module_initialize_squall2d_x.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3 
4 !  This MODULE holds the routines which are used to perform various initializations
5 !  for the individual domains.  
6 
7 !  This MODULE CONTAINS the following routines:
8 
9 !  initialize_field_test - 1. Set different fields to different constant
10 !                             values.  This is only a test.  If the correct
11 !                             domain is not found (based upon the "id")
12 !                             then a fatal error is issued.               
13 
14 !-----------------------------------------------------------------------
15 
16 MODULE module_initialize_ideal
17 
18    USE module_domain
19    USE module_io_domain
20    USE module_state_description
21    USE module_model_constants
22    USE module_bc
23    USE module_timing
24    USE module_configure
25    USE module_init_utilities
26 #ifdef DM_PARALLEL
27    USE module_dm
28 #endif
29 
30 
31 CONTAINS
32 
33 
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the 
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
42 ! NOTE:  Modified to remove all but arrays of rank 4 or more from the 
43 !        argument list.  Arrays with rank>3 are still problematic due to the 
44 !        above-noted fie- and pox-ities.  TBH 20061129.  
45 
46    SUBROUTINE init_domain ( grid )
47 
48    IMPLICIT NONE
49 
50    !  Input data.
51    TYPE (domain), POINTER :: grid 
52    !  Local data.
53    INTEGER                :: dyn_opt 
54    INTEGER :: idum1, idum2
55 
56    CALL nl_get_dyn_opt( 1, dyn_opt )
57    
58    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
59 
60    IF (      dyn_opt .eq. 1 &
61         .or. dyn_opt .eq. 2 &
62         .or. dyn_opt .eq. 3 &
63                                        ) THEN
64      CALL init_domain_rk( grid &
65 !
66 #include <em_actual_new_args.inc>
67 !
68                         )
69 
70    ELSE
71      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
72      CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
73    ENDIF
74 
75    END SUBROUTINE init_domain
76 
77 !-------------------------------------------------------------------
78 
79    SUBROUTINE init_domain_rk ( grid &
80 !
81 # include <em_dummy_new_args.inc>
82 !
83 )
84    IMPLICIT NONE
85 
86    !  Input data.
87    TYPE (domain), POINTER :: grid
88 
89 # include <em_dummy_new_decl.inc>
90 
91    TYPE (grid_config_rec_type)              :: config_flags
92 
93    !  Local data
94    INTEGER                             ::                       &
95                                   ids, ide, jds, jde, kds, kde, &
96                                   ims, ime, jms, jme, kms, kme, &
97                                   its, ite, jts, jte, kts, kte, &
98                                   i, j, k
99 
100    ! Local data
101 
102    INTEGER, PARAMETER :: nl_max = 1000
103    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
104    INTEGER :: nl_in
105 
106 
107    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
108    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
109    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
110 !   REAL, EXTERNAL :: interp_0
111    REAL    :: hm
112    REAL    :: pi
113 
114 !  stuff from original initialization that has been dropped from the Registry 
115    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
116    REAL    :: qvf1, qvf2, pd_surf
117    INTEGER :: it
118    real :: thtmp, ptmp, temp(3)
119 
120    LOGICAL :: moisture_init
121    LOGICAL :: stretch_grid, dry_sounding
122 
123    
124 #ifdef DM_PARALLEL
125 #    include <em_data_calls.inc>
126 #endif
127 
128 
129    SELECT CASE ( model_data_order )
130          CASE ( DATA_ORDER_ZXY )
131    kds = grid%sd31 ; kde = grid%ed31 ;
132    ids = grid%sd32 ; ide = grid%ed32 ;
133    jds = grid%sd33 ; jde = grid%ed33 ;
134 
135    kms = grid%sm31 ; kme = grid%em31 ;
136    ims = grid%sm32 ; ime = grid%em32 ;
137    jms = grid%sm33 ; jme = grid%em33 ;
138 
139    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
140    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
141    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
142          CASE ( DATA_ORDER_XYZ )
143    ids = grid%sd31 ; ide = grid%ed31 ;
144    jds = grid%sd32 ; jde = grid%ed32 ;
145    kds = grid%sd33 ; kde = grid%ed33 ;
146 
147    ims = grid%sm31 ; ime = grid%em31 ;
148    jms = grid%sm32 ; jme = grid%em32 ;
149    kms = grid%sm33 ; kme = grid%em33 ;
150 
151    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
152    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
153    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
154          CASE ( DATA_ORDER_XZY )
155    ids = grid%sd31 ; ide = grid%ed31 ;
156    kds = grid%sd32 ; kde = grid%ed32 ;
157    jds = grid%sd33 ; jde = grid%ed33 ;
158 
159    ims = grid%sm31 ; ime = grid%em31 ;
160    kms = grid%sm32 ; kme = grid%em32 ;
161    jms = grid%sm33 ; jme = grid%em33 ;
162 
163    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
164    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
165    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
166 
167    END SELECT
168 
169 
170    stretch_grid = .true.
