module_initialize_squall2d_y.F
References to this file elsewhere.
1 !IDEAL:MODEL_LAYER:INITIALIZATION
2 !
3
4 ! This MODULE holds the routines which are used to perform various initializations
5 ! for the individual domains.
6
7 ! This MODULE CONTAINS the following routines:
8
9 ! initialize_field_test - 1. Set different fields to different constant
10 ! values. This is only a test. If the correct
11 ! domain is not found (based upon the "id")
12 ! then a fatal error is issued.
13
14 !-----------------------------------------------------------------------
15
16 MODULE module_initialize_ideal
17
18 USE module_domain
19 USE module_io_domain
20 USE module_state_description
21 USE module_model_constants
22 USE module_bc
23 USE module_timing
24 USE module_configure
25 USE module_init_utilities
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30
31 CONTAINS
32
33
34 !-------------------------------------------------------------------
35 ! this is a wrapper for the solver-specific init_domain routines.
36 ! Also dereferences the grid variables and passes them down as arguments.
37 ! This is crucial, since the lower level routines may do message passing
38 ! and this will get fouled up on machines that insist on passing down
39 ! copies of assumed-shape arrays (by passing down as arguments, the
40 ! data are treated as assumed-size -- ie. f77 -- arrays and the copying
41 ! business is avoided). Fie on the F90 designers. Fie and a pox.
42
43 SUBROUTINE init_domain ( grid )
44
45 IMPLICIT NONE
46
47 ! Input data.
48 TYPE (domain), POINTER :: grid
49 ! Local data.
50 INTEGER :: dyn_opt
51 INTEGER :: idum1, idum2
52
53 CALL nl_get_dyn_opt( 1, dyn_opt )
54
55 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 )
56
57 IF ( dyn_opt .eq. 1 &
58 .or. dyn_opt .eq. 2 &
59 .or. dyn_opt .eq. 3 &
60 ) THEN
61 CALL init_domain_rk( grid &
62 !
63 #include <em_actual_new_args.inc>
64 !
65 )
66
67 ELSE
68 WRITE(0,*)' init_domain: unknown or unimplemented dyn_opt = ',dyn_opt
69 CALL wrf_error_fatal ( ' init_domain: unknown or unimplemented dyn_opt ' )
70 ENDIF
71
72 END SUBROUTINE init_domain
73
74 !-------------------------------------------------------------------
75
76 SUBROUTINE init_domain_rk ( grid &
77 !
78 # include <em_dummy_new_args.inc>
79 !
80 )
81 IMPLICIT NONE
82
83 ! Input data.
84 TYPE (domain), POINTER :: grid
85
86 # include <em_dummy_new_decl.inc>
87
88 TYPE (grid_config_rec_type) :: config_flags
89
90 ! Local data
91 INTEGER :: &
92 ids, ide, jds, jde, kds, kde, &
93 ims, ime, jms, jme, kms, kme, &
94 its, ite, jts, jte, kts, kte, &
95 i, j, k
96
97 ! Local data
98
99 INTEGER, PARAMETER :: nl_max = 1000
100 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in
101 INTEGER :: nl_in
102
103
104 INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc
105 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u
106 REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2
107 ! REAL, EXTERNAL :: interp_0
108 REAL :: hm
109 REAL :: pi
110
111 ! stuff from original initialization that has been dropped from the Registry
112 REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt
113 REAL :: qvf1, qvf2, pd_surf
114 INTEGER :: it
115 real :: thtmp, ptmp, temp(3)
116
117 LOGICAL :: moisture_init
118 LOGICAL :: stretch_grid, dry_sounding
119
120
121 #ifdef DM_PARALLEL
122 # include <em_data_calls.inc>
123 #endif
124
125
126 SELECT CASE ( model_data_order )
127 CASE ( DATA_ORDER_ZXY )
128 kds = grid%sd31 ; kde = grid%ed31 ;
129 ids = grid%sd32 ; ide = grid%ed32 ;
130 jds = grid%sd33 ; jde = grid%ed33 ;
131
132 kms = grid%sm31 ; kme = grid%em31 ;
133 ims = grid%sm32 ; ime = grid%em32 ;
134 jms = grid%sm33 ; jme = grid%em33 ;
135
136 kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch
137 its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch
138 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
139 CASE ( DATA_ORDER_XYZ )
140 ids = grid%sd31 ; ide = grid%ed31 ;
141 jds = grid%sd32 ; jde = grid%ed32 ;
142 kds = grid%sd33 ; kde = grid%ed33 ;
143
144 ims = grid%sm31 ; ime = grid%em31 ;
145 jms = grid%sm32 ; jme = grid%em32 ;
146 kms = grid%sm33 ; kme = grid%em33 ;
147
148 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
149 jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch
150 kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch
151 CASE ( DATA_ORDER_XZY )
152 ids = grid%sd31 ; ide = grid%ed31 ;
153 kds = grid%sd32 ; kde = grid%ed32 ;
154 jds = grid%sd33 ; jde = grid%ed33 ;
155
156 ims = grid%sm31 ; ime = grid%em31 ;
157 kms = grid%sm32 ; kme = grid%em32 ;
158 jms = grid%sm33 ; jme = grid%em33 ;
159
160 its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch
161 kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch
162 jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch
163
164 END SELECT
165
166
167 stretch_grid = .true.
