start_em.F
References to this file elsewhere.
1 !-------------------------------------------------------------------
2
3 SUBROUTINE start_domain_em ( grid, allowed_to_read &
4 ! Actual arguments generated from Registry
5 # include "em_dummy_new_args.inc"
6 !
7 )
8
9 USE module_domain
10 USE module_dm
11 ! USE module_io_domain
12 USE module_state_description
13 USE module_model_constants
14 USE module_bc
15 USE module_bc_em
16 ! USE module_timing
17 USE module_configure
18 USE module_tiles
19
20 USE module_physics_init
21 #ifdef WRF_CHEM
22 USE module_aerosols_sorgam, only: sum_pm_sorgam
23 USE module_mosaic_driver, only: sum_pm_mosaic
24 #endif
25
26 #ifdef DM_PARALLEL
27 USE module_dm
28 #endif
29
30 !!debug
31 !USE module_compute_geop
32
33 USE module_model_constants
34 IMPLICIT NONE
35 ! Input data.
36 TYPE (domain) :: grid
37
38 LOGICAL , INTENT(IN) :: allowed_to_read
39
40 ! Definitions of dummy arguments to this routine (generated from Registry).
41 # include "em_dummy_new_decl.inc"
42
43 ! Structure that contains run-time configuration (namelist) data for domain
44 TYPE (grid_config_rec_type) :: config_flags
45
46 ! Local data
47 INTEGER :: &
48 ids, ide, jds, jde, kds, kde, &
49 ims, ime, jms, jme, kms, kme, &
50 ips, ipe, jps, jpe, kps, kpe, &
51 its, ite, jts, jte, kts, kte, &
52 ij,i,j,k,ii,jj,kk,loop,error,l
53
54 INTEGER :: i_m
55
56 REAL :: p00, t00, a, p_surf, pd_surf
57 #ifdef WRF_CHEM
58 REAL RGASUNIV ! universal gas constant [ J/mol-K ]
59 PARAMETER ( RGASUNIV = 8.314510 )
60 REAL,DIMENSION(grid%sm31:grid%em31,grid%sm32:grid%em32,grid%sm33:grid%em33) :: &
61 z_at_w,convfac
62 REAL :: tempfac
63 #endif
64
65 REAL :: qvf1, qvf2, qvf
66 REAL :: MPDT
67 REAL :: spongeweight
68 LOGICAL :: first_trip_for_this_domain, start_of_simulation
69 #ifndef WRF_CHEM
70 REAL,ALLOCATABLE,DIMENSION(:,:,:) :: cldfra_old
71 #endif
72
73 REAL :: lat1 , lat2 , lat3 , lat4
74 REAL :: lon1 , lon2 , lon3 , lon4
75 INTEGER :: num_points_lat_lon , iloc , jloc
76 CHARACTER (LEN=132) :: message
77
78 ! Needed by some comm layers, e.g. RSL. If needed, nmm_data_calls.inc is
79 ! generated from the registry. The definition of REGISTER_I1 allows
80 ! I1 data to be communicated in this routine if necessary.
81 #ifdef DM_PARALLEL
82 # include "em_data_calls.inc"
83 #endif
84 CALL get_ijk_from_grid ( grid , &
85 ids, ide, jds, jde, kds, kde, &
86 ims, ime, jms, jme, kms, kme, &
87 ips, ipe, jps, jpe, kps, kpe )
88
89 kts = kps ; kte = kpe ! note that tile is entire patch
90 its = ips ; ite = ipe ! note that tile is entire patch
91 jts = jps ; jte = jpe ! note that tile is entire patch
92 #ifndef WRF_CHEM
93 ALLOCATE(CLDFRA_OLD(IMS:IME,KMS:KME,JMS:JME),STAT=I) ; CLDFRA_OLD = 0.
94 #endif
95 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags )
96
97 IF ( ( MOD (ide-ids,config_flags%parent_grid_ratio) .NE. 0 ) .OR. &
98 ( MOD (jde-jds,config_flags%parent_grid_ratio) .NE. 0 ) ) THEN
99 WRITE(message, FMT='("Nested dimensions are illegal for domain ",I2,": Both &
100 &MOD(",I4,"-",I1,",",I2,") and MOD(",I4,"-",I1,",",I2,") must = 0" )') &
101 grid%id,ide,ids,config_flags%parent_grid_ratio,jde,jds,config_flags%parent_grid_ratio
102 CALL wrf_error_fatal ( message )
103 END IF
104
105 ! here we check to see if the boundary conditions are set properly
106
107 CALL boundary_condition_check( config_flags, bdyzone, error, grid%id )
108
109 !kludge - need to stop CG from resetting precip and phys tendencies to zero
110 ! when we are in here due to a nest being spawned, we want to still
111 ! recompute the base state, but that is about it
112 ! This is temporary and will need to be changed when grid%itimestep is removed.
113
114 IF ( grid%itimestep .EQ. 0 ) THEN
115 first_trip_for_this_domain = .TRUE.
116 ELSE
117 first_trip_for_this_domain = .FALSE.
118 END IF
119
120 IF ( .not. ( config_flags%restart .or. grid%moved ) ) THEN
121 grid%itimestep=0
122 ENDIF
123
124 IF ( config_flags%restart .or. grid%moved ) THEN
125 first_trip_for_this_domain = .TRUE.
126 ENDIF
127
128 IF (config_flags%specified) THEN
129 !