171    delt = 3.
172 !   z_scale = .50
173    z_scale = .40
174    pi = 2.*asin(1.0)
175    write(6,*) ' pi is ',pi
176    nxc = (ide-ids)/2
177    nyc = jde/2
178 
179    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
180 
181 ! here we check to see if the boundary conditions are set properly
182 
183    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
184 
185    moisture_init = .true.
186 
187     grid%itimestep=0
188 
189 #ifdef DM_PARALLEL
190    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
191    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
192 #endif
193 
194     CALL nl_set_mminlu(1, '    ')
195     CALL nl_set_iswater(1,0)
196     CALL nl_set_cen_lat(1,40.)
197     CALL nl_set_cen_lon(1,-105.)
198     CALL nl_set_truelat1(1,0.)
199     CALL nl_set_truelat2(1,0.)
200     CALL nl_set_moad_cen_lat (1,0.)
201     CALL nl_set_stand_lon (1,0.)
202     CALL nl_set_map_proj(1,0)
203 
204 
205 !  here we initialize data we currently is not initialized 
206 !  in the input data
207 
208     DO j = jts, jte
209       DO i = its, ite
210          grid%msft(i,j)     = 1.
211          grid%msfu(i,j)     = 1.
212          grid%msfv(i,j)     = 1.
213          grid%sina(i,j)     = 0.
214          grid%cosa(i,j)     = 1.
215          grid%e(i,j)        = 0.
216          grid%f(i,j)        = 0.
217 
218       END DO
219    END DO
220 
221     DO j = jts, jte
222     DO k = kts, kte
223       DO i = its, ite
224          grid%em_ww(i,k,j)     = 0.
225       END DO
226    END DO
227    END DO
228 
229    grid%step_number = 0
230 
231 ! set up the grid
232 
233    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
234      DO k=1, kde
235       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
236                                 (1.-exp(-1./z_scale))
237      ENDDO
238    ELSE
239      DO k=1, kde
240       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
241      ENDDO
242    ENDIF
243 
244    DO k=1, kde-1
245     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
246     grid%em_rdnw(k) = 1./grid%em_dnw(k)
247     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
248    ENDDO
249    DO k=2, kde-1
250     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
251     grid%em_rdn(k) = 1./grid%em_dn(k)
252     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
253     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
254    ENDDO
255 
256    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
257    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
258    grid%cf1  = grid%em_fnp(2) + cof1
259    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
260    grid%cf3  = cof2       
261 
262    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
263    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
264    grid%rdx = 1./config_flags%dx
265    grid%rdy = 1./config_flags%dy
266 
267 !  get the sounding from the ascii sounding file, first get dry sounding and 
268 !  calculate base state
269 
270   write(6,*) ' getting dry sounding for base state '
271   dry_sounding = .true.
272   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
273 
274   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
275 
276 !  find ptop for the desired ztop (ztop is input from the namelist),
277 !  and find surface pressure
278 
279   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
280 
281   DO j=jts,jte
282   DO i=its,ite  ! flat surface
283     grid%em_phb(i,1,j) = 0.
284     grid%em_php(i,1,j) = 0.
285     grid%em_ph0(i,1,j) = 0.
286     grid%ht(i,j) = 0.
