module_initialize_hill2d_x.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42 ! NOTE: Modified to remove all but arrays of rank 4 or more from the
43 ! argument list. Arrays with rank>3 are still problematic due to the
44 ! above-noted fie- and pox-ities. TBH 20061129.
45
46 SUBROUTINE init_domain ( grid )
47
48 IMPLICIT NONE
49
50 ! Input data.
51 TYPE (domain), POINTER :: grid
52 ! Local data.
53 INTEGER :: dyn_opt
54 INTEGER :: idum1, idum2
55
56 CALL nl_get_dyn_opt( 1,dyn_opt )
57
58 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
59
60 IF ( dyn_opt .eq. 1 &
61 .or. dyn_opt .eq. 2 &
62 .or. dyn_opt .eq. 3 &
63 ) THEN
64 CALL init_domain_rk( grid &
65 !
66 #include <em_actual_new_args.inc>
67 !
68 )
69
70 ELSE
71 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
72 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
73 ENDIF
74
75 END SUBROUTINE init_domain
76
77 !-------------------------------------------------------------------
78
79 SUBROUTINE init_domain_rk ( grid &
80 !
81 # include <em_dummy_new_args.inc>
82 !
83 )
84 IMPLICIT NONE
85
86 ! Input data.
87 TYPE (domain), POINTER :: grid
88
89 # include <em_dummy_new_decl.inc>
90
91 TYPE (grid_config_rec_type) :: config_flags
92
93 ! Local data
94 INTEGER :: &
95 ids, ide, jds, jde, kds, kde, &
96 ims, ime, jms, jme, kms, kme, &
97 its, ite, jts, jte, kts, kte, &
98 i, j, k
99
100 ! Local data
101
102 INTEGER, PARAMETER :: nl_max = 1000
103 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
104 INTEGER :: nl_in
105
106
107 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
108 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
109 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
110 ! REAL, EXTERNAL :: interp_0
111 REAL :: hm, xa
112 REAL :: pi
113
114 ! stuff from original initialization that has been dropped from the Registry
115 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
116 REAL :: qvf1, qvf2, pd_surf
117 INTEGER :: it
118 real :: thtmp, ptmp, temp(3)
119
120 LOGICAL :: moisture_init
121 LOGICAL :: stretch_grid, dry_sounding
122
123 REAL :: xa1, xal1,pii,hm1 ! data for intercomparison setup from dale
124
125 #ifdef DM_PARALLEL
126 # include <em_data_calls.inc>
127 #endif
128
129
130 SELECT CASE ( model_data_order )
131 CASE ( DATA_ORDER_ZXY )
132 kds = grid%sd31 ; kde = grid%ed31 ;
133 ids = grid%sd32 ; ide = grid%ed32 ;
134 jds = grid%sd33 ; jde = grid%ed33 ;
135
136 kms = grid%sm31 ; kme = grid%em31 ;
137 ims = grid%sm32 ; ime = grid%em32 ;
138 jms = grid%sm33 ; jme = grid%em33 ;
139
140 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
141 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
142 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
143 CASE ( DATA_ORDER_XYZ )
144 ids = grid%sd31 ; ide = grid%ed31 ;
145 jds = grid%sd32 ; jde = grid%ed32 ;
146 kds = grid%sd33 ; kde = grid%ed33 ;
147
148 ims = grid%sm31 ; ime = grid%em31 ;
149 jms = grid%sm32 ; jme = grid%em32 ;
150 kms = grid%sm33 ; kme = grid%em33 ;
151
152 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
153 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
154 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
155 CASE ( DATA_ORDER_XZY )
156 ids = grid%sd31 ; ide = grid%ed31 ;
157 kds = grid%sd32 ; kde = grid%ed32 ;
158 jds = grid%sd33 ; jde = grid%ed33 ;
159
160 ims = grid%sm31 ; ime = grid%em31 ;
161 kms = grid%sm32 ; kme = grid%em32 ;
162 jms = grid%sm33 ; jme = grid%em33 ;
163
164 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
165 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
166 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
167
168 END SELECT
169
170
171 hm = 100.
172 xa = 5.0
173
174 icm = ide/2
175
176
177 xa1 = 5000./500.
178 xal1 = 4000./500.
179 pii = 2.*asin(1.0)
180 hm1 = 250.
181 ! hm1 = 1000.
182
183
184 stretch_grid = .true.
185 ! z_scale = .50
186 z_scale = .40
187 pi = 2.*asin(1.0)
188 write(6,*) ' pi is ',pi
189 nxc = (ide-ids)/4
190 nyc = (jde-jds)/2
191
192 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
193
194 ! here we check to see if the boundary conditions are set properly
195
196 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
197
198 moisture_init = .true.
