module_initialize_grav2d_x.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42
43 SUBROUTINE init_domain ( grid )
44
45 IMPLICIT NONE
46
47 ! Input data.
48 TYPE (domain), POINTER :: grid
49 ! Local data.
50 INTEGER :: dyn_opt
51 INTEGER :: idum1, idum2
52
53 CALL nl_get_dyn_opt( 1, dyn_opt )
54
55 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56
57 IF ( dyn_opt .eq. 1 &
58 .or. dyn_opt .eq. 2 &
59 .or. dyn_opt .eq. 3 &
60 ) THEN
61 CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65 )
66
67 ELSE
68 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70 ENDIF
71
72 END SUBROUTINE init_domain
73
74 !-------------------------------------------------------------------
75
76 SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81 IMPLICIT NONE
82
83 ! Input data.
84 TYPE (domain), POINTER :: grid
85
86 # include <em_dummy_new_decl.inc>
87
88 TYPE (grid_config_rec_type) :: config_flags
89
90 ! Local data
91 INTEGER :: &
92 ids, ide, jds, jde, kds, kde, &
93 ims, ime, jms, jme, kms, kme, &
94 its, ite, jts, jte, kts, kte, &
95 i, j, k
96
97 ! Local data
98
99 INTEGER, PARAMETER :: nl_max = 1000
100 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101 INTEGER :: nl_in
102
103
104 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2, t_min, t_max
107 ! REAL, EXTERNAL :: interp_0
108 REAL :: hm, xa, xpos, xposml, xpospl
109 REAL :: pi
110
111 ! stuff from original initialization that has been dropped from the Registry
112 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113 REAL :: qvf1, qvf2, pd_surf
114 INTEGER :: it
115 real :: thtmp, ptmp, temp(3)
116
117 LOGICAL :: moisture_init
118 LOGICAL :: stretch_grid, dry_sounding
119
120 REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale
121
122 #ifdef DM_PARALLEL
123 # include <em_data_calls.inc>
124 #endif
125
126
127 SELECT CASE ( model_data_order )
128 CASE ( DATA_ORDER_ZXY )
129 kds = grid%sd31 ; kde = grid%ed31 ;
130 ids = grid%sd32 ; ide = grid%ed32 ;
131 jds = grid%sd33 ; jde = grid%ed33 ;
132
133 kms = grid%sm31 ; kme = grid%em31 ;
134 ims = grid%sm32 ; ime = grid%em32 ;
135 jms = grid%sm33 ; jme = grid%em33 ;
136
137 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
138 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
139 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
140 CASE ( DATA_ORDER_XYZ )
141 ids = grid%sd31 ; ide = grid%ed31 ;
142 jds = grid%sd32 ; jde = grid%ed32 ;
143 kds = grid%sd33 ; kde = grid%ed33 ;
144
145 ims = grid%sm31 ; ime = grid%em31 ;
146 jms = grid%sm32 ; jme = grid%em32 ;
147 kms = grid%sm33 ; kme = grid%em33 ;
148
149 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
150 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
151 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
152 CASE ( DATA_ORDER_XZY )
153 ids = grid%sd31 ; ide = grid%ed31 ;
154 kds = grid%sd32 ; kde = grid%ed32 ;
155 jds = grid%sd33 ; jde = grid%ed33 ;
156
157 ims = grid%sm31 ; ime = grid%em31 ;
158 kms = grid%sm32 ; kme = grid%em32 ;
159 jms = grid%sm33 ; jme = grid%em33 ;
160
161 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
162 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
163 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
164
165 END SELECT
166
167
168 hm = 000.
169 xa = 5.0
170
171 icm = ide/2
172
173
174 xa1 = 5000./500.
175 xal1 = 4000./500.
176 pii = 2.*asin(1.0)
177 hm1 = 250.
178 ! hm1 = 1000.
179
180
181 stretch_grid = .true.
182 ! z_scale = .50
183 z_scale = 1.675
184 pi = 2.*asin(1.0)
185 write(6,*) ' pi is ',pi
186 nxc = (ide-ids)/2
187 nyc = (jde-jds)/2
188
189 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
190
191 ! here we check to see if the boundary conditions are set properly
192
193 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
194
195 moisture_init = .true.