287   ENDDO
288   ENDDO
289 
290   DO J = jts, jte
291   DO I = its, ite
292 
293     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
294     grid%em_mub(i,j) = p_surf-grid%p_top
295 
296 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
297 !  interp theta (from interp) and compute 1/rho from eqn. of state
298 
299     DO K = 1, kte-1
300       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
301       grid%em_pb(i,k,j) = p_level
302       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
303       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
304     ENDDO
305 
306 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
307 !  sounding, but this assures that the base state is in exact hydrostatic balance with
308 !  respect to the model eqns.
309 
310     DO k  = 2,kte
311       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
312     ENDDO
313 
314   ENDDO
315   ENDDO
316 
317   write(6,*) ' ptop is ',grid%p_top
318   write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
319 
320 !  calculate full state for each column - this includes moisture.
321 
322   write(6,*) ' getting moist sounding for full state '
323   dry_sounding = .false.
324   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
325 
326   DO J = jts, min(jde-1,jte)
327   DO I = its, min(ide-1,ite)
328 
329 !  At this point grid%p_top is already set. find the DRY mass in the column 
330 !  by interpolating the DRY pressure.  
331 
332    pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
333 
334 !  compute the perturbation mass and the full mass
335 
336     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
337     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
338     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
339 
340 ! given the dry pressure and coordinate system, interp the potential
341 ! temperature and qv
342 
343     do k=1,kde-1
344 
345       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
346 
347       moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
348       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
349       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
350       
351 
352     enddo
353 
354 !  integrate the hydrostatic equation (from the RHS of the bigstep
355 !  vertical momentum equation) down from the top to get grid%em_p.
356 !  first from the top of the model to the top pressure
357 
358     k = kte-1  ! top level
359 
360     qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
361     qvf2 = 1./(1.+qvf1)
362     qvf1 = qvf1*qvf2
363 
364 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
365     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
366     qvf = 1. + rvovrd*moist(i,k,j,P_QV)
367     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
368                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
369     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
370 
371 !  down the column
372 
373     do k=kte-2,1,-1
374       qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
375       qvf2 = 1./(1.+qvf1)
376       qvf1 = qvf1*qvf2
377       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
378       qvf = 1. + rvovrd*moist(i,k,j,P_QV)
379       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
380                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
381       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
382     enddo
383 
384 !  this is the hydrostatic equation used in the model after the
385 !  small timesteps.  In the model, grid%em_al (inverse density)
386 !  is computed from the geopotential.
387 
388 
389     grid%em_ph_1(i,1,j) = 0.
390     DO k  = 2,kte
391       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
392                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
393                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
394                                                    
395       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
396       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
397     ENDDO
398 
399     if((i==2) .and. (j==2)) then
400      write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
401                               grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
402                               grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
403     endif
404 
405   ENDDO
406   ENDDO
407 
408 !#if 0
409 
410 !  thermal perturbation to kick off convection
411 
412   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
413   write(6,*) ' delt for perturbation ',delt
414 
415   DO J = jts, min(jde-1,jte)
416 !    yrad = config_flags%dy*float(j-nyc)/4000.
417      yrad = 0.
418     DO I = its, min(ide-1,ite)
419       xrad = config_flags%dx*float(i-nxc)/4000.
420 !     xrad = 0.
421       DO K = 1, kte-1
422 
423 !  put in preturbation theta (bubble) and recalc density.  note,
424 !  the mass in the column is not changing, so when theta changes,
425 !  we recompute density and geopotential
426 
427         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
428                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
429         zrad = (zrad-1500.)/1500.