199
200 grid%itimestep=0
201
202 #ifdef DM_PARALLEL
203 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
204 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
205 #endif
206
207 CALL nl_set_mminlu(1,' ')
208 CALL nl_set_iswater(1,0)
209 CALL nl_set_cen_lat(1,40.)
210 CALL nl_set_cen_lon(1,-105.)
211 CALL nl_set_truelat1(1,0.)
212 CALL nl_set_truelat2(1,0.)
213 CALL nl_set_moad_cen_lat (1,0.)
214 CALL nl_set_stand_lon (1,0.)
215 CALL nl_set_map_proj(1,0)
216
217
218 ! here we initialize data we currently is not initialized
219 ! in the input data
220
221 DO j = jts, jte
222 DO i = its, ite
223 grid%msft(i,j) = 1.
224 grid%msfu(i,j) = 1.
225 grid%msfv(i,j) = 1.
226 grid%sina(i,j) = 0.
227 grid%cosa(i,j) = 1.
228 grid%e(i,j) = 0.
229 grid%f(i,j) = 0.
230
231 END DO
232 END DO
233
234 DO j = jts, jte
235 DO k = kts, kte
236 DO i = its, ite
237 grid%em_ww(i,k,j) = 0.
238 END DO
239 END DO
240 END DO
241
242 grid%step_number = 0
243
244 ! set up the grid
245
246 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
247 DO k=1, kde
248 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
249 (1.-exp(-1./z_scale))
250 ENDDO
251 ELSE
252 DO k=1, kde
253 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
254 ENDDO
255 ENDIF
256
257 DO k=1, kde-1
258 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
259 grid%em_rdnw(k) = 1./grid%em_dnw(k)
260 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
261 ENDDO
262 DO k=2, kde-1
263 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
264 grid%em_rdn(k) = 1./grid%em_dn(k)
265 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
266 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
267 ENDDO
268
269 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
270 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
271 grid%cf1 = grid%em_fnp(2) + cof1
272 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
273 grid%cf3 = cof2
274
275 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
276 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
277 grid%rdx = 1./config_flags%dx
278 grid%rdy = 1./config_flags%dy
279
280 ! get the sounding from the ascii sounding file, first get dry sounding and
281 ! calculate base state
282
283 write(6,*) ' getting dry sounding for base state '
284 dry_sounding = .true.
285 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
286 nl_max, nl_in, .true.)
287
288 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
289
290
291 ! find ptop for the desired ztop (ztop is input from the namelist),
292 ! and find surface pressure
293
294 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
295
296 DO j=jts,jte
297 DO i=its,ite ! flat surface
298 !! grid%ht(i,j) = 0.
299 grid%ht(i,j) = hm/(1.+(float(i-icm)/xa)**2)
300 ! grid%ht(i,j) = hm1*exp(-(( float(i-icm)/xa1)**2)) &
301 ! *( (cos(pii*float(i-icm)/xal1))**2 )
302 grid%em_phb(i,1,j) = g*grid%ht(i,j)
303 grid%em_php(i,1,j) = 0.
304 grid%em_ph0(i,1,j) = grid%em_phb(i,1,j)
305 ENDDO
306 ENDDO
307
308 DO J = jts, jte
309 DO I = its, ite
310
311 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
312 grid%em_mub(i,j) = p_surf-grid%p_top
313
314 ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
315 ! interp theta (from interp) and compute 1/rho from eqn. of state
316
317 DO K = 1, kte-1
318 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
319 grid%em_pb(i,k,j) = p_level
320 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
321 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
322 ENDDO
323
324 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
325 ! sounding, but this assures that the base state is in exact hydrostatic balance with
326 ! respect to the model eqns.
327
328 DO k = 2,kte
329 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
330 ENDDO
331
332 ENDDO
333 ENDDO
334
335 write(6,*) ' ptop is ',grid%p_top
336 write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
337
338 ! calculate full state for each column - this includes moisture.
339
340 write(6,*) ' getting moist sounding for full state '
341 dry_sounding = .false.
342 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, &
343 nl_max, nl_in, .false. )
344
345 DO J = jts, min(jde-1,jte)
346 DO I = its, min(ide-1,ite)
347
348 ! At this point grid%p_top is already set. find the DRY mass in the column
349 ! by interpolating the DRY pressure.
350
351 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
352
353 ! compute the perturbation mass and the full mass
354
355 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
356 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
357 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
358
359 ! given the dry pressure and coordinate system, interp the potential
360 ! temperature and qv
361
362 do k=1,kde-1
363
364 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
365
366 moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
367 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
368 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
369
370
371 enddo
372
373 ! integrate the hydrostatic equation (from the RHS of the bigstep
374 ! vertical momentum equation) down from the top to get grid%em_p.