130 ! Arrays for specified boundary conditions
131 ! wig: Add a combined exponential+linear weight on the mother boundaries
132 ! following code changes by Ruby Leung. For the nested grid, there
133 ! appears to be some problems when a sponge is used. The points where
134 ! processors meet have problematic values.
135
136 DO loop = grid%spec_zone + 1, grid%spec_zone + grid%relax_zone
137 grid%fcx(loop) = 0.1 / grid%dt * (grid%spec_zone + grid%relax_zone - loop) / (grid%relax_zone - 1)
138 grid%gcx(loop) = 1.0 / grid%dt / 50. * (grid%spec_zone + grid%relax_zone - loop) / (grid%relax_zone - 1)
139 ! spongeweight=exp(-(loop-2)/3.)
140 ! grid%fcx(loop) = grid%fcx(loop)*spongeweight
141 ! grid%gcx(loop) = grid%gcx(loop)*spongeweight
142 ENDDO
143
144 ELSE IF (config_flags%nested) THEN
145 !
146 ! Arrays for nested boundary conditions
147
148 DO loop = grid%spec_zone + 1, grid%spec_zone + grid%relax_zone
149 grid%fcx(loop) = 0.1 / grid%dt * (grid%spec_zone + grid%relax_zone - loop) / (grid%relax_zone - 1)
150 grid%gcx(loop) = 1.0 / grid%dt / 50. * (grid%spec_zone + grid%relax_zone - loop) / (grid%relax_zone - 1)
151 ! spongeweight=exp(-(loop-2)/3.)
152 ! grid%fcx(loop) = grid%fcx(loop)*spongeweight
153 ! grid%gcx(loop) = grid%gcx(loop)*spongeweight
154 ! grid%fcx(loop) = 0.
155 ! grid%gcx(loop) = 0.
156 ENDDO
157
158 grid%dtbc = 0.
159
160 ENDIF
161
162 IF ( ( grid%id .NE. 1 ) .AND. ( .NOT. config_flags%input_from_file ) ) THEN
163
164 ! Every time a domain starts or every time a domain moves, this routine is called. We want
165 ! the center (middle) lat/lon of the grid for the metacode. The lat/lon values are
166 ! defined at mass points. Depending on the even/odd points in the SN and WE directions,
167 ! we end up with the middle point as either 1 point or an average of either 2 or 4 points.
168 ! Add to this, the need to make sure that we are on the correct patch to retrieve the
169 ! value of the lat/lon, AND that the lat/lons (for an average) may not all be on the same
170 ! patch. Once we find the correct value for lat lon, we need to keep it around on all patches,
171 ! which is where the wrf_dm_min_real calls come in.
172 ! If this is the most coarse domain, we do not go in here. Also, if there is an input file
173 ! (which has the right values for the middle lat/lon) we do not go in this IF test.
174
175 IF ( ( MOD(ide,2) .EQ. 0 ) .AND. ( MOD(jde,2) .EQ. 0 ) ) THEN
176 num_points_lat_lon = 1
177 iloc = ide/2
178 jloc = jde/2
179 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
180 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
181 lat1 = grid%xlat (iloc,jloc)
182 lon1 = grid%xlong(iloc,jloc)
183 ELSE
184 lat1 = 99999.
185 lon1 = 99999.
186 END IF
187 lat1 = wrf_dm_min_real ( lat1 )
188 lon1 = wrf_dm_min_real ( lon1 )
189 CALL nl_set_cen_lat ( grid%id , lat1 )
190 CALL nl_set_cen_lon ( grid%id , lon1 )
191 ELSE IF ( ( MOD(ide,2) .NE. 0 ) .AND. ( MOD(jde,2) .EQ. 0 ) ) THEN
192 num_points_lat_lon = 2
193 iloc = (ide-1)/2
194 jloc = jde /2
195 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
196 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
197 lat1 = grid%xlat (iloc,jloc)
198 lon1 = grid%xlong(iloc,jloc)
199 ELSE
200 lat1 = 99999.
201 lon1 = 99999.
202 END IF
203 lat1 = wrf_dm_min_real ( lat1 )
204 lon1 = wrf_dm_min_real ( lon1 )
205
206 iloc = (ide+1)/2
207 jloc = jde /2
208 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
209 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
210 lat2 = grid%xlat (iloc,jloc)
211 lon2 = grid%xlong(iloc,jloc)
212 ELSE
213 lat2 = 99999.
214 lon2 = 99999.
215 END IF
216 lat2 = wrf_dm_min_real ( lat2 )
217 lon2 = wrf_dm_min_real ( lon2 )
218
219 CALL nl_set_cen_lat ( grid%id , ( lat1 + lat2 ) * 0.50 )
220 CALL nl_set_cen_lon ( grid%id , ( lon1 + lon2 ) * 0.50 )
221 ELSE IF ( ( MOD(ide,2) .EQ. 0 ) .AND. ( MOD(jde,2) .NE. 0 ) ) THEN
222 num_points_lat_lon = 2
223 iloc = ide /2
224 jloc = (jde-1)/2
225 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
226 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
227 lat1 = grid%xlat (iloc,jloc)
228 lon1 = grid%xlong(iloc,jloc)
229 ELSE
230 lat1 = 99999.
231 lon1 = 99999.