430         RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
431         IF(RAD <= 1.) THEN
432            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
433            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
434            qvf = 1. + rvovrd*moist(i,k,j,P_QV)
435            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
436                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
437            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
438         ENDIF
439       ENDDO
440 
441 !  rebalance hydrostatically
442 
443       DO k  = 2,kte
444         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
445                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
446                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
447                                                    
448         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
449         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
450       ENDDO
451 
452     ENDDO
453   ENDDO
454 
455 !#endif
456 
457    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
458    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
459    do k=1,kde-1
460      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
461                                       grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
462                                       grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
463    enddo
464 
465    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
466    do k=1,kde-1
467      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
468                                       grid%em_p(1,k,1), grid%em_al(1,k,1), &
469                                       grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
470    enddo
471 
472 ! interp v
473 
474   DO J = jts, jte
475   DO I = its, min(ide-1,ite)
476 
477     IF (j == jds) THEN
478       z_at_v = grid%em_phb(i,1,j)/g
479     ELSE IF (j == jde) THEN
480       z_at_v = grid%em_phb(i,1,j-1)/g
481     ELSE
482       z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
483     END IF
484 
485     p_surf = interp_0( p_in, zk, z_at_v, nl_in )
486 
487     DO K = 1, kte
488       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
489       grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
490       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
491     ENDDO
492 
493   ENDDO
494   ENDDO
495 
496 ! interp u
497 
498   DO J = jts, min(jde-1,jte)
499   DO I = its, ite
500 
501     IF (i == ids) THEN
502       z_at_u = grid%em_phb(i,1,j)/g
503     ELSE IF (i == ide) THEN
504       z_at_u = grid%em_phb(i-1,1,j)/g
505     ELSE
506       z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
507     END IF
508 
509     p_surf = interp_0( p_in, zk, z_at_u, nl_in )
510 
511     DO K = 1, kte
512       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
513       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
514       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
515     ENDDO
516 
517   ENDDO
518   ENDDO
519 
520 !  set w
521 
522   DO J = jts, min(jde-1,jte)
523   DO K = kts, kte
524   DO I = its, min(ide-1,ite)
525     grid%em_w_1(i,k,j) = 0.
526     grid%em_w_2(i,k,j) = 0.
527   ENDDO
528   ENDDO
529   ENDDO
530 
531 !  set a few more things
532 
533   DO J = jts, min(jde-1,jte)
534   DO K = kts, kte-1
535   DO I = its, min(ide-1,ite)
536     grid%h_diabatic(i,k,j) = 0.
537   ENDDO
538   ENDDO
539   ENDDO
540 
541   DO k=1,kte-1
542     grid%em_t_base(k) = grid%em_t_1(1,k,1)
543     grid%qv_base(k) = moist(1,k,1,P_QV)
544     grid%u_base(k) = grid%em_u_1(1,k,1)
545     grid%v_base(k) = grid%em_v_1(1,k,1)
546     grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
547   ENDDO
548 
549   DO J = jts, min(jde-1,jte)
550   DO I = its, min(ide-1,ite)
551      thtmp   = grid%em_t_2(i,1,j)+t0
552      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
553      temp(1) = thtmp * (ptmp/p1000mb)**rcp
554      thtmp   = grid%em_t_2(i,2,j)+t0
555      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
556      temp(2) = thtmp * (ptmp/p1000mb)**rcp
557      thtmp   = grid%em_t_2(i,3,j)+t0
558      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
559      temp(3) = thtmp * (ptmp/p1000mb)**rcp
560 
561      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
562      grid%tmn(I,J)=grid%tsk(I,J)-0.5
563   ENDDO
564   ENDDO
565 
566   RETURN
567 
568  END SUBROUTINE init_domain_rk
569 
570    SUBROUTINE init_module_initialize
571    END SUBROUTINE init_module_initialize
572 
573 !---------------------------------------------------------------------
574 
575 !  test driver for get_sounding
576 !
577 !      implicit none
578 !      integer n
579 !      parameter(n = 1000)
580 !      real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
581 !      logical dry
582 !      integer nl,k
583 !
584 !      dry = .false.
585 !      dry = .true.
586 !      call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
587 !      write(6,*) ' input levels ',nl
588 !      write(6,*) ' sounding '
589 !      write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
590 !      do k=1,nl
591 !        write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
592 !      enddo
593 !      end
594 !
595 !---------------------------------------------------------------------------
596 
597       subroutine get_sounding( zk, p, p_dry, theta, rho, &
598                                u, v, qv, dry, nl_max, nl_in )
599       implicit none
600 
601       integer nl_max, nl_in
602       real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
603            u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
604       logical dry
605 
606       integer n
607       parameter(n=1000)
608       logical debug
609       parameter( debug = .true.)
