutine get_sounding( zk, p, p_dry, theta, rho,       &
674                              u, v, qv, dry, nl_max, nl_in,  &
675                              u_jet, rho_jet, th_jet, z_jet, &
676                              nz_jet, ny_jet, j_point, debug )
677     implicit none
678 
679     integer nl_max, nl_in
680     real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
681          u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
682     logical dry
683 
684     integer nz_jet, ny_jet, j_point
685     real, dimension(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet
686 
687     integer n
688     parameter(n=1000)
689     logical debug
690 
691 ! input sounding data
692 
693     real p_surf, th_surf, qv_surf
694     real pi_surf, pi(n)
695     real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
696 
697 ! diagnostics
698 
699     real rho_surf, p_input(n), rho_input(n)
700     real pm_input(n)  !  this are for full moist sounding
701 
702 ! local data
703 
704     real p1000mb,cv,cp,r,cvpm,g
705     parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
706     integer k, it, nl
707     real qvf, qvf1, dz
708 
709 !  first, read the sounding
710 
711 !    call read_sounding( p_surf, th_surf, qv_surf, &
712 !                          h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
713 
714    call calc_jet_sounding( p_surf, th_surf, qv_surf,                             &
715                            h_input, th_input, qv_input, u_input, v_input,        &
716                            n, nl, debug, u_jet, rho_jet, th_jet, z_jet, j_point, &
717                            nz_jet, ny_jet, dry                                  )
718 
719    nl = nz_jet
720 
721     if(dry) then
722      do k=1,nl
723        qv_input(k) = 0.
724      enddo
725     endif
726 
727     if(debug) write(6,*) ' number of input levels = ',nl
728 
729       nl_in = nl
730       if(nl_in .gt. nl_max ) then
731         write(6,*) ' too many levels for input arrays ',nl_in,nl_max
732         call wrf_error_fatal ( ' too many levels for input arrays ' )
733       end if
734 
735 !  compute diagnostics,
736 !  first, convert qv(g/kg) to qv(g/g)
737 !
738 !      do k=1,nl
739 !        qv_input(k) = 0.001*qv_input(k)
740 !      enddo
741 !      p_surf = 100.*p_surf  ! convert to pascals
742 
743     qvf = 1. + rvovrd*qv_input(1) 
744     rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
745     pi_surf = (p_surf/p1000mb)**(r/cp)
746 
747     if(debug) then
748       write(6,*) ' surface density is ',rho_surf
749       write(6,*) ' surface pi is    ',pi_surf
750     end if
751 
752 
753 !  integrate moist sounding hydrostatically, starting from the
754 !  specified surface pressure
755 !  -> first, integrate from surface to lowest level
756 
757         qvf = 1. + rvovrd*qv_input(1) 
758         qvf1 = 1. + qv_input(1)
759         rho_input(1) = rho_surf
760         dz = h_input(1)
761         do it=1,10
762           pm_input(1) = p_surf &
763                   - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
764           rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
765         enddo
766 
767 ! integrate up the column
768 
769         do k=2,nl
770           rho_input(k) = rho_input(k-1)
771           dz = h_input(k)-h_input(k-1)
772           qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
773           qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
774  
775           do it=1,10
776             pm_input(k) = pm_input(k-1) &
777                     - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
778             rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
779           enddo
780         enddo
781 
782 !  we have the moist sounding
783 
784 !  next, compute the dry sounding using p at the highest level from the
785 !  moist sounding and integrating down.
786 
787         p_input(nl) = pm_input(nl)
788 
789           do k=nl-1,1,-1
790             dz = h_input(k+1)-h_input(k)
791             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
792           enddo
793 
794 
795         do k=1,nl
796 
797           zk(k) = h_input(k)
798           p(k) = pm_input(k)
799           p_dry(k) = p_input(k)
800           theta(k) = th_input(k)
801           rho(k) = rho_input(k)
802           u(k) = u_input(k)
803           v(k) = v_input(k)
804           qv(k) = qv_input(k)
805 
806         enddo
807 
808      if(debug) then
809       write(6,*) ' sounding '
810       write(6,*) '  k  height(m)  press (Pa)   pd(Pa)   theta (K)  den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
811       do k=1,nl
812         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
813       enddo
814 
815      end if
816 
817      end subroutine get_sounding
818 
819 !------------------------------------------------------------------
820 
821   subroutine calc_jet_sounding( p_surf, th_surf, qv_surf,      &
822                                 h, th, qv, u, v, n, nl, debug, &
823                                 u_jet, rho_jet, th_jet, z_jet, &
824                                 jp, nz_jet, ny_jet, dry       )
825   implicit none
826   integer :: n, nl, jp, nz_jet, ny_jet
827 
828   real, dimension(nz_jet, ny_jet) :: u_jet, rho_jet, th_jet, z_jet
829   real, dimension(n) :: h,th,qv,u,v
830   real :: p_surf, th_surf, qv_surf
831   logical :: debug, dry
832 
833   real, dimension(1:nz_jet) :: rho, rel_hum, p
834   integer :: k
835 
836 !  some local stuff
837 
838   real :: tmppi, es, qvs, temperature
839   real, parameter :: p1000mb=1.e+05, rcp=287./1004.5, svpt0=273.15, &
840                      svp3 = 29.65, ep_2=287./461.6, r_d = 287., &
841                      cpovcv = 1004./(1004.-287.),               &
842                      svp1 = 0.6112, svp2 = 17.67
843 
844 !  get sounding from column jp
845 
846    do k=1,nz_jet
847      h(k)  = z_jet(k,jp)
848      th(k) = th_jet(k,jp)
849      qv(k) = 0.
