module_initialize_quarter_ss.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42
43 SUBROUTINE init_domain ( grid )
44
45 IMPLICIT NONE
46
47 ! Input data.
48 TYPE (domain), POINTER :: grid
49 ! Local data.
50 INTEGER :: dyn_opt
51 INTEGER :: idum1, idum2
52
53 CALL nl_get_dyn_opt( 1, dyn_opt )
54
55 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56
57 IF ( dyn_opt .eq. 1 &
58 .or. dyn_opt .eq. 2 &
59 .or. dyn_opt .eq. 3 &
60 ) THEN
61 CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65 )
66
67 ELSE
68 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70 ENDIF
71
72 END SUBROUTINE init_domain
73
74 !-------------------------------------------------------------------
75
76 SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81 IMPLICIT NONE
82
83 ! Input data.
84 TYPE (domain), POINTER :: grid
85
86 # include <em_dummy_new_decl.inc>
87
88 TYPE (grid_config_rec_type) :: config_flags
89
90 ! Local data
91 INTEGER :: &
92 ids, ide, jds, jde, kds, kde, &
93 ims, ime, jms, jme, kms, kme, &
94 its, ite, jts, jte, kts, kte, &
95 i, j, k
96
97 ! Local data
98
99 INTEGER, PARAMETER :: nl_max = 1000
100 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101 INTEGER :: nl_in
102
103
104 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
107 ! REAL, EXTERNAL :: interp_0
108 REAL :: hm
109 REAL :: pi
110
111 ! stuff from original initialization that has been dropped from the Registry
112 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113 REAL :: qvf1, qvf2, pd_surf
114 INTEGER :: it
115 real :: thtmp, ptmp, temp(3)
116
117 LOGICAL :: moisture_init
118 LOGICAL :: stretch_grid, dry_sounding
119
120 INTEGER :: xs , xe , ys , ye
121 REAL :: mtn_ht
122 LOGICAL, EXTERNAL :: wrf_dm_on_monitor
123
124 #ifdef DM_PARALLEL
125 # include <em_data_calls.inc>
126 #endif
127
128
129 SELECT CASE ( model_data_order )
130 CASE ( DATA_ORDER_ZXY )
131 kds = grid%sd31 ; kde = grid%ed31 ;
132 ids = grid%sd32 ; ide = grid%ed32 ;
133 jds = grid%sd33 ; jde = grid%ed33 ;
134
135 kms = grid%sm31 ; kme = grid%em31 ;
136 ims = grid%sm32 ; ime = grid%em32 ;
137 jms = grid%sm33 ; jme = grid%em33 ;
138
139 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
140 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
141 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
142 CASE ( DATA_ORDER_XYZ )
143 ids = grid%sd31 ; ide = grid%ed31 ;
144 jds = grid%sd32 ; jde = grid%ed32 ;
145 kds = grid%sd33 ; kde = grid%ed33 ;
146
147 ims = grid%sm31 ; ime = grid%em31 ;
148 jms = grid%sm32 ; jme = grid%em32 ;
149 kms = grid%sm33 ; kme = grid%em33 ;
150
151 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
152 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
153 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
154 CASE ( DATA_ORDER_XZY )
155 ids = grid%sd31 ; ide = grid%ed31 ;
156 kds = grid%sd32 ; kde = grid%ed32 ;
157 jds = grid%sd33 ; jde = grid%ed33 ;
158
159 ims = grid%sm31 ; ime = grid%em31 ;
160 kms = grid%sm32 ; kme = grid%em32 ;
161 jms = grid%sm33 ; jme = grid%em33 ;
162
163 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
164 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
165 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
166
167 END SELECT
168
169
170 stretch_grid = .true.
171 delt = 3.
172 ! z_scale = .50
173 z_scale = .40
174 pi = 2.*asin(1.0)
175 write(6,*) ' pi is ',pi
176 nxc = (ide-ids)/2
177 nyc = (jde-jds)/2
178
179 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
180
181 ! here we check to see if the boundary conditions are set properly
182
183 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
184
185 moisture_init = .true.