610 
611 ! input sounding data
612 
613       real p_surf, th_surf, qv_surf
614       real pi_surf, pi(n)
615       real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
616 
617 ! diagnostics
618 
619       real rho_surf, p_input(n), rho_input(n)
620       real pm_input(n)  !  this are for full moist sounding
621 
622 ! local data
623 
624       real p1000mb,cv,cp,r,cvpm,g
625       parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
626       integer k, it, nl
627       real qvf, qvf1, dz
628 
629 !  first, read the sounding
630 
631       call read_sounding( p_surf, th_surf, qv_surf, &
632                           h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
633 
634       if(dry) then
635        do k=1,nl
636          qv_input(k) = 0.
637        enddo
638       endif
639 
640       if(debug) write(6,*) ' number of input levels = ',nl
641 
642         nl_in = nl
643         if(nl_in .gt. nl_max ) then
644           write(6,*) ' too many levels for input arrays ',nl_in,nl_max
645           call wrf_error_fatal ( ' too many levels for input arrays ' )
646         end if
647 
648 !  compute diagnostics,
649 !  first, convert qv(g/kg) to qv(g/g)
650 
651       do k=1,nl
652         qv_input(k) = 0.001*qv_input(k)
653       enddo
654 
655       p_surf = 100.*p_surf  ! convert to pascals
656       qvf = 1. + rvovrd*qv_input(1) 
657       rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
658       pi_surf = (p_surf/p1000mb)**(r/cp)
659 
660       if(debug) then
661         write(6,*) ' surface density is ',rho_surf
662         write(6,*) ' surface pi is      ',pi_surf
663       end if
664 
665 
666 !  integrate moist sounding hydrostatically, starting from the
667 !  specified surface pressure
668 !  -> first, integrate from surface to lowest level
669 
670           qvf = 1. + rvovrd*qv_input(1) 
671           qvf1 = 1. + qv_input(1)
672           rho_input(1) = rho_surf
673           dz = h_input(1)
674           do it=1,10
675             pm_input(1) = p_surf &
676                     - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
677             rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
678           enddo
679 
680 ! integrate up the column
681 
682           do k=2,nl
683             rho_input(k) = rho_input(k-1)
684             dz = h_input(k)-h_input(k-1)
685             qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
686             qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
687  
688             do it=1,10
689               pm_input(k) = pm_input(k-1) &
690                       - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
691               rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
692             enddo
693           enddo
694 
695 !  we have the moist sounding
696 
697 !  next, compute the dry sounding using p at the highest level from the
698 !  moist sounding and integrating down.
699 
700         p_input(nl) = pm_input(nl)
701 
702           do k=nl-1,1,-1
703             dz = h_input(k+1)-h_input(k)
704             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
705           enddo
706 
707 
708         do k=1,nl
709 
710           zk(k) = h_input(k)
711           p(k) = pm_input(k)
712           p_dry(k) = p_input(k)
713           theta(k) = th_input(k)
714           rho(k) = rho_input(k)
715           u(k) = u_input(k)
716           v(k) = v_input(k)
717           qv(k) = qv_input(k)
718 
719         enddo
720 
721      if(debug) then
722       write(6,*) ' sounding '
723       write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
724       do k=1,nl
725         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
726       enddo
727 
728      end if
729 
730       end subroutine get_sounding
731 
732 !-------------------------------------------------------
733 
734       subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
735       implicit none
736       integer n,nl
737       real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
738       logical end_of_file
739       logical debug
740 
741       integer k
742 
743       open(unit=10,file='input_sounding',form='formatted',status='old')
744       rewind(10)
745       read(10,*) ps, ts, qvs
746       if(debug) then
747         write(6,*) ' input sounding surface parameters '
748         write(6,*) ' surface pressure (mb) ',ps
749         write(6,*) ' surface pot. temp (K) ',ts
750         write(6,*) ' surface mixing ratio (g/kg) ',qvs
751       end if
752 
753       end_of_file = .false.
754       k = 0
755 
756       do while (.not. end_of_file)
757 
758         read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
759         k = k+1
760         if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
761         go to 110
762  100    end_of_file = .true.
763  110    continue
764       enddo
765 
766       nl = k
767 
768       close(unit=10,status = 'keep')
769 
770       end subroutine read_sounding
771 
772 END MODULE module_initialize_ideal