196
197 grid%itimestep=0
198
199 #ifdef DM_PARALLEL
200 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
201 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
202 #endif
203
204 CALL nl_set_mminlu(1, ' ')
205 CALL nl_set_iswater(1,0)
206 CALL nl_set_cen_lat(1,40.)
207 CALL nl_set_cen_lon(1,-105.)
208 CALL nl_set_truelat1(1,0.)
209 CALL nl_set_truelat2(1,0.)
210 CALL nl_set_moad_cen_lat (1,0.)
211 CALL nl_set_stand_lon (1,0.)
212 CALL nl_set_map_proj(1,0)
213
214
215 ! here we initialize data we currently is not initialized
216 ! in the input data
217
218 DO j = jts, jte
219 DO i = its, ite
220 grid%msft(i,j) = 1.
221 grid%msfu(i,j) = 1.
222 grid%msfv(i,j) = 1.
223 grid%sina(i,j) = 0.
224 grid%cosa(i,j) = 1.
225 grid%e(i,j) = 0.
226 grid%f(i,j) = 0.
227
228 END DO
229 END DO
230
231 DO j = jts, jte
232 DO k = kts, kte
233 DO i = its, ite
234 grid%em_ww(i,k,j) = 0.
235 END DO
236 END DO
237 END DO
238
239 grid%step_number = 0
240
241 ! set up the grid
242
243 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
244 DO k=1, kde
245 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
246 (1.-exp(-1./z_scale))
247 ENDDO
248 ELSE
249 DO k=1, kde
250 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
251 ENDDO
252 ENDIF
253
254 DO k=1, kde-1
255 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
256 grid%em_rdnw(k) = 1./grid%em_dnw(k)
257 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
258 ENDDO
259 DO k=2, kde-1
260 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
261 grid%em_rdn(k) = 1./grid%em_dn(k)
262 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
263 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
264 ENDDO
265
266 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
267 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
268 grid%cf1 = grid%em_fnp(2) + cof1
269 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
270 grid%cf3 = cof2
271
272 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
273 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
274 grid%rdx = 1./config_flags%dx
275 grid%rdy = 1./config_flags%dy
276
277 ! get the sounding from the ascii sounding file, first get dry sounding and
278 ! calculate base state
279
280 write(6,*) ' getting dry sounding for base state '
281 dry_sounding = .true.
282 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
283 nl_max, nl_in, .true.)
284
285 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
286
287
288 ! find ptop for the desired ztop (ztop is input from the namelist),
289 ! and find surface pressure
290
291 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
292
293 DO j=jts,jte
294 DO i=its,ite ! flat surface
295 !! grid%ht(i,j) = 0.
296 grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
297 ! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) &
298 ! *( (cos(pii*float(i-icm)/xal1))**2 )
299 grid%em_phb(i,1,j) = g*grid%ht(i,j)
300 grid%em_php(i,1,j) = 0.
301 grid%em_ph0(i,1,j) = grid%em_phb(i,1,j)
302 ENDDO
303 ENDDO
304
305 DO J = jts, jte
306 DO I = its, ite
307
308 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
309 grid%em_mub(i,j) = p_surf-grid%p_top
310
311 ! this is dry hydrostatic sounding (base state), so given p (coordinate),
312 ! interp theta (from interp) and compute 1/rho from eqn. of state
313
314 DO K = 1, kte-1
315 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
316 grid%em_pb(i,k,j) = p_level
317 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
318 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
319 ENDDO
320
321 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
322 ! sounding, but this assures that the base state is in exact hydrostatic balance with
323 ! respect to the model eqns.
324
325 DO k = 2,kte
326 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
327 ENDDO
328
329 ENDDO
330 ENDDO
331
332 write(6,*) ' ptop is ',grid%p_top
333 write(6,*) ' base state mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
334
335 ! calculate full state for each column - this includes moisture.
336
337 write(6,*) ' getting moist sounding for full state '
338 dry_sounding = .false.
339 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
340 nl_max, nl_in, .false. )
341
342 DO J = jts, min(jde-1,jte)
343 DO I = its, min(ide-1,ite)
344
345 ! At this point grid%p_top is already set. find the DRY mass in the column
346 ! by interpolating the DRY pressure.
347
348 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
349
350 ! compute the perturbation mass and the full mass
351
352 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
353 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
354 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
355
356 ! given the dry pressure and coordinate system, interp the potential
357 ! temperature and qv
358
359 do k=1,kde-1
360
361 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
362
363 grid%moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
364 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
365 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
366
367
368 enddo
369
370 ! integrate the hydrostatic equation (from the RHS of the bigstep
371 ! vertical momentum equation) down from the top to get p.
