module_initialize_squall2d_y.F

References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3 
4 !  This MODULE holds the routines which are used to perform various initializations
5 !  for the individual domains.  
6 
7 !  This MODULE CONTAINS the following routines:
8 
9 !  initialize_field_test - 1. Set different fields to different constant
10 !                             values.  This is only a test.  If the correct
11 !                             domain is not found (based upon the "id")
12 !                             then a fatal error is issued.               
13 
14 !-----------------------------------------------------------------------
15 
16 MODULE module_initialize_ideal
17 
18    USE module_domain
19    USE module_io_domain
20    USE module_state_description
21    USE module_model_constants
22    USE module_bc
23    USE module_timing
24    USE module_configure
25    USE module_init_utilities
26 #ifdef DM_PARALLEL
27    USE module_dm
28 #endif
29 
30 
31 CONTAINS
32 
33 
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the 
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided).  Fie on the F90 designers.  Fie and a pox.
42 
43    SUBROUTINE init_domain ( grid )
44 
45    IMPLICIT NONE
46 
47    !  Input data.
48    TYPE (domain), POINTER :: grid 
49    !  Local data.
50    INTEGER                :: dyn_opt 
51    INTEGER :: idum1, idum2
52 
53    CALL nl_get_dyn_opt( 1, dyn_opt )
54    
55    CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56 
57    IF (      dyn_opt .eq. 1 &
58         .or. dyn_opt .eq. 2 &
59         .or. dyn_opt .eq. 3 &
60                                        ) THEN
61      CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65                         )
66 
67    ELSE
68      WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69      CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70    ENDIF
71 
72    END SUBROUTINE init_domain
73 
74 !-------------------------------------------------------------------
75 
76    SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81    IMPLICIT NONE
82 
83    !  Input data.
84    TYPE (domain), POINTER :: grid
85 
86 # include <em_dummy_new_decl.inc>
87 
88    TYPE (grid_config_rec_type)              :: config_flags
89 
90    !  Local data
91    INTEGER                             ::                       &
92                                   ids, ide, jds, jde, kds, kde, &
93                                   ims, ime, jms, jme, kms, kme, &
94                                   its, ite, jts, jte, kts, kte, &
95                                   i, j, k
96 
97    ! Local data
98 
99    INTEGER, PARAMETER :: nl_max = 1000
100    REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101    INTEGER :: nl_in
102 
103 
104    INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105    REAL    :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106    REAL    :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
107 !   REAL, EXTERNAL :: interp_0
108    REAL    :: hm
109    REAL    :: pi
110 
111 !  stuff from original initialization that has been dropped from the Registry 
112    REAL    :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113    REAL    :: qvf1, qvf2, pd_surf
114    INTEGER :: it
115    real :: thtmp, ptmp, temp(3)
116 
117    LOGICAL :: moisture_init
118    LOGICAL :: stretch_grid, dry_sounding
119 
120    
121 #ifdef DM_PARALLEL
122 #    include <em_data_calls.inc>
123 #endif
124 
125 
126    SELECT CASE ( model_data_order )
127          CASE ( DATA_ORDER_ZXY )
128    kds = grid%sd31 ; kde = grid%ed31 ;
129    ids = grid%sd32 ; ide = grid%ed32 ;
130    jds = grid%sd33 ; jde = grid%ed33 ;
131 
132    kms = grid%sm31 ; kme = grid%em31 ;
133    ims = grid%sm32 ; ime = grid%em32 ;
134    jms = grid%sm33 ; jme = grid%em33 ;
135 
136    kts = grid%sp31 ; kte = grid%ep31 ;   ! note that tile is entire patch
137    its = grid%sp32 ; ite = grid%ep32 ;   ! note that tile is entire patch
138    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
139          CASE ( DATA_ORDER_XYZ )
140    ids = grid%sd31 ; ide = grid%ed31 ;
141    jds = grid%sd32 ; jde = grid%ed32 ;
142    kds = grid%sd33 ; kde = grid%ed33 ;
143 
144    ims = grid%sm31 ; ime = grid%em31 ;
145    jms = grid%sm32 ; jme = grid%em32 ;
146    kms = grid%sm33 ; kme = grid%em33 ;
147 
148    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
149    jts = grid%sp32 ; jte = grid%ep32 ;   ! note that tile is entire patch
150    kts = grid%sp33 ; kte = grid%ep33 ;   ! note that tile is entire patch
151          CASE ( DATA_ORDER_XZY )
152    ids = grid%sd31 ; ide = grid%ed31 ;
153    kds = grid%sd32 ; kde = grid%ed32 ;
154    jds = grid%sd33 ; jde = grid%ed33 ;
155 
156    ims = grid%sm31 ; ime = grid%em31 ;
157    kms = grid%sm32 ; kme = grid%em32 ;
158    jms = grid%sm33 ; jme = grid%em33 ;
159 
160    its = grid%sp31 ; ite = grid%ep31 ;   ! note that tile is entire patch
161    kts = grid%sp32 ; kte = grid%ep32 ;   ! note that tile is entire patch
162    jts = grid%sp33 ; jte = grid%ep33 ;   ! note that tile is entire patch
163 
164    END SELECT
165 
166 
167    stretch_grid = .true.