850      rho(k) = rho_jet(k,jp)
851      u(k) = u_jet(k,jp)
852      v(k) = 0.
853    enddo
854 
855    if (.not.dry) then
856      DO k=1,nz_jet
857        if(h(k) .gt. 8000.) then
858          rel_hum(k)=0.1
859        else
860          rel_hum(k)=(1.-0.90*(h(k)/8000.)**1.25)
861        end if
862        rel_hum(k) = min(0.7,rel_hum(k))
863      ENDDO
864    else
865      do k=1,nz_jet
866        rel_hum(k) = 0.
867      enddo
868    endif
869 
870 !  next, compute pressure
871 
872    do k=1,nz_jet
873      p(k) = p1000mb*(R_d*rho(k)*th(k)/p1000mb)**cpovcv
874    enddo
875 
876 !  here we adjust for fixed moisture profile
877 
878      IF (.not.dry)  THEN
879 
880 !  here we assume the input theta is th_v, so we reset theta accordingly
881 
882        DO k=1,nz_jet
883          tmppi=(p(k)/p1000mb)**rcp
884          temperature = tmppi*th(k)
885          if (temperature .gt. svpt0) then
886             es  = 1000.*svp1*exp(svp2*(temperature-svpt0)/(temperature-svp3))
887             qvs = ep_2*es/(p(k)-es)
888          else
889             es  = 1000.*svp1*exp( 21.8745584*(temperature-273.16)/(temperature-7.66) )
890             qvs = ep_2*es/(p(k)-es)
891          endif
892          qv(k) = rel_hum(k)*qvs
893          th(k) = th(k)/(1.+.61*qv(k))
894        ENDDO
895  
896      ENDIF
897 
898 !  finally, set the surface data. We'll just do a simple extrapolation
899 
900    p_surf = 1.5*p(1) - 0.5*p(2)
901    th_surf = 1.5*th(1) - 0.5*th(2)
902    qv_surf = 1.5*qv(1) - 0.5*qv(2)
903 
904    end subroutine calc_jet_sounding
905 
906 !---------------------------------------------------------------------
907 
908  SUBROUTINE read_input_jet( u, r, t, zk, nz, ny )
909  implicit none
910 
911  integer, intent(in) :: nz,ny
912  real, dimension(nz,ny), intent(out) :: u,r,t,zk
913  integer :: ny_in, nz_in, j,k
914  real, dimension(ny,nz) :: field_in
915 
916 ! this code assumes it is called on processor 0 only
917 
918    OPEN(unit=10, file='input_jet', form='unformatted', status='old' )
919    REWIND(10) 
920    read(10) ny_in,nz_in
921    if((ny_in /= ny ) .or. (nz_in /= nz)) then
922      write(0,*) ' error in input jet dimensions '
923      write(0,*) ' ny, ny_input, nz, nz_input ', ny, ny_in, nz,nz_in
924      write(0,*) ' error exit '
925      call wrf_error_fatal ( ' error in input jet dimensions ' )
926    end if
927    read(10) field_in
928    do j=1,ny
929    do k=1,nz
930      u(k,j) = field_in(j,k)
931    enddo
932    enddo
933    read(10) field_in
934    do j=1,ny
935    do k=1,nz
936      t(k,j) = field_in(j,k)
937    enddo
938    enddo
939 
940    read(10) field_in
941    do j=1,ny
942    do k=1,nz
943      r(k,j) = field_in(j,k)
944    enddo
945    enddo
946 
947    do j=1,ny
948    do k=1,nz
949      zk(k,j) = 125. + 250.*float(k-1)
950    enddo
951    enddo
952 
953  end subroutine read_input_jet
954 
955 END MODULE module_initialize_ideal