168 delt = 3.
169 ! z_scale = .50
170 z_scale = .40
171 pi = 2.*asin(1.0)
172 write(6,*) ' pi is ',pi
173 nxc = (ide-ids)/2
174 nyc = (jde-jds)/2
175
176 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
177
178 ! here we check to see if the boundary conditions are set properly
179
180 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
181
182 moisture_init = .true.
183
184 grid%itimestep=0
185
186 #ifdef DM_PARALLEL
187 CALL wrf_dm_bcast_bytes( icm , IWORDSIZE )
188 CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE )
189 #endif
190
191 CALL nl_set_mminlu(1, ' ')
192 CALL nl_set_iswater(1,0)
193 CALL nl_set_cen_lat(1,40.)
194 CALL nl_set_cen_lon(1,-105.)
195 CALL nl_set_truelat1(1,0.)
196 CALL nl_set_truelat2(1,0.)
197 CALL nl_set_moad_cen_lat (1,0.)
198 CALL nl_set_stand_lon (1,0.)
199 CALL nl_set_map_proj(1,0)
200
201
202 ! here we initialize data we currently is not initialized
203 ! in the input data
204
205 DO j = jts, jte
206 DO i = its, ite
207 grid%msft(i,j) = 1.
208 grid%msfu(i,j) = 1.
209 grid%msfv(i,j) = 1.
210 grid%sina(i,j) = 0.
211 grid%cosa(i,j) = 1.
212 grid%e(i,j) = 0.
213 grid%f(i,j) = 0.
214
215 END DO
216 END DO
217
218 DO j = jts, jte
219 DO k = kts, kte
220 DO i = its, ite
221 grid%em_ww(i,k,j) = 0.
222 END DO
223 END DO
224 END DO
225
226 grid%step_number = 0
227
228 ! set up the grid
229
230 IF (stretch_grid) THEN ! exponential stretch for eta (nearly constant dz)
231 DO k=1, kde
232 grid%em_znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ &
233 (1.-exp(-1./z_scale))
234 ENDDO
235 ELSE
236 DO k=1, kde
237 grid%em_znw(k) = 1. - float(k-1)/float(kde-1)
238 ENDDO
239 ENDIF
240
241 DO k=1, kde-1
242 grid%em_dnw(k) = grid%em_znw(k+1) - grid%em_znw(k)
243 grid%em_rdnw(k) = 1./grid%em_dnw(k)
244 grid%em_znu(k) = 0.5*(grid%em_znw(k+1)+grid%em_znw(k))
245 ENDDO
246 DO k=2, kde-1
247 grid%em_dn(k) = 0.5*(grid%em_dnw(k)+grid%em_dnw(k-1))
248 grid%em_rdn(k) = 1./grid%em_dn(k)
249 grid%em_fnp(k) = .5* grid%em_dnw(k )/grid%em_dn(k)
250 grid%em_fnm(k) = .5* grid%em_dnw(k-1)/grid%em_dn(k)
251 ENDDO
252
253 cof1 = (2.*grid%em_dn(2)+grid%em_dn(3))/(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(2)
254 cof2 = grid%em_dn(2) /(grid%em_dn(2)+grid%em_dn(3))*grid%em_dnw(1)/grid%em_dn(3)
255 grid%cf1 = grid%em_fnp(2) + cof1
256 grid%cf2 = grid%em_fnm(2) - cof1 - cof2
257 grid%cf3 = cof2
258
259 grid%cfn = (.5*grid%em_dnw(kde-1)+grid%em_dn(kde-1))/grid%em_dn(kde-1)
260 grid%cfn1 = -.5*grid%em_dnw(kde-1)/grid%em_dn(kde-1)
261 grid%rdx = 1./config_flags%dx
262 grid%rdy = 1./config_flags%dy
263
264 ! get the sounding from the ascii sounding file, first get dry sounding and
265 ! calculate base state
266
267 write(6,*) ' getting dry sounding for base state '
268 dry_sounding = .true.