168    delt = 3.
169 !   z_scale = .50
170    z_scale = .40
171    pi = 2.*asin(1.0)
172    write(6,*) ' pi is ',pi
173    nxc = (ide-ids)/2
174    nyc = (jde-jds)/2
175 
176    CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
177 
178 ! here we check to see if the boundary conditions are set properly
179 
180    CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
181 
182    moisture_init = .true.
183 
184     grid%itimestep=0
185 
186 #ifdef DM_PARALLEL
187    CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
188    CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
189 #endif
190 
191     CALL nl_set_mminlu(1, '    ')
192     CALL nl_set_iswater(1,0)
193     CALL nl_set_cen_lat(1,40.)
194     CALL nl_set_cen_lon(1,-105.)
195     CALL nl_set_truelat1(1,0.)
196     CALL nl_set_truelat2(1,0.)
197     CALL nl_set_moad_cen_lat (1,0.)
198     CALL nl_set_stand_lon (1,0.)
199     CALL nl_set_map_proj(1,0)
200 
201 
202 !  here we initialize data we currently is not initialized 
203 !  in the input data
204 
205     DO j = jts, jte
206       DO i = its, ite
207          grid%msft(i,j)     = 1.
208          grid%msfu(i,j)     = 1.
209          grid%msfv(i,j)     = 1.
210          grid%sina(i,j)     = 0.
211          grid%cosa(i,j)     = 1.
212          grid%e(i,j)        = 0.
213          grid%f(i,j)        = 0.
214 
215       END DO
216    END DO
217 
218     DO j = jts, jte
219     DO k = kts, kte
220       DO i = its, ite
221          grid%em_ww(i,k,j)     = 0.
222       END DO
223    END DO
224    END DO
225 
226    grid%step_number = 0
227 
228 ! set up the grid
229 
230    IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
231      DO k=1, kde
232       grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
233                                 (1.-exp(-1./z_scale))
234      ENDDO
235    ELSE
236      DO k=1, kde
237       grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
238      ENDDO
239    ENDIF
240 
241    DO k=1, kde-1
242     grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
243     grid%em_rdnw(k) = 1./grid%em_dnw(k)
244     grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
245    ENDDO
246    DO k=2, kde-1
247     grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
248     grid%em_rdn(k) = 1./grid%em_dn(k)
249     grid%em_fnp(k) = .5* grid%em_dnw(k  )/grid%em_dn(k)
250     grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
251    ENDDO
252 
253    cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2) 
254    cof2 =     grid%em_dn(2)        /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3) 
255    grid%cf1  = grid%em_fnp(2) + cof1
256    grid%cf2  = grid%em_fnm(2) - cof1 - cof2
257    grid%cf3  = cof2       
258 
259    grid%cfn  = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
260    grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
261    grid%rdx = 1./config_flags%dx
262    grid%rdy = 1./config_flags%dy
263 
264 !  get the sounding from the ascii sounding file, first get dry sounding and 
265 !  calculate base state
266 
267   write(6,*) ' getting dry sounding for base state '
268   dry_sounding = .true.
269   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
270 
271   write(6,*) ' returned from reading sounding, nl_in is ',nl_in
272 
273 !  find ptop for the desired ztop (ztop is input from the namelist),
274 !  and find surface pressure
275 
276   grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
277 
278   DO j=jts,jte
279   DO i=its,ite  ! flat surface
280     grid%em_phb(i,1,j) = 0.
281     grid%em_php(i,1,j) = 0.
282     grid%em_ph0(i,1,j) = 0.
283     grid%ht(i,j) = 0.