372 ! first from the top of the model to the top pressure
373
374 k = kte-1 ! top level
375
376 qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV))
377 qvf2 = 1./(1.+qvf1)
378 qvf1 = qvf1*qvf2
379
380 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
381 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
382 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
383 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
384 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
385 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
386
387 ! down the column
388
389 do k=kte-2,1,-1
390 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
391 qvf2 = 1./(1.+qvf1)
392 qvf1 = qvf1*qvf2
393 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
394 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
395 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
396 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
397 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
398 enddo
399
400 ! this is the hydrostatic equation used in the model after the
401 ! small timesteps. In the model, al (inverse density)
402 ! is computed from the geopotential.
403
404
405 grid%em_ph_1(i,1,j) = 0.
406 DO k = 2,kte
407 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
408 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
409 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
410
411 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
412 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
413 ENDDO
414
415 if((i==2) .and. (j==2)) then
416 write(6,*) ' ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
417 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
418 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
419 endif
420
421 ENDDO
422 ENDDO
423
424 ! cold bubble input (from straka et al, IJNMF, vol 17, 1993 pp 1-22)
425
426 t_min = grid%em_t_1(its,kts,jts)
427 t_max = t_min
428 u_mean = 00.
429
430 xpos = config_flags%dx*nxc - u_mean*900.
431 xposml = xpos - config_flags%dx*(ide-1)
432 xpospl = xpos + config_flags%dx*(ide-1)
433
434 DO J = jts, min(jde-1,jte)
435 DO I = its, min(ide-1,ite)
436 ! xrad = config_flags%dx*float(i-nxc)/4000. ! 4000 meter horizontal radius
437 ! ! centered in the domain
438
439 xrad = min( abs(config_flags%dx*float(i)-xpos), &
440 abs(config_flags%dx*float(i)-xposml), &
441 abs(config_flags%dx*float(i)-xpospl))/4000.
442
443 DO K = 1, kte-1
444
445 ! put in preturbation theta (bubble) and recalc density. note,
446 ! the mass in the column is not changing, so when theta changes,
447 ! we recompute density and geopotential
448
449 zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) &
450 +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
451 zrad = (zrad-3000.)/2000. ! 2000 meter vertical radius,
452 ! centered at z=3000,
453 RAD=SQRT(xrad*xrad+zrad*zrad)
454 IF(RAD <= 1.) THEN
455
456 ! perturbation temperature is 15 C, convert to potential temperature
457
458 delt = -15.0 / ((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**rcp
459
460 grid%em_T_1(i,k,j)=grid%em_T_1(i,k,j)+delt*(COS(PI*RAD)+1.0)/2.
461 grid%em_T_2(i,k,j)=grid%em_T_1(i,k,j)
462 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
463 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
464 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
465 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
466 ENDIF
467
468 t_min = min(t_min, grid%em_t_1(i,k,j))
469 t_max = max(t_max, grid%em_t_1(i,k,j))
470 ENDDO
471
472 ! rebalance hydrostatically
473
474 DO k = 2,kte
475 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
476 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
477 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
478
479 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
480 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
481 ENDDO
482
483 ENDDO
484 ENDDO
485
486 write(6,*) ' min and max theta perturbation ',t_min,t_max
487
488
489
490
491 ! -- end bubble insert
492
493 write(6,*) ' mu_1 from comp ', grid%em_mu_1(1,1)
494 write(6,*) ' full state sounding from comp, ph, p, al, t_1, qv '
495 do k=1,kde-1
496 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
497 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
498 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