232 END IF
233 lat1 = wrf_dm_min_real ( lat1 )
234 lon1 = wrf_dm_min_real ( lon1 )
235
236 iloc = ide /2
237 jloc = (jde+1)/2
238 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
239 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
240 lat2 = grid%xlat (iloc,jloc)
241 lon2 = grid%xlong(iloc,jloc)
242 ELSE
243 lat2 = 99999.
244 lon2 = 99999.
245 END IF
246 lat2 = wrf_dm_min_real ( lat2 )
247 lon2 = wrf_dm_min_real ( lon2 )
248
249 CALL nl_set_cen_lat ( grid%id , ( lat1 + lat2 ) * 0.50 )
250 CALL nl_set_cen_lon ( grid%id , ( lon1 + lon2 ) * 0.50 )
251 ELSE IF ( ( MOD(ide,2) .NE. 0 ) .AND. ( MOD(jde,2) .NE. 0 ) ) THEN
252 num_points_lat_lon = 4
253 iloc = (ide-1)/2
254 jloc = (jde-1)/2
255 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
256 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
257 lat1 = grid%xlat (iloc,jloc)
258 lon1 = grid%xlong(iloc,jloc)
259 ELSE
260 lat1 = 99999.
261 lon1 = 99999.
262 END IF
263 lat1 = wrf_dm_min_real ( lat1 )
264 lon1 = wrf_dm_min_real ( lon1 )
265
266 iloc = (ide+1)/2
267 jloc = (jde-1)/2
268 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
269 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
270 lat2 = grid%xlat (iloc,jloc)
271 lon2 = grid%xlong(iloc,jloc)
272 ELSE
273 lat2 = 99999.
274 lon2 = 99999.
275 END IF
276 lat2 = wrf_dm_min_real ( lat2 )
277 lon2 = wrf_dm_min_real ( lon2 )
278
279 iloc = (ide-1)/2
280 jloc = (jde+1)/2
281 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
282 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
283 lat3 = grid%xlat (iloc,jloc)
284 lon3 = grid%xlong(iloc,jloc)
285 ELSE
286 lat3 = 99999.
287 lon3 = 99999.
288 END IF
289 lat3 = wrf_dm_min_real ( lat3 )
290 lon3 = wrf_dm_min_real ( lon3 )
291
292 iloc = (ide+1)/2
293 jloc = (jde+1)/2
294 IF ( ( ips .LE. iloc ) .AND. ( ipe .GE. iloc ) .AND. &
295 ( jps .LE. jloc ) .AND. ( jpe .GE. jloc ) ) THEN
296 lat4 = grid%xlat (iloc,jloc)
297 lon4 = grid%xlong(iloc,jloc)
298 ELSE
299 lat4 = 99999.
300 lon4 = 99999.
301 END IF
302 lat4 = wrf_dm_min_real ( lat4 )
303 lon4 = wrf_dm_min_real ( lon4 )
304
305 CALL nl_set_cen_lat ( grid%id , ( lat1 + lat2 + lat3 + lat4 ) * 0.25 )
306 CALL nl_set_cen_lon ( grid%id , ( lon1 + lon2 + lon3 + lon4 ) * 0.25 )
307 END IF
308 END IF
309
310 IF ( .NOT. config_flags%restart .AND. &
311 (( config_flags%input_from_hires ) .OR. ( config_flags%input_from_file ))) THEN
312
313 IF ( config_flags%map_proj .EQ. 0 ) THEN
314 CALL wrf_error_fatal ( 'start_domain: Idealized case cannot have a separate nested input file' )
315 END IF
316
317 CALL nl_get_base_pres ( 1 , p00 )
318 CALL nl_get_base_temp ( 1 , t00 )
319 CALL nl_get_base_lapse ( 1 , a )
320
321 ! Base state potential temperature and inverse density (alpha = 1/rho) from
322 ! the half eta levels and the base-profile surface pressure. Compute 1/rho
323 ! from equation of state. The potential temperature is a perturbation from t0.
324
325 DO j = jts, MIN(jte,jde-1)
326 DO i = its, MIN(ite,ide-1)
327
328 ! Base state pressure is a function of eta level and terrain, only, plus
329 ! the hand full of constants: p00 (sea level pressure, Pa), t00 (sea level
330 ! temperature, K), and A (temperature difference, from 1000 mb to 300 mb, K).
331
332 p_surf = p00 * EXP ( -t00/a + ( (t00/a)**2 - 2.*g*grid%ht(i,j)/a/r_d ) **0.5 )
333
334 DO k = 1, kte-1
335 grid%em_pb(i,k,j) = grid%em_znu(k)*(p_surf - grid%p_top) + grid%p_top
336 grid%em_t_init(i,k,j) = (t00 + A*LOG(grid%em_pb(i,k,j)/p00))*(p00/grid%em_pb(i,k,j))**(r_d/cp) - t0
337 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
338 END DO
339
340 ! Base state mu is defined as base state surface pressure minus grid%p_top
341
342 grid%em_mub(i,j) = p_surf - grid%p_top
343
344 ! Integrate base geopotential, starting at terrain elevation. This assures that
345 ! the base state is in exact hydrostatic balance with respect to the model equations.
346 ! This field is on full levels.
347
348 grid%em_phb(i,1,j) = grid%ht(i,j) * g
349 DO k = 2,kte
350 grid%em_phb(i,k,j) = grid%em_phb(i,k-1,j) - grid%em_dnw(k-1)*grid%em_mub(i,j)*grid%em_alb(i,k-1,j)
351 END DO
352 END DO
353 END DO
354
355 ENDIF
356
357 IF(.not.config_flags%restart)THEN
358
359 ! if this is for a nested domain, the defined/interpolated fields are the _2
360
361 IF ( first_trip_for_this_domain ) THEN
362
363 ! data that is expected to be zero must be explicitly initialized as such
364 ! grid%h_diabatic = 0.