284   ENDDO
285   ENDDO
286 
287   DO J = jts, jte
288   DO I = its, ite
289 
290     p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
291     grid%em_mub(i,j) = p_surf-grid%p_top
292 
293 !  this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
294 !  interp theta (from interp) and compute 1/rho from eqn. of state
295 
296     DO K = 1, kte-1
297       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
298       grid%em_pb(i,k,j) = p_level
299       grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
300       grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
301     ENDDO
302 
303 !  calc hydrostatic balance (alternatively we could interp the geopotential from the
304 !  sounding, but this assures that the base state is in exact hydrostatic balance with
305 !  respect to the model eqns.
306 
307     DO k  = 2,kte
308       grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
309     ENDDO
310 
311   ENDDO
312   ENDDO
313 
314   write(6,*) ' ptop is ',grid%p_top
315   write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
316 
317 !  calculate full state for each column - this includes moisture.
318 
319   write(6,*) ' getting moist sounding for full state '
320   dry_sounding = .false.
321   CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
322 
323   DO J = jts, min(jde-1,jte)
324   DO I = its, min(ide-1,ite)
325 
326 !  At this point grid%p_top is already set. find the DRY mass in the column 
327 !  by interpolating the DRY pressure.  
328 
329    pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
330 
331 !  compute the perturbation mass and the full mass
332 
333     grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
334     grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
335     grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
336 
337 ! given the dry pressure and coordinate system, interp the potential
338 ! temperature and qv
339 
340     do k=1,kde-1
341 
342       p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
343 
344       moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
345       grid%em_t_1(i,k,j)          = interp_0( theta, pd_in, p_level, nl_in ) - t0
346       grid%em_t_2(i,k,j)          = grid%em_t_1(i,k,j)
347       
348 
349     enddo
350 
351 !  integrate the hydrostatic equation (from the RHS of the bigstep
352 !  vertical momentum equation) down from the top to get grid%em_p.
353 !  first from the top of the model to the top pressure
354 
355     k = kte-1  ! top level
356 
357     qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
358     qvf2 = 1./(1.+qvf1)
359     qvf1 = qvf1*qvf2
360 
361 !    grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
362     grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
363     qvf = 1. + rvovrd*moist(i,k,j,P_QV)
364     grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
365                 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
366     grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
367 
368 !  down the column
369 
370     do k=kte-2,1,-1
371       qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
372       qvf2 = 1./(1.+qvf1)
373       qvf1 = qvf1*qvf2
374       grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
375       qvf = 1. + rvovrd*moist(i,k,j,P_QV)
376       grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
377                   (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
378       grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
379     enddo
380 
381 !  this is the hydrostatic equation used in the model after the
382 !  small timesteps.  In the model, grid%em_al (inverse density)
383 !  is computed from the geopotential.
384 
385 
386     grid%em_ph_1(i,1,j) = 0.
387     DO k  = 2,kte
388       grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
389                    (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
390                     grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
391                                                    
392       grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
393       grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
394     ENDDO
395 
396     if((i==2) .and. (j==2)) then
397      write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
398                               grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
399                               grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
400     endif
401 
402   ENDDO
403   ENDDO
404 
405 !#if 0
406 
407 !  thermal perturbation to kick off convection
408 
409   write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
410   write(6,*) ' delt for perturbation ',delt
411 
412   DO J = jts, min(jde-1,jte)
413     yrad = config_flags%dy*float(j-nyc)/4000.
414 !     yrad = 0.
415     DO I = its, min(ide-1,ite)
416 !      xrad = config_flags%dx*float(i-nxc)/4000.
417      xrad = 0.
418       DO K = 1, kte-1
419 
420 !  put in preturbation theta (bubble) and recalc density.  note,
421 !  the mass in the column is not changing, so when theta changes,
422 !  we recompute density and geopotential
423 
424         zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j)  &
425                    +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
426         zrad = (zrad-1500.)/1500.