186
187 grid%itimestep=0
188
189 #ifdef DM_PARALLEL
190 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
191 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
192 #endif
193
194 CALL nl_set_mminlu(1, ' ')
195 CALL nl_set_iswater(1,0)
196 CALL nl_set_cen_lat(1,40.)
197 CALL nl_set_cen_lon(1,-105.)
198 CALL nl_set_truelat1(1,0.)
199 CALL nl_set_truelat2(1,0.)
200 CALL nl_set_moad_cen_lat (1,0.)
201 CALL nl_set_stand_lon (1,0.)
202 CALL nl_set_map_proj(1,0)
203
204
205 ! here we initialize data we currently is not initialized
206 ! in the input data
207
208 DO j = jts, jte
209 DO i = its, ite
210 grid%msft(i,j) = 1.
211 grid%msfu(i,j) = 1.
212 grid%msfv(i,j) = 1.
213 grid%sina(i,j) = 0.
214 grid%cosa(i,j) = 1.
215 grid%e(i,j) = 0.
216 grid%f(i,j) = 0.
217
218 END DO
219 END DO
220
221 DO j = jts, jte
222 DO k = kts, kte
223 DO i = its, ite
224 grid%em_ww(i,k,j) = 0.
225 END DO
226 END DO
227 END DO
228
229 grid%step_number = 0
230
231 ! set up the grid
232
233 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
234 DO k=1, kde
235 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
236 (1.-exp(-1./z_scale))
237 ENDDO
238 ELSE
239 DO k=1, kde
240 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
241 ENDDO
242 ENDIF
243
244 DO k=1, kde-1
245 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
246 grid%em_rdnw(k) = 1./grid%em_dnw(k)
247 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
248 ENDDO
249 DO k=2, kde-1
250 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
251 grid%em_rdn(k) = 1./grid%em_dn(k)
252 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
253 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
254 ENDDO
255
256 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
257 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
258 grid%cf1 = grid%em_fnp(2) + cof1
259 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
260 grid%cf3 = cof2
261
262 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
263 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
264 grid%rdx = 1./config_flags%dx
265 grid%rdy = 1./config_flags%dy
266
267 ! get the sounding from the ascii sounding file, first get dry sounding and
268 ! calculate base state
269
270 dry_sounding = .true.
271 IF ( wrf_dm_on_monitor() ) THEN
272 write(6,*) ' getting dry sounding for base state '
273
274 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
275 ENDIF
276 CALL wrf_dm_bcast_real( zk , nl_max )
277 CALL wrf_dm_bcast_real( p_in , nl_max )
278 CALL wrf_dm_bcast_real( pd_in , nl_max )
279 CALL wrf_dm_bcast_real( theta , nl_max )
280 CALL wrf_dm_bcast_real( rho , nl_max )
281 CALL wrf_dm_bcast_real( u , nl_max )
282 CALL wrf_dm_bcast_real( v , nl_max )
283 CALL wrf_dm_bcast_real( qv , nl_max )
284 CALL wrf_dm_bcast_integer ( nl_in , 1 )
285
286 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
287
288 ! find ptop for the desired ztop (ztop is input from the namelist),
289 ! and find surface pressure
290
291 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
292
293 DO j=jts,jte
294 DO i=its,ite
295 grid%ht(i,j) = 0.
296 ENDDO
297 ENDDO
298
299 xs=ide/2 -3
300 xs=ids -3
301 xe=xs + 6
302 ys=jde/2 -3
303 ye=ys + 6
304 mtn_ht = 500
305 #ifdef MTN
306 DO j=max(ys,jds),min(ye,jde-1)
307 DO i=max(xs,ids),min(xe,ide-1)
308 grid%ht(i,j) = mtn_ht * 0.25 * &
309 ( 1. + COS ( 2*pi/(xe-xs) * ( i-xs ) + pi ) ) * &
310 ( 1. + COS ( 2*pi/(ye-ys) * ( j-ys ) + pi ) )
311 ENDDO
312 ENDDO
313 #endif
314 #ifdef EW_RIDGE
315 DO j=max(ys,jds),min(ye,jde-1)
316 DO i=ids,ide
317 grid%ht(i,j) = mtn_ht * 0.50 * &
318 ( 1. + COS ( 2*pi/(ye-ys) * ( j-ys ) + pi ) )
319 ENDDO
320 ENDDO
321 #endif
322 #ifdef NS_RIDGE
323 DO j=jds,jde
324 DO i=max(xs,ids),min(xe,ide-1)
325 grid%ht(i,j) = mtn_ht * 0.50 * &
326 ( 1. + COS ( 2*pi/(xe-xs) * ( i-xs ) + pi ) )
327 ENDDO
328 ENDDO
329 #endif
330 DO j=jts,jte
331 DO i=its,ite
332 grid%em_phb(i,1,j) = g * grid%ht(i,j)
333 grid%em_ph0(i,1,j) = g * grid%ht(i,j)
334 ENDDO
335 ENDDO
336
337 DO J = jts, jte
338 DO I = its, ite
339
340 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
341 grid%em_mub(i,j) = p_surf-grid%p_top
342
343 ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
344 ! interp theta (from interp) and compute 1/rho from eqn. of state
345
346 DO K = 1, kte-1
347 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
348 grid%em_pb(i,k,j) = p_level
349 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
350 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
351 ENDDO
352
353 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
354 ! sounding, but this assures that the base state is in exact hydrostatic balance with
355 ! respect to the model eqns.