269 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
270
271 write(6,*) ' returned from reading sounding, nl_in is ',nl_in
272
273 ! find ptop for the desired ztop (ztop is input from the namelist),
274 ! and find surface pressure
275
276 grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in )
277
278 DO j=jts,jte
279 DO i=its,ite ! flat surface
280 grid%em_phb(i,1,j) = 0.
281 grid%em_php(i,1,j) = 0.
282 grid%em_ph0(i,1,j) = 0.
283 grid%ht(i,j) = 0.
284 ENDDO
285 ENDDO
286
287 DO J = jts, jte
288 DO I = its, ite
289
290 p_surf = interp_0( p_in, zk, grid%em_phb(i,1,j)/g, nl_in )
291 grid%em_mub(i,j) = p_surf-grid%p_top
292
293 ! this is dry hydrostatic sounding (base state), so given grid%em_p (coordinate),
294 ! interp theta (from interp) and compute 1/rho from eqn. of state
295
296 DO K = 1, kte-1
297 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
298 grid%em_pb(i,k,j) = p_level
299 grid%em_t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0
300 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
301 ENDDO
302
303 ! calc hydrostatic balance (alternatively we could interp the geopotential from the
304 ! sounding, but this assures that the base state is in exact hydrostatic balance with
305 ! respect to the model eqns.
306
307 DO k = 2,kte
308 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
309 ENDDO
310
311 ENDDO
312 ENDDO
313
314 write(6,*) ' ptop is ',grid%p_top
315 write(6,*) ' base state grid%em_mub(1,1), p_surf is ',grid%em_mub(1,1),grid%em_mub(1,1)+grid%p_top
316
317 ! calculate full state for each column - this includes moisture.
318
319 write(6,*) ' getting moist sounding for full state '
320 dry_sounding = .false.
321 CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in )
322
323 DO J = jts, min(jde-1,jte)
324 DO I = its, min(ide-1,ite)
325
326 ! At this point grid%p_top is already set. find the DRY mass in the column
327 ! by interpolating the DRY pressure.
328
329 pd_surf = interp_0( pd_in, zk, grid%em_phb(i,1,j)/g, nl_in )
330
331 ! compute the perturbation mass and the full mass
332
333 grid%em_mu_1(i,j) = pd_surf-grid%p_top - grid%em_mub(i,j)
334 grid%em_mu_2(i,j) = grid%em_mu_1(i,j)
335 grid%em_mu0(i,j) = grid%em_mu_1(i,j) + grid%em_mub(i,j)
336
337 ! given the dry pressure and coordinate system, interp the potential
338 ! temperature and qv
339
340 do k=1,kde-1
341
342 p_level = grid%em_znu(k)*(pd_surf - grid%p_top) + grid%p_top
343
344 moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in )
345 grid%em_t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0
346 grid%em_t_2(i,k,j) = grid%em_t_1(i,k,j)
347
348
349 enddo
350
351 ! integrate the hydrostatic equation (from the RHS of the bigstep
352 ! vertical momentum equation) down from the top to get grid%em_p.
353 ! first from the top of the model to the top pressure
354
355 k = kte-1 ! top level
356
357 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
358 qvf2 = 1./(1.+qvf1)
359 qvf1 = qvf1*qvf2
360
361 ! grid%em_p(i,k,j) = - 0.5*grid%em_mu_1(i,j)/grid%em_rdnw(k)
362 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
363 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
364 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
365 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
366 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
367
368 ! down the column
369
370 do k=kte-2,1,-1
371 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
372 qvf2 = 1./(1.+qvf1)
373 qvf1 = qvf1*qvf2
374 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
375 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
376 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
377 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
378 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
379 enddo
380
381 ! this is the hydrostatic equation used in the model after the
382 ! small timesteps. In the model, grid%em_al (inverse density)
383 ! is computed from the geopotential.