427         RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
428         IF(RAD <= 1.) THEN
429            grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
430            grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
431            qvf = 1. + rvovrd*moist(i,k,j,P_QV)
432            grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
433                         (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
434            grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
435         ENDIF
436       ENDDO
437 
438 !  rebalance hydrostatically
439 
440       DO k  = 2,kte
441         grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*(       &
442                      (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
443                       grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j)  )
444                                                    
445         grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j) 
446         grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
447       ENDDO
448 
449     ENDDO
450   ENDDO
451 
452 !#endif
453 
454    write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
455    write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
456    do k=1,kde-1
457      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
458                                       grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
459                                       grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
460    enddo
461 
462    write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
463    do k=1,kde-1
464      write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
465                                       grid%em_p(1,k,1), grid%em_al(1,k,1), &
466                                       grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
467    enddo
468 
469 ! interp v
470 
471   DO J = jts, jte
472   DO I = its, min(ide-1,ite)
473 
474     IF (j == jds) THEN
475       z_at_v = grid%em_phb(i,1,j)/g
476     ELSE IF (j == jde) THEN
477       z_at_v = grid%em_phb(i,1,j-1)/g
478     ELSE
479       z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
480     END IF
481 
482     p_surf = interp_0( p_in, zk, z_at_v, nl_in )
483 
484     DO K = 1, kte
485       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
486       grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
487       grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
488     ENDDO
489 
490   ENDDO
491   ENDDO
492 
493 ! interp u
494 
495   DO J = jts, min(jde-1,jte)
496   DO I = its, ite
497 
498     IF (i == ids) THEN
499       z_at_u = grid%em_phb(i,1,j)/g
500     ELSE IF (i == ide) THEN
501       z_at_u = grid%em_phb(i-1,1,j)/g
502     ELSE
503       z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
504     END IF
505 
506     p_surf = interp_0( p_in, zk, z_at_u, nl_in )
507 
508     DO K = 1, kte
509       p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
510       grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
511       grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
512     ENDDO
513 
514   ENDDO
515   ENDDO
516 
517 !  set w
518 
519   DO J = jts, min(jde-1,jte)
520   DO K = kts, kte
521   DO I = its, min(ide-1,ite)
522     grid%em_w_1(i,k,j) = 0.
523     grid%em_w_2(i,k,j) = 0.
524   ENDDO
525   ENDDO
526   ENDDO
527 
528 !  set a few more things
529 
530   DO J = jts, min(jde-1,jte)
531   DO K = kts, kte-1
532   DO I = its, min(ide-1,ite)
533     grid%h_diabatic(i,k,j) = 0.
534   ENDDO
535   ENDDO
536   ENDDO
537 
538   DO k=1,kte-1
539     grid%em_t_base(k) = grid%em_t_1(1,k,1)
540     grid%qv_base(k) = moist(1,k,1,P_QV)
541     grid%u_base(k) = grid%em_u_1(1,k,1)
542     grid%v_base(k) = grid%em_v_1(1,k,1)
543     grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
544   ENDDO
545 
546   DO J = jts, min(jde-1,jte)
547   DO I = its, min(ide-1,ite)
548      thtmp   = grid%em_t_2(i,1,j)+t0
549      ptmp    = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
550      temp(1) = thtmp * (ptmp/p1000mb)**rcp
551      thtmp   = grid%em_t_2(i,2,j)+t0
552      ptmp    = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
553      temp(2) = thtmp * (ptmp/p1000mb)**rcp
554      thtmp   = grid%em_t_2(i,3,j)+t0
555      ptmp    = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
556      temp(3) = thtmp * (ptmp/p1000mb)**rcp
557 
558      grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
559      grid%tmn(I,J)=grid%tsk(I,J)-0.5
560   ENDDO
561   ENDDO
562 
563   RETURN
564 
565  END SUBROUTINE init_domain_rk
566 
567    SUBROUTINE init_module_initialize
568    END SUBROUTINE init_module_initialize
569 
570 !---------------------------------------------------------------------
571 
572 !  test driver for get_sounding
573 !
574 !      implicit none
575 !      integer n
576 !      parameter(n = 1000)
577 !      real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
578 !      logical dry
579 !      integer nl,k
580 !
581 !      dry = .false.
582 !      dry = .true.
583 !      call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
584 !      write(6,*) ' input levels ',nl
585 !      write(6,*) ' sounding '
586 !      write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
587 !      do k=1,nl
588 !        write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
589 !      enddo
590 !      end
591 !
592 !---------------------------------------------------------------------------
593 
594       subroutine get_sounding( zk, p, p_dry, theta, rho, &
595                                u, v, qv, dry, nl_max, nl_in )
596       implicit none
597 
598       integer nl_max, nl_in
599       real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
600            u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
601       logical dry
602 
603       integer n
604       parameter(n=1000)
605       logical debug
606       parameter( debug = .true.)