365
366 DO j = jts,min(jte,jde-1)
367 DO k = kts,kte-1
368 DO i = its, min(ite,ide-1)
369 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
370 grid%em_t_1(i,k,j)=grid%em_t_2(i,k,j)
371 ENDIF
372 ENDDO
373 ENDDO
374 ENDDO
375
376 DO j = jts,min(jte,jde-1)
377 DO i = its, min(ite,ide-1)
378 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
379 grid%em_mu_1(i,j)=grid%em_mu_2(i,j)
380 ENDIF
381 ENDDO
382 ENDDO
383 END IF
384
385 ! reconstitute base-state fields
386
387 IF(config_flags%max_dom .EQ. 1)THEN
388 ! with single domain, grid%em_t_init from wrfinput is OK to use
389 DO j = jts,min(jte,jde-1)
390 DO k = kts,kte-1
391 DO i = its, min(ite,ide-1)
392 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
393 grid%em_pb(i,k,j) = grid%em_znu(k)*grid%em_mub(i,j)+grid%p_top
394 grid%em_alb(i,k,j) = (r_d/p1000mb)*(grid%em_t_init(i,k,j)+t0)*(grid%em_pb(i,k,j)/p1000mb)**cvpm
395 ENDIF
396 ENDDO
397 ENDDO
398 ENDDO
399 ELSE
400 ! with nests, grid%em_t_init generally needs recomputations (since it is not interpolated)
401 DO j = jts,min(jte,jde-1)
402 DO k = kts,kte-1
403 DO i = its, min(ite,ide-1)
404 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
405 grid%em_pb(i,k,j) = grid%em_znu(k)*grid%em_mub(i,j)+grid%p_top
406 grid%em_alb(i,k,j) = -grid%em_rdnw(k)*(grid%em_phb(i,k+1,j)-grid%em_phb(i,k,j))/grid%em_mub(i,j)
407 grid%em_t_init(i,k,j) = grid%em_alb(i,k,j)*(p1000mb/r_d)/((grid%em_pb(i,k,j)/p1000mb)**cvpm) - t0
408 ENDIF
409 ENDDO
410 ENDDO
411 ENDDO
412 ENDIF
413
414 DO j = jts,min(jte,jde-1)
415
416 k = kte-1
417 DO i = its, min(ite,ide-1)
418 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
419 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV))
420 qvf2 = 1./(1.+qvf1)
421 qvf1 = qvf1*qvf2
422 grid%em_p(i,k,j) = - 0.5*(grid%em_mu_1(i,j)+qvf1*grid%em_mub(i,j))/grid%em_rdnw(k)/qvf2
423 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
424 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf*(((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
425 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
426 ENDIF
427 ENDDO
428
429 DO k = kte-2, 1, -1
430 DO i = its, min(ite,ide-1)
431 IF ( grid%imask_nostag(i,j) .EQ. 1 ) THEN
432 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV))
433 qvf2 = 1./(1.+qvf1)
434 qvf1 = qvf1*qvf2
435 grid%em_p(i,k,j) = grid%em_p(i,k+1,j) - (grid%em_mu_1(i,j) + qvf1*grid%em_mub(i,j))/qvf2/grid%em_rdn(k+1)
436 qvf = 1. + rvovrd*moist(i,k,j,P_QV)
437 grid%em_alt(i,k,j) = (r_d/p1000mb)*(grid%em_t_1(i,k,j)+t0)*qvf* &
438 (((grid%em_p(i,k,j)+grid%em_pb(i,k,j))/p1000mb)**cvpm)
439 grid%em_al(i,k,j) = grid%em_alt(i,k,j) - grid%em_alb(i,k,j)
440 ENDIF
441 ENDDO
442 ENDDO
443
444 ENDDO
445
446 ENDIF
447
448 IF ( ( grid%id .NE. 1 ) .AND. .NOT. ( config_flags%restart ) .AND. &
449 ( ( config_flags%input_from_hires ) .OR. ( config_flags%input_from_file ) ) ) THEN
450 DO j = jts, MIN(jte,jde-1)
451 DO i = its, MIN(ite,ide-1)
452 grid%em_mu_2(i,j) = grid%em_mu_2(i,j) + grid%em_al(i,1,j) / ( grid%em_alt(i,1,j) * grid%em_alb(i,1,j) ) * &
453 g * ( grid%ht(i,j) - grid%ht_fine(i,j) )
454 END DO
455 END DO
456 DO j = jts,min(jte,jde-1)
457 DO i = its, min(ite,ide-1)
458 grid%em_mu_1(i,j)=grid%em_mu_2(i,j)
459 ENDDO
460 ENDDO
461
462 END IF
463
464 IF ( first_trip_for_this_domain ) THEN
465
466 CALL wrf_debug ( 100 , 'module_start: start_domain_rk: Before call to phy_init' )
467
468 ! namelist MPDT does not exist yet, so set it here
469 ! MPDT is the call frequency for microphysics in minutes (0 means every step)
470 MPDT = 0.
471
472 ! set GMT outside of phy_init because phy_init may not be called on this
473 ! process if, for example, it is a moving nest and if this part of the domain is not
474 ! being initialized (not the leading edge).