384
385
386 grid%em_ph_1(i,1,j) = 0.
387 DO k = 2,kte
388 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
389 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
390 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
391
392 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
393 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
394 ENDDO
395
396 if((i==2) .and. (j==2)) then
397 write(6,*) ' grid%em_ph_1 calc ',grid%em_ph_1(2,1,2),grid%em_ph_1(2,2,2),&
398 grid%em_mu_1(2,2)+grid%em_mub(2,2),grid%em_mu_1(2,2), &
399 grid%em_alb(2,1,2),grid%em_al(1,2,1),grid%em_rdnw(1)
400 endif
401
402 ENDDO
403 ENDDO
404
405 !#if 0
406
407 ! thermal perturbation to kick off convection
408
409 write(6,*) ' nxc, nyc for perturbation ',nxc,nyc
410 write(6,*) ' delt for perturbation ',delt
411
412 DO J = jts, min(jde-1,jte)
413 yrad = config_flags%dy*float(j-nyc)/4000.
414 ! yrad = 0.
415 DO I = its, min(ide-1,ite)
416 ! xrad = config_flags%dx*float(i-nxc)/4000.
417 xrad = 0.
418 DO K = 1, kte-1
419
420 ! put in preturbation theta (bubble) and recalc density. note,
421 ! the mass in the column is not changing, so when theta changes,
422 ! we recompute density and geopotential
423
424 zrad = 0.5*(grid%em_ph_1(i,k,j)+grid%em_ph_1(i,k+1,j) &
425 +grid%em_phb(i,k,j)+grid%em_phb(i,k+1,j))/g
426 zrad = (zrad-1500.)/1500.
427 RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad)
428 IF(RAD <= 1.) THEN
429 grid%em_t_1(i,k,j)=grid%em_t_1(i,k,j)+delt*COS(.5*PI*RAD)**2
430 grid%em_t_2(i,k,j)=grid%em_t_1(i,k,j)
431 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
432 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
433 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
434 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
435 ENDIF
436 ENDDO
437
438 ! rebalance hydrostatically
439
440 DO k = 2,kte
441 grid%em_ph_1(i,k,j) = grid%em_ph_1(i,k-1,j) - (1./grid%em_rdnw(k-1))*( &
442 (grid%em_mub(i,j)+grid%em_mu_1(i,j))*grid%em_al(i,k-1,j)+ &
443 grid%em_mu_1(i,j)*grid%em_alb(i,k-1,j) )
444
445 grid%em_ph_2(i,k,j) = grid%em_ph_1(i,k,j)
446 grid%em_ph0(i,k,j) = grid%em_ph_1(i,k,j) + grid%em_phb(i,k,j)
447 ENDDO
448
449 ENDDO
450 ENDDO
451
452 !#endif
453
454 write(6,*) ' grid%em_mu_1 from comp ', grid%em_mu_1(1,1)
455 write(6,*) ' full state sounding from comp, ph, grid%em_p, grid%em_al, grid%em_t_1, qv '
456 do k=1,kde-1
457 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1)+grid%em_phb(1,k,1), &
458 grid%em_p(1,k,1)+grid%em_pb(1,k,1), grid%em_alt(1,k,1), &
459 grid%em_t_1(1,k,1)+t0, moist(1,k,1,P_QV)
460 enddo
461
462 write(6,*) ' pert state sounding from comp, grid%em_ph_1, pp, alp, grid%em_t_1, qv '
463 do k=1,kde-1
464 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%em_ph_1(1,k,1), &
465 grid%em_p(1,k,1), grid%em_al(1,k,1), &
466 grid%em_t_1(1,k,1), moist(1,k,1,P_QV)
467 enddo
468
469 ! interp v
470
471 DO J = jts, jte
472 DO I = its, min(ide-1,ite)
473
474 IF (j == jds) THEN
475 z_at_v = grid%em_phb(i,1,j)/g
476 ELSE IF (j == jde) THEN
477 z_at_v = grid%em_phb(i,1,j-1)/g
478 ELSE
479 z_at_v = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i,1,j-1))/g
480 END IF
481
482 p_surf = interp_0( p_in, zk, z_at_v, nl_in )
483
484 DO K = 1, kte
485 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
486 grid%em_v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in )
487 grid%em_v_2(i,k,j) = grid%em_v_1(i,k,j)
488 ENDDO
489
490 ENDDO
491 ENDDO
492
493 ! interp u
494
495 DO J = jts, min(jde-1,jte)
496 DO I = its, ite
497
498 IF (i == ids) THEN
499 z_at_u = grid%em_phb(i,1,j)/g
500 ELSE IF (i == ide) THEN
501 z_at_u = grid%em_phb(i-1,1,j)/g
502 ELSE
503 z_at_u = 0.5*(grid%em_phb(i,1,j)+grid%em_phb(i-1,1,j))/g
504 END IF
505
506 p_surf = interp_0( p_in, zk, z_at_u, nl_in )
507
508 DO K = 1, kte
509 p_level = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
510 grid%em_u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in )
511 grid%em_u_2(i,k,j) = grid%em_u_1(i,k,j)
512 ENDDO
513
514 ENDDO
515 ENDDO
516
517 ! set w
518
519 DO J = jts, min(jde-1,jte)
520 DO K = kts, kte
521 DO I = its, min(ide-1,ite)
522 grid%em_w_1(i,k,j) = 0.