607 
608 ! input sounding data
609 
610       real p_surf, th_surf, qv_surf
611       real pi_surf, pi(n)
612       real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
613 
614 ! diagnostics
615 
616       real rho_surf, p_input(n), rho_input(n)
617       real pm_input(n)  !  this are for full moist sounding
618 
619 ! local data
620 
621       real p1000mb,cv,cp,r,cvpm,g
622       parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
623       integer k, it, nl
624       real qvf, qvf1, dz
625 
626 !  first, read the sounding
627 
628       call read_sounding( p_surf, th_surf, qv_surf, &
629                           h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
630 
631       if(dry) then
632        do k=1,nl
633          qv_input(k) = 0.
634        enddo
635       endif
636 
637       if(debug) write(6,*) ' number of input levels = ',nl
638 
639         nl_in = nl
640         if(nl_in .gt. nl_max ) then
641           write(6,*) ' too many levels for input arrays ',nl_in,nl_max
642           call wrf_error_fatal ( ' too many levels for input arrays ' )
643         end if
644 
645 !  compute diagnostics,
646 !  first, convert qv(g/kg) to qv(g/g)
647 
648       do k=1,nl
649         qv_input(k) = 0.001*qv_input(k)
650       enddo
651 
652       p_surf = 100.*p_surf  ! convert to pascals
653       qvf = 1. + rvovrd*qv_input(1) 
654       rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
655       pi_surf = (p_surf/p1000mb)**(r/cp)
656 
657       if(debug) then
658         write(6,*) ' surface density is ',rho_surf
659         write(6,*) ' surface pi is      ',pi_surf
660       end if
661 
662 
663 !  integrate moist sounding hydrostatically, starting from the
664 !  specified surface pressure
665 !  -> first, integrate from surface to lowest level
666 
667           qvf = 1. + rvovrd*qv_input(1) 
668           qvf1 = 1. + qv_input(1)
669           rho_input(1) = rho_surf
670           dz = h_input(1)
671           do it=1,10
672             pm_input(1) = p_surf &
673                     - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
674             rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
675           enddo
676 
677 ! integrate up the column
678 
679           do k=2,nl
680             rho_input(k) = rho_input(k-1)
681             dz = h_input(k)-h_input(k-1)
682             qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
683             qvf = 1. + rvovrd*qv_input(k)   ! qv is in g/kg here
684  
685             do it=1,10
686               pm_input(k) = pm_input(k-1) &
687                       - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
688               rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
689             enddo
690           enddo
691 
692 !  we have the moist sounding
693 
694 !  next, compute the dry sounding using p at the highest level from the
695 !  moist sounding and integrating down.
696 
697         p_input(nl) = pm_input(nl)
698 
699           do k=nl-1,1,-1
700             dz = h_input(k+1)-h_input(k)
701             p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
702           enddo
703 
704 
705         do k=1,nl
706 
707           zk(k) = h_input(k)
708           p(k) = pm_input(k)
709           p_dry(k) = p_input(k)
710           theta(k) = th_input(k)
711           rho(k) = rho_input(k)
712           u(k) = u_input(k)
713           v(k) = v_input(k)
714           qv(k) = qv_input(k)
715 
716         enddo
717 
718      if(debug) then
719       write(6,*) ' sounding '
720       write(6,*) '  k  height(m)  press (Pa) pd(Pa) theta (K) den(kg/m^3)  u(m/s)     v(m/s)    qv(g/g) '
721       do k=1,nl
722         write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
723       enddo
724 
725      end if
726 
727       end subroutine get_sounding
728 
729 !-------------------------------------------------------
730 
731       subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
732       implicit none
733       integer n,nl
734       real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
735       logical end_of_file
736       logical debug
737 
738       integer k
739 
740       open(unit=10,file='input_sounding',form='formatted',status='old')
741       rewind(10)
742       read(10,*) ps, ts, qvs
743       if(debug) then
744         write(6,*) ' input sounding surface parameters '
745         write(6,*) ' surface pressure (mb) ',ps
746         write(6,*) ' surface pot. temp (K) ',ts
747         write(6,*) ' surface mixing ratio (g/kg) ',qvs
748       end if
749 
750       end_of_file = .false.
751       k = 0
752 
753       do while (.not. end_of_file)
754 
755         read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
756         k = k+1
757         if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
758         go to 110
759  100    end_of_file = .true.
760  110    continue
761       enddo
762 
763       nl = k
764 
765       close(unit=10,status = 'keep')
766 
767       end subroutine read_sounding
768 
769 END MODULE module_initialize_ideal