499 enddo
500
501 write(6,*) ' pert state sounding from comp, ph_1, pp, alp, t_1, qv '
502 do k=1,kde-1
503 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
504 grid%em_p(1,k,1), grid%em_al(1,k,1), &
505 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
506 enddo
507
508 write(6,*) ' '
509 write(6,*) ' k, model level, dz '
510 do k=1,kde-1
511 write(6,'(i3,1x,e12.5,1x,f10.2)') k, &
512 .5*(grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1)+grid%em_ph_1(1,k+1,1)+grid%em_phb(1,k+1,1))/g, &
513 (grid%em_ph_1(1,k+1,1)+grid%em_phb(1,k+1,1)-grid%em_ph_1(1,k,1)-grid%em_phb(1,k,1))/g
514 enddo
515 write(6,*) ' model top (m) is ', (grid%em_ph_1(1,kde,1)+grid%em_phb(1,kde,1))/g
516
517
518 ! interp v
519
520 DO J = jts, jte
521 DO I = its, min(ide-1,ite)
522
523 IF (j == jds) THEN
524 z_at_v = grid%em_phb(i,1,j)/g
525 ELSE IF (j == jde) THEN
526 z_at_v = grid%em_phb(i,1,j-1)/g
527 ELSE
528 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
529 END IF
530
531 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
532
533 DO K = 1, kte
534 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
535 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
536 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
537 ENDDO
538
539 ENDDO
540 ENDDO
541
542 ! interp u
543
544 DO J = jts, min(jde-1,jte)
545 DO I = its, ite
546
547 IF (i == ids) THEN
548 z_at_u = grid%em_phb(i,1,j)/g
549 ELSE IF (i == ide) THEN
550 z_at_u = grid%em_phb(i-1,1,j)/g
551 ELSE
552 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
553 END IF
554
555 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
556
557 DO K = 1, kte
558 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
559 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
560 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
561 ENDDO
562
563 ENDDO
564 ENDDO
565
566 ! set w
567
568 DO J = jts, min(jde-1,jte)
569 DO K = kts, kte
570 DO I = its, min(ide-1,ite)
571 grid%em_w_1(i,k,j) = 0.
572 grid%em_w_2(i,k,j) = 0.
573 ENDDO
574 ENDDO
575 ENDDO
576
577 ! set a few more things
578
579 DO J = jts, min(jde-1,jte)
580 DO K = kts, kte-1
581 DO I = its, min(ide-1,ite)
582 grid%h_diabatic(i,k,j) = 0.
583 ENDDO
584 ENDDO
585 ENDDO
586
587 DO k=1,kte-1
588 grid%em_t_base(k) = grid%em_t_1(1,k,1)
589 grid%qv_base(k) = moist(1,k,1,P_QV)
590 grid%u_base(k) = grid%em_u_1(1,k,1)
591 grid%v_base(k) = grid%em_v_1(1,k,1)
592 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
593 ENDDO
594
595 DO J = jts, min(jde-1,jte)
596 DO I = its, min(ide-1,ite)
597 thtmp = grid%em_t_2(i,1,j)+t0
598 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
599 temp(1) = thtmp * (ptmp/p1000mb)**rcp
600 thtmp = grid%em_t_2(i,2,j)+t0
601 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
602 temp(2) = thtmp * (ptmp/p1000mb)**rcp
603 thtmp = grid%em_t_2(i,3,j)+t0
604 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
605 temp(3) = thtmp * (ptmp/p1000mb)**rcp
606
607 grid%TSK(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
608 grid%TMN(I,J)=grid%TSK(I,J)-0.5
609 ENDDO
610 ENDDO
611
612 RETURN
613
614 END SUBROUTINE init_domain_rk
615
616 SUBROUTINE init_module_initialize
617 END SUBROUTINE init_module_initialize
618
619 !---------------------------------------------------------------------
620
621 ! test driver for get_sounding
622 !
623 ! implicit none
624 ! integer n
625 ! parameter(n = 1000)
626 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
627 ! logical dry
628 ! integer nl,k
629 !
630 ! dry = .false.
631 ! dry = .true.
632 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
633 ! write(6,*) ' input levels ',nl
634 ! write(6,*) ' sounding '
635 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
636 ! do k=1,nl
637 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
638 ! enddo
639 ! end
640 !
641 !---------------------------------------------------------------------------
642
643 subroutine get_sounding( zk, p, p_dry, theta, rho, &
644 u, v, qv, dry, nl_max, nl_in, base_state )
645 implicit none
646
647 integer nl_max, nl_in
648 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
649 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
650 logical dry
651 logical base_state
652
653 integer n, iz
654 parameter(n=1000)
655 logical debug
656 parameter( debug = .false.)