375 ! first from the top of the model to the top pressure
376
377 k = kte-1 ! top level
378
379 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
380 qvf2 = 1./(1.+qvf1)
381 qvf1 = qvf1*qvf2
382
383 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
384 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
385 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
386 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
387 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
388 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
389
390 ! down the column
391
392 do k=kte-2,1,-1
393 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
394 qvf2 = 1./(1.+qvf1)
395 qvf1 = qvf1*qvf2
396 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
397 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
398 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
399 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
400 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
401 enddo
402
403 ! this is the hydrostatic equation used in the model after the
404 ! small timesteps. In the model, grid%em_al (inverse density)
405 ! is computed from the geopotential.
406
407
408 grid%em_ph_1(i,1,j) = 0.
409 DO k = 2,kte
410 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
411 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
412 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
413
414 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
415 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
416 ENDDO
417
418 if((i==2) .and. (j==2)) then
419 write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
420 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
421 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
422 endif
423
424 ENDDO
425 ENDDO
426
427 write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
428 write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
429 do k=1,kde-1
430 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
431 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
432 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
433 enddo
434
435 write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
436 do k=1,kde-1
437 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
438 grid%em_p(1,k,1), grid%em_al(1,k,1), &
439 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
440 enddo
441
442 ! interp v
443
444 DO J = jts, jte
445 DO I = its, min(ide-1,ite)
446
447 IF (j == jds) THEN
448 z_at_v = grid%em_phb(i,1,j)/g
449 ELSE IF (j == jde) THEN
450 z_at_v = grid%em_phb(i,1,j-1)/g
451 ELSE
452 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
453 END IF
454
455 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
456
457 DO K = 1, kte
458 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
459 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
460 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
461 ENDDO
462
463 ENDDO
464 ENDDO
465
466 ! interp u
467
468 DO J = jts, min(jde-1,jte)
469 DO I = its, ite
470
471 IF (i == ids) THEN
472 z_at_u = grid%em_phb(i,1,j)/g
473 ELSE IF (i == ide) THEN
474 z_at_u = grid%em_phb(i-1,1,j)/g
475 ELSE
476 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
477 END IF
478
479 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
480
481 DO K = 1, kte
482 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
483 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
484 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
485 ENDDO
486
487 ENDDO
488 ENDDO
489
490 ! set w
491
492 DO J = jts, min(jde-1,jte)
493 DO K = kts, kte
494 DO I = its, min(ide-1,ite)
495 grid%em_w_1(i,k,j) = 0.
496 grid%em_w_2(i,k,j) = 0.
497 ENDDO
498 ENDDO
499 ENDDO
500
501 ! set a few more things
502
503 DO J = jts, min(jde-1,jte)
504 DO K = kts, kte-1
505 DO I = its, min(ide-1,ite)
506 grid%h_diabatic(i,k,j) = 0.
507 ENDDO
508 ENDDO
509 ENDDO
510
511 DO k=1,kte-1
512 grid%em_t_base(k) = grid%em_t_1(1,k,1)
513 grid%qv_base(k) = moist(1,k,1,P_QV)
514 grid%u_base(k) = grid%em_u_1(1,k,1)
515 grid%v_base(k) = grid%em_v_1(1,k,1)
516 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
517 ENDDO
518
519 DO J = jts, min(jde-1,jte)
520 DO I = its, min(ide-1,ite)
521 thtmp = grid%em_t_2(i,1,j)+t0
522 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
523 temp(1) = thtmp * (ptmp/p1000mb)**rcp
524 thtmp = grid%em_t_2(i,2,j)+t0
525 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
526 temp(2) = thtmp * (ptmp/p1000mb)**rcp
527 thtmp = grid%em_t_2(i,3,j)+t0
528 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
529 temp(3) = thtmp * (ptmp/p1000mb)**rcp
530
531 grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
532 grid%tmn(I,J)=grid%tsk(I,J)-0.5
533 ENDDO
534 ENDDO
535
536 RETURN
537
538 END SUBROUTINE init_domain_rk
539
540 SUBROUTINE init_module_initialize
541 END SUBROUTINE init_module_initialize
542
543 !---------------------------------------------------------------------
544
545 ! test driver for get_sounding
546 !
547 ! implicit none
548 ! integer n
549 ! parameter(n = 1000)
550 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
551 ! logical dry
552 ! integer nl,k
553 !
554 ! dry = .false.
555 ! dry = .true.
556 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
557 ! write(6,*) ' input levels ',nl
558 ! write(6,*) ' sounding '
559 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
560 ! do k=1,nl
561 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
562 ! enddo
563 ! end
564 !
565 !---------------------------------------------------------------------------
566
567 subroutine get_sounding( zk, p, p_dry, theta, rho, &
568 u, v, qv, dry, nl_max, nl_in, base_state )
569 implicit none
570
571 integer nl_max, nl_in
572 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
573 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
574 logical dry
575 logical base_state
576
577 integer n, iz
578 parameter(n=1000)
579 logical debug
580 parameter( debug = .false.)