475 CALL domain_setgmtetc( grid, start_of_simulation )
476
477 CALL set_tiles ( grid , grid%imask_nostag, ims, ime, jms, jme, ips, ipe, jps, jpe )
478
479 ! Phy_init is not necessarily thread-safe; do not multi-thread this loop.
480 ! The tiling is to handle the fact that we may be masking off part of the computation.
481 DO ij = 1, grid%num_tiles
482
483 CALL phy_init ( grid%id , config_flags, grid%DT, grid%RESTART, grid%em_znw, grid%em_znu, &
484 grid%p_top, grid%tsk, grid%RADT,grid%BLDT,grid%CUDT, MPDT, &
485 grid%rthcuten, grid%rqvcuten, grid%rqrcuten, &
486 grid%rqccuten, grid%rqscuten, grid%rqicuten, &
487 grid%rublten,grid%rvblten,grid%rthblten, &
488 grid%rqvblten,grid%rqcblten,grid%rqiblten, &
489 grid%rthraten,grid%rthratenlw,grid%rthratensw, &
490 grid%stepbl,grid%stepra,grid%stepcu, &
491 grid%w0avg, grid%rainnc, grid%rainc, grid%raincv, grid%rainncv, &
492 grid%nca,grid%swrad_scat, &
493 grid%cldefi,grid%lowlyr, &
494 grid%mass_flux, &
495 grid%rthften, grid%rqvften, &
496 grid%cldfra, &
497 #ifdef WRF_CHEM
498 grid%cldfra_old, &
499 #endif
500 #ifndef WRF_CHEM
501 cldfra_old, &
502 #endif
503 grid%glw,grid%gsw,grid%emiss,grid%lu_index, &
504 grid%landuse_ISICE, grid%landuse_LUCATS, &
505 grid%landuse_LUSEAS, grid%landuse_ISN, &
506 grid%lu_state, &
507 grid%xlat,grid%xlong,grid%albedo,grid%albbck,grid%GMT,grid%JULYR,grid%JULDAY, &
508 grid%levsiz, num_ozmixm, num_aerosolc, grid%paerlev, &
509 grid%tmn,grid%xland,grid%znt,grid%z0,grid%ust,grid%mol,grid%pblh,grid%tke_myj, &
510 grid%exch_h,grid%thc,grid%snowc,grid%mavail,grid%hfx,grid%qfx,grid%rainbl, &
511 grid%tslb,grid%zs,grid%dzs,config_flags%num_soil_layers,grid%warm_rain, &
512 grid%adv_moist_cond, &
513 grid%apr_gr,grid%apr_w,grid%apr_mc,grid%apr_st,grid%apr_as, &
514 grid%apr_capma,grid%apr_capme,grid%apr_capmi, &
515 grid%xice,grid%vegfra,grid%snow,grid%canwat,grid%smstav, &
516 grid%smstot, grid%sfcrunoff,grid%udrunoff,grid%grdflx,grid%acsnow, &
517 grid%acsnom,grid%ivgtyp,grid%isltyp, grid%sfcevp,grid%smois, &
518 grid%sh2o, grid%snowh, grid%smfr3d, &
519 grid%DX,grid%DY,grid%f_ice_phy,grid%f_rain_phy,grid%f_rimef_phy, &
520 grid%mp_restart_state,grid%tbpvs_state,grid%tbpvs0_state,&
521 allowed_to_read, grid%moved, start_of_simulation, &
522 ids, ide, jds, jde, kds, kde, &
523 ims, ime, jms, jme, kms, kme, &
524 grid%i_start(ij), grid%i_end(ij), grid%j_start(ij), grid%j_end(ij), kts, kte, &
525 ozmixm,grid%pin, & ! Optional
526 grid%m_ps_1,grid%m_ps_2,grid%m_hybi,aerosolc_1,aerosolc_2,& ! Optional
527 grid%rundgdten,grid%rvndgdten,grid%rthndgdten, & ! Optional
528 grid%rqvndgdten,grid%rmundgdten, & ! Optional
529 grid%FGDT,grid%stepfg, & ! Optional
530 grid%DZR, grid%DZB, grid%DZG, & !Optional urban
531 grid%TR_URB2D,grid%TB_URB2D,grid%TG_URB2D,grid%TC_URB2D, & !Optional urban
532 grid%QC_URB2D, grid%XXXR_URB2D,grid%XXXB_URB2D, & !Optional urban
533 grid%XXXG_URB2D, grid%XXXC_URB2D, & !Optional urban
534 grid%TRL_URB3D, grid%TBL_URB3D, grid%TGL_URB3D, & !Optional urban
535 grid%SH_URB2D, grid%LH_URB2D, grid%G_URB2D, grid%RN_URB2D, & !Optional urban
536 grid%TS_URB2D, grid%FRC_URB2D, grid%UTYPE_URB2D, & !Optional urban
537 itimestep=grid%itimestep, fdob=grid%fdob &
538 )
539
540 ENDDO
541
542
543
544 CALL wrf_debug ( 100 , 'module_start: start_domain_rk: After call to phy_init' )
545
546 #ifdef MCELIO
547 LU_MASK = 0.
548 WHERE ( grid%lu_index .EQ. 16 ) LU_MASK = 1.
549 #endif
550
551 END IF
552
553 #if 0
554 #include "CYCLE_TEST.inc"
555 #endif
556
557 !