657
658 ! input sounding data
659
660 real p_surf, th_surf, qv_surf
661 real pi_surf, pi(n)
662 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
663
664 ! diagnostics
665
666 real rho_surf, p_input(n), rho_input(n)
667 real pm_input(n) ! this are for full moist sounding
668
669 ! local data
670
671 real p1000mb,cv,cp,r,cvpm,g
672 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
673 integer k, it, nl
674 real qvf, qvf1, dz
675
676 ! first, read the sounding
677
678 call read_sounding( p_surf, th_surf, qv_surf, &
679 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
680
681 ! iz = 1
682 ! do k=2,nl
683 ! if(h_input(k) .lt. 12000.) iz = k
684 ! enddo
685 ! write(6,*) " tropopause ",iz,h_input(iz)
686 ! if(dry) then
687 ! write(6,*) ' nl is ',nl
688 ! do k=1,nl
689 ! th_input(k) = th_input(k)+10.+10*float(k)/nl
690 ! enddo
691 ! write(6,*) ' finished adjusting theta '
692 ! endif
693
694 ! do k=1,nl
695 ! u_input(k) = 2*u_input(k)
696 ! enddo
697 !
698 ! end if
699
700 if(dry) then
701 do k=1,nl
702 qv_input(k) = 0.
703 enddo
704 endif
705
706 if(debug) write(6,*) ' number of input levels = ',nl
707
708 nl_in = nl
709 if(nl_in .gt. nl_max ) then
710 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
711 call wrf_error_fatal ( ' too many levels for input arrays ' )
712 end if
713
714 ! compute diagnostics,
715 ! first, convert qv(g/kg) to qv(g/g)
716
717 do k=1,nl
718 qv_input(k) = 0.001*qv_input(k)
719 enddo
720
721 p_surf = 100.*p_surf ! convert to pascals
722 qvf = 1. + rvovrd*qv_input(1)
723 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
724 pi_surf = (p_surf/p1000mb)**(r/cp)
725
726 if(debug) then
727 write(6,*) ' surface density is ',rho_surf
728 write(6,*) ' surface pi is ',pi_surf
729 end if
730
731
732 ! integrate moist sounding hydrostatically, starting from the
733 ! specified surface pressure
734 ! -> first, integrate from surface to lowest level
735
736 qvf = 1. + rvovrd*qv_input(1)
737 qvf1 = 1. + qv_input(1)
738 rho_input(1) = rho_surf
739 dz = h_input(1)
740 do it=1,10
741 pm_input(1) = p_surf &
742 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
743 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
744 enddo
745
746 ! integrate up the column
747
748 do k=2,nl
749 rho_input(k) = rho_input(k-1)
750 dz = h_input(k)-h_input(k-1)
751 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
752 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
753
754 do it=1,20
755 pm_input(k) = pm_input(k-1) &
756 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
757 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
758 enddo
759 enddo
760
761 ! we have the moist sounding
762
763 ! next, compute the dry sounding using p at the highest level from the
764 ! moist sounding and integrating down.
765
766 p_input(nl) = pm_input(nl)
767
768 do k=nl-1,1,-1
769 dz = h_input(k+1)-h_input(k)
770 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
771 enddo
772
773 ! write(6,*) ' zeroing u input '
774
775 do k=1,nl
776
777 zk(k) = h_input(k)
778 p(k) = pm_input(k)
779 p_dry(k) = p_input(k)
780 theta(k) = th_input(k)
781 rho(k) = rho_input(k)
782 u(k) = u_input(k)
783 ! u(k) = 0.
784 v(k) = v_input(k)
785 qv(k) = qv_input(k)
786
787 enddo
788
789 if(debug) then
790 write(6,*) ' sounding '
791 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
792 do k=1,nl
793 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
794 enddo
795
796 end if
797
798 end subroutine get_sounding
799
800 !-------------------------------------------------------
801
802 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
803 implicit none
804 integer n,nl
805 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
806 logical end_of_file
807 logical debug
808
809 integer k
810
811 open(unit=10,file='input_sounding',form='formatted',status='old')
812 rewind(10)
813 read(10,*) ps, ts, qvs
814 if(debug) then
815 write(6,*) ' input sounding surface parameters '
816 write(6,*) ' surface pressure (mb) ',ps
817 write(6,*) ' surface pot. temp (K) ',ts
818 write(6,*) ' surface mixing ratio (g/kg) ',qvs
819 end if
820
821 end_of_file = .false.
822 k = 0
823
824 do while (.not. end_of_file)
825
826 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
827 k = k+1
828 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
829 go to 110
830 100 end_of_file = .true.
831 110 continue
832 enddo
833
834 nl = k
835
836 close(unit=10,status = 'keep')
837
838 end subroutine read_sounding
839
840 END MODULE module_initialize_ideal