356
357 DO k = 2,kte
358 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
359 ENDDO
360
361 ENDDO
362 ENDDO
363
364 IF ( wrf_dm_on_monitor() ) THEN
365 write(6,*) ' ptop is ',grid%p_top
366 write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
367 ENDIF
368
369 ! calculate full state for each column - this includes moisture.
370
371 write(6,*) ' getting moist sounding for full state '
372 dry_sounding = .false.
373 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
374
375 DO J = jts, min(jde-1,jte)
376 DO I = its, min(ide-1,ite)
377
378 ! At this point grid%p_top is already set. find the DRY mass in the column
379 ! by interpolating the DRY pressure.
380
381 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
382
383 ! compute the perturbation mass and the full mass
384
385 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
386 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
387 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
388
389 ! given the dry pressure and coordinate system, interp the potential
390 ! temperature and qv
391
392 do k=1,kde-1
393
394 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
395
396 moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
397 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
398 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
399
400
401 enddo
402
403 ! integrate the hydrostatic equation (from the RHS of the bigstep
404 ! vertical momentum equation) down from the top to get grid%em_p.
405 ! first from the top of the model to the top pressure
406
407 k = kte-1 ! top level
408
409 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
410 qvf2 = 1./(1.+qvf1)
411 qvf1 = qvf1*qvf2
412
413 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
414 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
415 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
416 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
417 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
418 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
419
420 ! down the column
421
422 do k=kte-2,1,-1
423 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
424 qvf2 = 1./(1.+qvf1)
425 qvf1 = qvf1*qvf2
426 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
427 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
428 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
429 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
430 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
431 enddo
432
433 ! this is the hydrostatic equation used in the model after the
434 ! small timesteps. In the model, grid%em_al (inverse density)
435 ! is computed from the geopotential.
436
437
438 grid%em_ph_1(i,1,j) = 0.
439 DO k = 2,kte
440 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
441 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
442 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
443
444 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
445 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
446 ENDDO
447
448 IF ( wrf_dm_on_monitor() ) THEN
449 if((i==2) .and. (j==2)) then
450 write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
451 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
452 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
453 endif
454 ENDIF
455
456 ENDDO
457 ENDDO
458
459 !#if 0
460
461 ! thermal perturbation to kick off convection
462
463 write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
464 write(6,*) ' delt for perturbation ',delt
465
466 DO J = jts, min(jde-1,jte)
467 yrad = config_flags%dy*float(j-nyc)/10000.
468 ! yrad = 0.
469 DO I = its, min(ide-1,ite)
470 xrad = config_flags%dx*float(i-nxc)/10000.
471 ! xrad = 0.
472 DO K = 1, kte-1
473
474 ! put in preturbation theta (bubble) and recalc density. note,
475 ! the mass in the column is not changing, so when theta changes,
476 ! we recompute density and geopotential
477
478 zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) &
479 +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
480 zrad = (zrad-1500.)/1500.