558 !
559
560 ! set physical boundary conditions for all initialized variables
561
562 !-----------------------------------------------------------------------
563 ! Stencils for patch communications (WCS, 29 June 2001)
564 ! Note: the size of this halo exchange reflects the
565 ! fact that we are carrying the uncoupled variables
566 ! as state variables in the mass coordinate model, as
567 ! opposed to the coupled variables as in the height
568 ! coordinate model.
569 !
570 ! * * * * *
571 ! * * * * * * * * *
572 ! * + * * + * * * + * *
573 ! * * * * * * * * *
574 ! * * * * *
575 !
576 !j grid%em_u_1 x
577 !j grid%em_u_2 x
578 !j grid%em_v_1 x
579 !j grid%em_v_2 x
580 !j grid%em_w_1 x
581 !j grid%em_w_2 x
582 !j grid%em_t_1 x
583 !j grid%em_t_2 x
584 !j grid%em_ph_1 x
585 !j grid%em_ph_2 x
586 !
587 !j grid%em_t_init x
588 !
589 !j grid%em_phb x
590 !j grid%em_ph0 x
591 !j grid%em_php x
592 !j grid%em_pb x
593 !j grid%em_al x
594 !j grid%em_alt x
595 !j grid%em_alb x
596 !
597 ! the following are 2D (xy) variables
598 !
599 !j grid%em_mu_1 x
600 !j grid%em_mu_2 x
601 !j grid%em_mub x
602 !j grid%em_mu0 x
603 !j grid%ht x
604 !j grid%msft x
605 !j grid%msfu x
606 !j grid%msfv x
607 !j grid%sina x
608 !j grid%cosa x
609 !j grid%e x
610 !j grid%f x
611 !
612 ! 4D variables
613 !
614 ! moist x
615 ! chem x
616 !scalar x
617
618 !--------------------------------------------------------------
619
620 #ifdef DM_PARALLEL
621 # include "HALO_EM_INIT_1.inc"
622 # include "HALO_EM_INIT_2.inc"
623 # include "HALO_EM_INIT_3.inc"
624 # include "HALO_EM_INIT_4.inc"
625 # include "HALO_EM_INIT_5.inc"
626 # include "PERIOD_BDY_EM_INIT.inc"
627 # include "PERIOD_BDY_EM_MOIST.inc"
628 # include "PERIOD_BDY_EM_CHEM.inc"
629 #endif
630
631
632 CALL set_physical_bc3d( grid%em_u_1 , 'U' , config_flags , &
633 ids , ide , jds , jde , kds , kde , &
634 ims , ime , jms , jme , kms , kme , &
635 its , ite , jts , jte , kts , kte , &
636 its , ite , jts , jte , kts , kte )
637 CALL set_physical_bc3d( grid%em_u_2 , 'U' , config_flags , &
638 ids , ide , jds , jde , kds , kde , &
639 ims , ime , jms , jme , kms , kme , &
640 its , ite , jts , jte , kts , kte , &
641 its , ite , jts , jte , kts , kte )
642
643 CALL set_physical_bc3d( grid%em_v_1 , 'V' , config_flags , &
644 ids , ide , jds , jde , kds , kde , &
645 ims , ime , jms , jme , kms , kme , &
646 its , ite , jts , jte , kts , kte , &
647 its , ite , jts , jte , kts , kte )
648 CALL set_physical_bc3d( grid%em_v_2 , 'V' , config_flags , &
649 ids , ide , jds , jde , kds , kde , &
650 ims , ime , jms , jme , kms , kme , &
651 its , ite , jts , jte , kts , kte , &
652 its , ite , jts , jte , kts , kte )
653
654 ! set kinematic condition for w
655
656 CALL set_physical_bc2d( grid%ht , 'r' , config_flags , &
657 ids , ide , jds , jde , &
658 ims , ime , jms , jme , &
659 its , ite , jts , jte , &
660 its , ite , jts , jte )
661
662 IF ( .not. config_flags%restart ) THEN
663 CALL set_w_surface( config_flags, &
664 grid%em_w_1, grid%ht, grid%em_u_1, grid%em_v_1, grid%cf1, &
665 grid%cf2, grid%cf3, grid%rdx, grid%rdy, grid%msft, &
666 ids, ide, jds, jde, kds, kde, &
667 ips, ipe, jps, jpe, kps, kpe, &
668 its, ite, jts, jte, kts, kte, &
669 ims, ime, jms, jme, kms, kme )
670 CALL set_w_surface( config_flags, &
671 grid%em_w_2, grid%ht, grid%em_u_2, grid%em_v_2, grid%cf1, &
672 grid%cf2, grid%cf3, grid%rdx, grid%rdy, grid%msft, &
673 ids, ide, jds, jde, kds, kde, &
674 ips, ipe, jps, jpe, kps, kpe, &
675 its, ite, jts, jte, kts, kte, &
676 ims, ime, jms, jme, kms, kme )
677 END IF
678
679 ! finished setting kinematic condition for w at the surface
680
681 CALL set_physical_bc3d( grid%em_w_1 , 'W' , config_flags , &
682 ids , ide , jds , jde , kds , kde , &
683 ims , ime , jms , jme , kms , kme , &
684 its , ite , jts , jte , kts , kte , &
685 its , ite , jts , jte , kts , kte )
686 CALL set_physical_bc3d( grid%em_w_2 , 'W' , config_flags , &
687 ids , ide , jds , jde , kds , kde , &
688 ims , ime , jms , jme , kms , kme , &
689 its , ite , jts , jte , kts , kte , &