523 grid%em_w_2(i,k,j) = 0.
524 ENDDO
525 ENDDO
526 ENDDO
527
528 ! set a few more things
529
530 DO J = jts, min(jde-1,jte)
531 DO K = kts, kte-1
532 DO I = its, min(ide-1,ite)
533 grid%h_diabatic(i,k,j) = 0.
534 ENDDO
535 ENDDO
536 ENDDO
537
538 DO k=1,kte-1
539 grid%em_t_base(k) = grid%em_t_1(1,k,1)
540 grid%qv_base(k) = moist(1,k,1,P_QV)
541 grid%u_base(k) = grid%em_u_1(1,k,1)
542 grid%v_base(k) = grid%em_v_1(1,k,1)
543 grid%z_base(k) = 0.5*(grid%em_phb(1,k,1)+grid%em_phb(1,k+1,1)+grid%em_ph_1(1,k,1)+grid%em_ph_1(1,k+1,1))/g
544 ENDDO
545
546 DO J = jts, min(jde-1,jte)
547 DO I = its, min(ide-1,ite)
548 thtmp = grid%em_t_2(i,1,j)+t0
549 ptmp = grid%em_p(i,1,j)+grid%em_pb(i,1,j)
550 temp(1) = thtmp * (ptmp/p1000mb)**rcp
551 thtmp = grid%em_t_2(i,2,j)+t0
552 ptmp = grid%em_p(i,2,j)+grid%em_pb(i,2,j)
553 temp(2) = thtmp * (ptmp/p1000mb)**rcp
554 thtmp = grid%em_t_2(i,3,j)+t0
555 ptmp = grid%em_p(i,3,j)+grid%em_pb(i,3,j)
556 temp(3) = thtmp * (ptmp/p1000mb)**rcp
557
558 grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3)
559 grid%tmn(I,J)=grid%tsk(I,J)-0.5
560 ENDDO
561 ENDDO
562
563 RETURN
564
565 END SUBROUTINE init_domain_rk
566
567 SUBROUTINE init_module_initialize
568 END SUBROUTINE init_module_initialize
569
570 !---------------------------------------------------------------------
571
572 ! test driver for get_sounding
573 !
574 ! implicit none
575 ! integer n
576 ! parameter(n = 1000)
577 ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n)
578 ! logical dry
579 ! integer nl,k
580 !
581 ! dry = .false.
582 ! dry = .true.
583 ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl )
584 ! write(6,*) ' input levels ',nl
585 ! write(6,*) ' sounding '
586 ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
587 ! do k=1,nl
588 ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k)
589 ! enddo
590 ! end
591 !
592 !---------------------------------------------------------------------------
593
594 subroutine get_sounding( zk, p, p_dry, theta, rho, &
595 u, v, qv, dry, nl_max, nl_in )
596 implicit none
597
598 integer nl_max, nl_in
599 real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), &
600 u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max)
601 logical dry
602
603 integer n
604 parameter(n=1000)
605 logical debug
606 parameter( debug = .true.)