581
582 ! input sounding data
583
584 real p_surf, th_surf, qv_surf
585 real pi_surf, pi(n)
586 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
587
588 ! diagnostics
589
590 real rho_surf, p_input(n), rho_input(n)
591 real pm_input(n) ! this are for full moist sounding
592
593 ! local data
594
595 real p1000mb,cv,cp,r,cvpm,g
596 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
597 integer k, it, nl
598 real qvf, qvf1, dz
599
600 ! first, read the sounding
601
602 call read_sounding( p_surf, th_surf, qv_surf, &
603 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
604
605 ! iz = 1
606 ! do k=2,nl
607 ! if(h_input(k) .lt. 12000.) iz = k
608 ! enddo
609 ! write(6,*) " tropopause ",iz,h_input(iz)
610 ! if(dry) then
611 ! write(6,*) ' nl is ',nl
612 ! do k=1,nl
613 ! th_input(k) = th_input(k)+10.+10*float(k)/nl
614 ! enddo
615 ! write(6,*) ' finished adjusting theta '
616 ! endif
617
618 ! do k=1,nl
619 ! u_input(k) = 2*u_input(k)
620 ! enddo
621 !
622 ! end if
623
624 if(dry) then
625 do k=1,nl
626 qv_input(k) = 0.
627 enddo
628 endif
629
630 if(debug) write(6,*) ' number of input levels = ',nl
631
632 nl_in = nl
633 if(nl_in .gt. nl_max ) then
634 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
635 call wrf_error_fatal ( ' too many levels for input arrays ' )
636 end if
637
638 ! compute diagnostics,
639 ! first, convert qv(g/kg) to qv(g/g)
640
641 do k=1,nl
642 qv_input(k) = 0.001*qv_input(k)
643 enddo
644
645 p_surf = 100.*p_surf ! convert to pascals
646 qvf = 1. + rvovrd*qv_input(1)
647 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
648 pi_surf = (p_surf/p1000mb)**(r/cp)
649
650 if(debug) then
651 write(6,*) ' surface density is ',rho_surf
652 write(6,*) ' surface pi is ',pi_surf
653 end if
654
655
656 ! integrate moist sounding hydrostatically, starting from the
657 ! specified surface pressure
658 ! -> first, integrate from surface to lowest level
659
660 qvf = 1. + rvovrd*qv_input(1)
661 qvf1 = 1. + qv_input(1)
662 rho_input(1) = rho_surf
663 dz = h_input(1)
664 do it=1,10
665 pm_input(1) = p_surf &
666 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
667 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
668 enddo
669
670 ! integrate up the column
671
672 do k=2,nl
673 rho_input(k) = rho_input(k-1)
674 dz = h_input(k)-h_input(k-1)
675 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
676 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
677
678 do it=1,20
679 pm_input(k) = pm_input(k-1) &
680 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
681 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
682 enddo
683 enddo
684
685 ! we have the moist sounding
686
687 ! next, compute the dry sounding using p at the highest level from the
688 ! moist sounding and integrating down.
689
690 p_input(nl) = pm_input(nl)
691
692 do k=nl-1,1,-1
693 dz = h_input(k+1)-h_input(k)
694 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
695 enddo
696
697 ! write(6,*) ' zeroing u input '
698
699 do k=1,nl
700
701 zk(k) = h_input(k)
702 p(k) = pm_input(k)
703 p_dry(k) = p_input(k)
704 theta(k) = th_input(k)
705 rho(k) = rho_input(k)
706 u(k) = u_input(k)
707 ! u(k) = 0.
708 v(k) = v_input(k)
709 qv(k) = qv_input(k)
710
711 enddo
712
713 if(debug) then
714 write(6,*) ' sounding '
715 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
716 do k=1,nl
717 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
718 enddo
719
720 end if
721
722 end subroutine get_sounding
723
724 !-------------------------------------------------------
725
726 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
727 implicit none
728 integer n,nl
729 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
730 logical end_of_file
731 logical debug
732
733 integer k
734
735 open(unit=10,file='input_sounding',form='formatted',status='old')
736 rewind(10)
737 read(10,*) ps, ts, qvs
738 if(debug) then
739 write(6,*) ' input sounding surface parameters '
740 write(6,*) ' surface pressure (mb) ',ps
741 write(6,*) ' surface pot. temp (K) ',ts
742 write(6,*) ' surface mixing ratio (g/kg) ',qvs
743 end if
744
745 end_of_file = .false.
746 k = 0
747
748 do while (.not. end_of_file)
749
750 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
751 k = k+1
752 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
753 go to 110
754 100 end_of_file = .true.
755 110 continue
756 enddo
757
758 nl = k
759
760 close(unit=10,status = 'keep')
761
762 end subroutine read_sounding
763
764 END MODULE module_initialize_ideal