690 its , ite , jts , jte , kts , kte )
691
692 CALL set_physical_bc3d( grid%em_ph_1 , 'W' , config_flags , &
693 ids , ide , jds , jde , kds , kde , &
694 ims , ime , jms , jme , kms , kme , &
695 its , ite , jts , jte , kts , kte , &
696 its , ite , jts , jte , kts , kte )
697
698 CALL set_physical_bc3d( grid%em_ph_2 , 'W' , config_flags , &
699 ids , ide , jds , jde , kds , kde , &
700 ims , ime , jms , jme , kms , kme , &
701 its , ite , jts , jte , kts , kte , &
702 its , ite , jts , jte , kts , kte )
703
704 CALL set_physical_bc3d( grid%em_t_1 , 't' , config_flags , &
705 ids , ide , jds , jde , kds , kde , &
706 ims , ime , jms , jme , kms , kme , &
707 its , ite , jts , jte , kts , kte , &
708 its , ite , jts , jte , kts , kte )
709
710 CALL set_physical_bc3d( grid%em_t_2 , 't' , config_flags , &
711 ids , ide , jds , jde , kds , kde , &
712 ims , ime , jms , jme , kms , kme , &
713 its , ite , jts , jte , kts , kte , &
714 its , ite , jts , jte , kts , kte )
715
716 CALL set_physical_bc2d( grid%em_mu_1, 't' , config_flags , &
717 ids , ide , jds , jde , &
718 ims , ime , jms , jme , &
719 its , ite , jts , jte , &
720 its , ite , jts , jte )
721 CALL set_physical_bc2d( grid%em_mu_2, 't' , config_flags , &
722 ids , ide , jds , jde , &
723 ims , ime , jms , jme , &
724 its , ite , jts , jte , &
725 its , ite , jts , jte )
726 CALL set_physical_bc2d( grid%em_mub , 't' , config_flags , &
727 ids , ide , jds , jde , &
728 ims , ime , jms , jme , &
729 its , ite , jts , jte , &
730 its , ite , jts , jte )
731 CALL set_physical_bc2d( grid%em_mu0 , 't' , config_flags , &
732 ids , ide , jds , jde , &
733 ims , ime , jms , jme , &
734 its , ite , jts , jte , &
735 its , ite , jts , jte )
736
737
738 CALL set_physical_bc3d( grid%em_phb , 'W' , config_flags , &
739 ids , ide , jds , jde , kds , kde , &
740 ims , ime , jms , jme , kms , kme , &
741 its , ite , jts , jte , kts , kte , &
742 its , ite , jts , jte , kts , kte )
743 CALL set_physical_bc3d( grid%em_ph0 , 'W' , config_flags , &
744 ids , ide , jds , jde , kds , kde , &
745 ims , ime , jms , jme , kms , kme , &
746 its , ite , jts , jte , kts , kte , &
747 its , ite , jts , jte , kts , kte )
748 CALL set_physical_bc3d( grid%em_php , 'W' , config_flags , &
749 ids , ide , jds , jde , kds , kde , &
750 ims , ime , jms , jme , kms , kme , &
751 its , ite , jts , jte , kts , kte , &
752 its , ite , jts , jte , kts , kte )
753
754 CALL set_physical_bc3d( grid%em_pb , 't' , config_flags , &
755 ids , ide , jds , jde , kds , kde , &
756 ims , ime , jms , jme , kms , kme , &
757 its , ite , jts , jte , kts , kte , &
758 its , ite , jts , jte , kts , kte )
759 CALL set_physical_bc3d( grid%em_al , 't' , config_flags , &
760 ids , ide , jds , jde , kds , kde , &
761 ims , ime , jms , jme , kms , kme , &
762 its , ite , jts , jte , kts , kte , &
763 its , ite , jts , jte , kts , kte )
764 CALL set_physical_bc3d( grid%em_alt , 't' , config_flags , &
765 ids , ide , jds , jde , kds , kde , &
766 ims , ime , jms , jme , kms , kme , &
767 its , ite , jts , jte , kts , kte , &
768 its , ite , jts , jte , kts , kte )
769 CALL set_physical_bc3d( grid%em_alb , 't' , config_flags , &
770 ids , ide , jds , jde , kds , kde , &
771 ims , ime , jms , jme , kms , kme , &
772 its , ite , jts , jte , kts , kte , &
773 its , ite , jts , jte , kts , kte )
774 CALL set_physical_bc3d(grid%em_t_init, 't' , config_flags , &
775 ids , ide , jds , jde , kds , kde , &
776 ims , ime , jms , jme , kms , kme , &
777 its , ite , jts , jte , kts , kte , &
778 its , ite , jts , jte , kts , kte )
779
780 IF (num_moist > 0) THEN
781
782 ! use of (:,:,:,loop) not efficient on DEC, but (ims,kms,jms,loop) not portable to SGI/Cray
783
784 loop_3d_m : DO loop = 1 , num_moist
785 CALL set_physical_bc3d( moist(:,:,:,loop) , 'r' , config_flags , &
786 ids , ide , jds , jde , kds , kde , &
787 ims , ime , jms , jme , kms , kme , &
788 its , ite , jts , jte , kts , kte , &
789 its , ite , jts , jte , kts , kte )
790 END DO loop_3d_m
791
792 ENDIF
793
794 !wig 17-Oct-2006, begin: I think the following should be here...