607
608 ! input sounding data
609
610 real p_surf, th_surf, qv_surf
611 real pi_surf, pi(n)
612 real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n)
613
614 ! diagnostics
615
616 real rho_surf, p_input(n), rho_input(n)
617 real pm_input(n) ! this are for full moist sounding
618
619 ! local data
620
621 real p1000mb,cv,cp,r,cvpm,g
622 parameter (p1000mb = 1.e+05, r = 287, cp = 1003., cv = cp-r, cvpm = -cv/cp, g=9.81 )
623 integer k, it, nl
624 real qvf, qvf1, dz
625
626 ! first, read the sounding
627
628 call read_sounding( p_surf, th_surf, qv_surf, &
629 h_input, th_input, qv_input, u_input, v_input,n, nl, debug )
630
631 if(dry) then
632 do k=1,nl
633 qv_input(k) = 0.
634 enddo
635 endif
636
637 if(debug) write(6,*) ' number of input levels = ',nl
638
639 nl_in = nl
640 if(nl_in .gt. nl_max ) then
641 write(6,*) ' too many levels for input arrays ',nl_in,nl_max
642 call wrf_error_fatal ( ' too many levels for input arrays ' )
643 end if
644
645 ! compute diagnostics,
646 ! first, convert qv(g/kg) to qv(g/g)
647
648 do k=1,nl
649 qv_input(k) = 0.001*qv_input(k)
650 enddo
651
652 p_surf = 100.*p_surf ! convert to pascals
653 qvf = 1. + rvovrd*qv_input(1)
654 rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm))
655 pi_surf = (p_surf/p1000mb)**(r/cp)
656
657 if(debug) then
658 write(6,*) ' surface density is ',rho_surf
659 write(6,*) ' surface pi is ',pi_surf
660 end if
661
662
663 ! integrate moist sounding hydrostatically, starting from the
664 ! specified surface pressure
665 ! -> first, integrate from surface to lowest level
666
667 qvf = 1. + rvovrd*qv_input(1)
668 qvf1 = 1. + qv_input(1)
669 rho_input(1) = rho_surf
670 dz = h_input(1)
671 do it=1,10
672 pm_input(1) = p_surf &
673 - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1
674 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm))
675 enddo
676
677 ! integrate up the column
678
679 do k=2,nl
680 rho_input(k) = rho_input(k-1)
681 dz = h_input(k)-h_input(k-1)
682 qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k)))
683 qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here
684
685 do it=1,10
686 pm_input(k) = pm_input(k-1) &
687 - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1
688 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm))
689 enddo
690 enddo
691
692 ! we have the moist sounding
693
694 ! next, compute the dry sounding using p at the highest level from the
695 ! moist sounding and integrating down.
696
697 p_input(nl) = pm_input(nl)
698
699 do k=nl-1,1,-1
700 dz = h_input(k+1)-h_input(k)
701 p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g
702 enddo
703
704
705 do k=1,nl
706
707 zk(k) = h_input(k)
708 p(k) = pm_input(k)
709 p_dry(k) = p_input(k)
710 theta(k) = th_input(k)
711 rho(k) = rho_input(k)
712 u(k) = u_input(k)
713 v(k) = v_input(k)
714 qv(k) = qv_input(k)
715
716 enddo
717
718 if(debug) then
719 write(6,*) ' sounding '
720 write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) '
721 do k=1,nl
722 write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k)
723 enddo
724
725 end if
726
727 end subroutine get_sounding
728
729 !-------------------------------------------------------
730
731 subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug )
732 implicit none
733 integer n,nl
734 real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n)
735 logical end_of_file
736 logical debug
737
738 integer k
739
740 open(unit=10,file='input_sounding',form='formatted',status='old')
741 rewind(10)
742 read(10,*) ps, ts, qvs
743 if(debug) then
744 write(6,*) ' input sounding surface parameters '
745 write(6,*) ' surface pressure (mb) ',ps
746 write(6,*) ' surface pot. temp (K) ',ts
747 write(6,*) ' surface mixing ratio (g/kg) ',qvs
748 end if
749
750 end_of_file = .false.
751 k = 0
752
753 do while (.not. end_of_file)
754
755 read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1)
756 k = k+1
757 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k)
758 go to 110
759 100 end_of_file = .true.
760 110 continue
761 enddo
762
763 nl = k
764
765 close(unit=10,status = 'keep')
766
767 end subroutine read_sounding
768
769 END MODULE module_initialize_ideal