481 RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
482 IF(RAD <= 1.) THEN
483 grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
484 grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
485 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
486 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
487 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
488 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
489 ENDIF
490 ENDDO
491
492 ! rebalance hydrostatically
493
494 DO k = 2,kte
495 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
496 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
497 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
498
499 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
500 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
501 ENDDO
502
503 ENDDO
504 ENDDO
505
506 !#endif
507
508 IF ( wrf_dm_on_monitor() ) THEN
509 write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
510 write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
511 do k=1,kde-1
512 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
513 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
514 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
515 enddo
516
517 write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
518 do k=1,kde-1
519 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
520 grid%em_p(1,k,1), grid%em_al(1,k,1), &
521 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
522 enddo
523 ENDIF
524
525 ! interp v
526
527 DO J = jts, jte
528 DO I = its, min(ide-1,ite)
529
530 IF (j == jds) THEN
531 z_at_v = grid%em_phb(i,1,j)/g
532 ELSE IF (j == jde) THEN
533 z_at_v = grid%em_phb(i,1,j-1)/g
534 ELSE
535 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
536 END IF
537 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
538
539 DO K = 1, kte-1
540 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
541 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
542 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
543 ENDDO
544
545 ENDDO
546 ENDDO
547
548 ! interp u
549
550 DO J = jts, min(jde-1,jte)
551 DO I = its, ite
552
553 IF (i == ids) THEN
554 z_at_u = grid%em_phb(i,1,j)/g
555 ELSE IF (i == ide) THEN
556 z_at_u = grid%em_phb(i-1,1,j)/g
557 ELSE
558 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
559 END IF
560
561 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
562
563 DO K = 1, kte-1
564 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
565 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
566 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
567 ENDDO
568
569 ENDDO
570 ENDDO
571
572 ! set w
573
574 DO J = jts, min(jde-1,jte)
575 DO K = kts, kte
576 DO I = its, min(ide-1,ite)
577 grid%em_w_1(i,k,j) = 0.
578 grid%em_w_2(i,k,j) = 0.
579 ENDDO
580 ENDDO
581 ENDDO
582
583 ! set a few more things
584
585 DO J = jts, min(jde-1,jte)
586 DO K = kts, kte-1
587 DO I = its, min(ide-1,ite)
588 grid%h_diabatic(i,k,j) = 0.
589 ENDDO
590 ENDDO
591 ENDDO
592
593 IF ( wrf_dm_on_monitor() ) THEN
594 DO k=1,kte-1
595 grid%em_t_base(k) = grid%em_t_1(1,k,1)
596 grid%qv_base(k) = moist(1,k,1,P_QV)
597 grid%u_base(k) = grid%em_u_1(1,k,1)
598 grid%v_base(k) = grid%em_v_1(1,k,1)
599 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
600 ENDDO
601 ENDIF
602 CALL wrf_dm_bcast_real( grid%em_t_base , kte )
603 CALL wrf_dm_bcast_real( grid%qv_base , kte )
604 CALL wrf_dm_bcast_real( grid%u_base , kte )
605 CALL wrf_dm_bcast_real( grid%v_base , kte )
606 CALL wrf_dm_bcast_real( grid%z_base , kte )
607
608 DO J = jts, min(jde-1,jte)
609 DO I = its, min(ide-1,ite)
610 thtmp = grid%em_t_2(i,1,j)+t0
611 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
612 temp(1) = thtmp * (ptmp/p1000mb)**rcp
613 thtmp = grid%em_t_2(i,2,j)+t0
614 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
615 temp(2) = thtmp * (ptmp/p1000mb)**rcp
616 thtmp = grid%em_t_2(i,3,j)+t0
617 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
618 temp(3) = thtmp * (ptmp/p1000mb)**rcp
619
620 grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
621 grid%tmn(I,J)=grid%tsk(I,J)-0.5
622 ENDDO
623 ENDDO
624
625 END SUBROUTINE init_domain_rk
626
627 SUBROUTINE init_module_initialize
628 END SUBROUTINE init_module_initialize
629
630 !---------------------------------------------------------------------
631
632 ! test driver for get_sounding
633 !
634 ! implicit none
635 ! integer n
636 ! parameter(n = 1000)
637 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
638 ! logical dry
639 ! integer nl,k
640 !
641 ! dry = .false.
642 ! dry = .true.
643 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
644 ! write(6,*) ' input levels ',nl
645 ! write(6,*) ' sounding '
646 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
647 ! do k=1,nl
648 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
649 ! enddo
650 ! end
651 !
652 !---------------------------------------------------------------------------
653
654 subroutine get_sounding( zk, p, p_dry, theta, rho, &
655 u, v, qv, dry, nl_max, nl_in )
656 implicit none
657
658 integer nl_max, nl_in
659 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
660 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
661 logical dry
662
663 integer n
664 parameter(n=1000)
665 logical debug
666 parameter( debug = .true.)
667
668 ! input sounding data
669
670 real p_surf, th_surf, qv_surf
671 real pi_surf, pi(n)
672 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
673
674 ! diagnostics
675
676 real rho_surf, p_input(n), rho_input(n)
677 real pm_input(n) ! this are for full moist sounding
678
679 ! local data
680
681 real p1000mb,cv,cp,r,cvpm,g
682 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
683 integer k, it, nl
684 real qvf, qvf1, dz
685
686 ! first, read the sounding
687
688 call read_sounding( p_surf, th_surf, qv_surf, &
689 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
690
691 if(dry) then
692 do k=1,nl
693 qv_input(k) = 0.
694 enddo
695 endif
696
697 if(debug) write(6,*) ' number of input levels = ',nl
698
699 nl_in = nl
700 if(nl_in .gt. nl_max ) then
701 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
702 call wrf_error_fatal ( ' too many levels for input arrays ' )
703 end if
704
705 ! compute diagnostics,
706 ! first, convert qv(g/kg) to qv(g/g)
707
708 do k=1,nl
709 qv_input(k) = 0.001*qv_input(k)
710 enddo
711
712 p_surf = 100.*p_surf ! convert to pascals
713 qvf = 1. + rvovrd*qv_input(1)
714 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
715 pi_surf = (p_surf/p1000mb)**(r/cp)
716
717 if(debug) then
718 write(6,*) ' surface density is ',rho_surf
719 write(6,*) ' surface pi is ',pi_surf
720 end if
721
722
723 ! integrate moist sounding hydrostatically, starting from the
724 ! specified surface pressure
725 ! -> first, integrate from surface to lowest level
726
727 qvf = 1. + rvovrd*qv_input(1)
728 qvf1 = 1. + qv_input(1)
729 rho_input(1) = rho_surf
730 dz = h_input(1)
731 do it=1,10
732 pm_input(1) = p_surf &
733 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
734 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
735 enddo
736
737 ! integrate up the column
738
739 do k=2,nl
740 rho_input(k) = rho_input(k-1)
741 dz = h_input(k)-h_input(k-1)
742 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
743 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
744
745 do it=1,10
746 pm_input(k) = pm_input(k-1) &
747 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
748 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
749 enddo
750 enddo
751
752 ! we have the moist sounding
753
754 ! next, compute the dry sounding using p at the highest level from the
755 ! moist sounding and integrating down.
756
757 p_input(nl) = pm_input(nl)
758
759 do k=nl-1,1,-1
760 dz = h_input(k+1)-h_input(k)
761 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
762 enddo
763
764
765 do k=1,nl
766
767 zk(k) = h_input(k)
768 p(k) = pm_input(k)
769 p_dry(k) = p_input(k)
770 theta(k) = th_input(k)
771 rho(k) = rho_input(k)
772 u(k) = u_input(k)
773 v(k) = v_input(k)
774 qv(k) = qv_input(k)
775
776 enddo
777
778 if(debug) then
779 write(6,*) ' sounding '
780 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
781 do k=1,nl
782 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
783 enddo
784
785 end if
786
787 end subroutine get_sounding
788
789 !-------------------------------------------------------
790
791 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
792 implicit none
793 integer n,nl
794 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
795 logical end_of_file
796 logical debug
797
798 integer k
799
800 open(unit=10,file='input_sounding',form='formatted',status='old')
801 rewind(10)
802 read(10,*) ps, ts, qvs
803 if(debug) then
804 write(6,*) ' input sounding surface parameters '
805 write(6,*) ' surface pressure (mb) ',ps
806 write(6,*) ' surface pot. temp (K) ',ts
807 write(6,*) ' surface mixing ratio (g/kg) ',qvs
808 end if
809
810 end_of_file = .false.
811 k = 0
812
813 do while (.not. end_of_file)
814
815 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
816 k = k+1
817 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
818 go to 110
819 100 end_of_file = .true.
820 110 continue
821 enddo
822
823 nl = k
824
825 close(unit=10,status = 'keep')
826
827 end subroutine read_sounding
828
829 END MODULE module_initialize_ideal