795 IF (num_scalar > 0) THEN
796
797 ! use of (:,:,:,loop) not efficient on DEC, but (ims,kms,jms,loop) not portable to SGI/Cray
798
799 loop_3d_s : DO loop = 1 , num_scalar
800 CALL set_physical_bc3d( scalar(:,:,:,loop) , 'r' , config_flags , &
801 ids , ide , jds , jde , kds , kde , &
802 ims , ime , jms , jme , kms , kme , &
803 its , ite , jts , jte , kts , kte , &
804 its , ite , jts , jte , kts , kte )
805 END DO loop_3d_s
806
807 ENDIF
808 !wig end.
809
810
811 #ifdef WRF_CHEM
812 !
813 ! we do this here, so we only have one chem_init routine for either core....
814 !
815 do j=jts,min(jte,jde-1)
816 do i=its,min(ite,ide-1)
817 do k=kts,kte
818 z_at_w(i,k,j)=(grid%em_ph_2(i,k,j)+grid%em_phb(i,k,j))/g
819 enddo
820 do k=kts,min(kte,kde-1)
821 tempfac=(grid%em_t_1(i,k,j) + t0)*((grid%em_p(i,k,j) + grid%em_pb(i,k,j))/p1000mb)**rcp
822 convfac(i,k,j) = (grid%em_p(i,k,j)+grid%em_pb(i,k,j))/rgasuniv/tempfac
823 enddo
824 enddo
825 enddo
826
827 CALL chem_init (grid%id,chem,grid%dt,grid%bioemdt,grid%photdt, &
828 grid%chemdt, &
829 grid%stepbioe,grid%stepphot,grid%stepchem,grid%stepfirepl, &
830 grid%plumerisefire_frq,z_at_w,g,grid%aerwrf,config_flags, &
831 grid%em_alt,grid%em_t_1,grid%em_p,convfac, &
832 grid%gd_cloud, grid%gd_cloud2, &
833 grid%gd_cloud_b, grid%gd_cloud2_b, &
834 grid%tauaer1,grid%tauaer2,grid%tauaer3,grid%tauaer4, &
835 grid%gaer1,grid%gaer2,grid%gaer3,grid%gaer4, &
836 grid%waer1,grid%waer2,grid%waer3,grid%waer4, &
837 grid%pm2_5_dry,grid%pm2_5_water,grid%pm2_5_dry_ec, &
838 grid%chem_in_opt, &
839 ids , ide , jds , jde , kds , kde , &
840 ims , ime , jms , jme , kms , kme , &
841 its , ite , jts , jte , kts , kte )
842
843 !
844 ! calculate initial pm
845 !
846 ! print *,'calculating initial pm'
847 select case (config_flags%chem_opt)
848 case (RADM2SORG, RACMSORG)
849 call sum_pm_sorgam ( &
850 grid%em_alt, chem, grid%h2oaj, grid%h2oai, &
851 grid%pm2_5_dry, grid%pm2_5_water, grid%pm2_5_dry_ec, grid%pm10, &
852 ids,ide, jds,jde, kds,kde, &
853 ims,ime, jms,jme, kms,kme, &
854 its,ite, jts,jte, kts,kte )
855
856 case (CBMZ_MOSAIC_4BIN,CBMZ_MOSAIC_8BIN,CBMZ_MOSAIC_4BIN_AQ,CBMZ_MOSAIC_8BIN_AQ)
857 call sum_pm_mosaic ( &
858 grid%em_alt, chem, &
859 grid%pm2_5_dry, grid%pm2_5_water, grid%pm2_5_dry_ec, grid%pm10, &
860 ids,ide, jds,jde, kds,kde, &
861 ims,ime, jms,jme, kms,kme, &
862 its,ite, jts,jte, kts,kte )
863
864 case default
865 do j=jts,min(jte,jde-1)
866 do k=kts,min(kte,kde-1)
867 do i=its,min(ite,ide-1)
868 grid%pm2_5_dry(i,k,j) = 0.
869 grid%pm2_5_water(i,k,j) = 0.
870 grid%pm2_5_dry_ec(i,k,j) = 0.
871 grid%pm10(i,k,j) = 0.
872 enddo
873 enddo
874 enddo
875 end select
876 #endif
877
878 IF (num_chem >= PARAM_FIRST_SCALAR ) THEN
879 ! use of (:,:,:,loop) not efficient on DEC, but (ims,kms,jms,loop) not portable to SGI/Cray
880
881 loop_3d_c : DO loop = PARAM_FIRST_SCALAR , num_chem
882 CALL set_physical_bc3d( chem(:,:,:,loop) , 'r' , config_flags , &
883 ids , ide , jds , jde , kds , kde , &
884 ims , ime , jms , jme , kms , kme , &
885 its , ite , jts , jte , kts , kte , &
886 its , ite , jts , jte , kts , kte )
887 END DO loop_3d_c
888
889 ENDIF
890
891 CALL set_physical_bc2d( grid%msft , 'r' , config_flags , &
892 ids , ide , jds , jde , &
893 ims , ime , jms , jme , &
894 its , ite , jts , jte , &
895 its , ite , jts , jte )
896 CALL set_physical_bc2d( grid%msfu , 'x' , config_flags , &
897 ids , ide , jds , jde , &
898 ims , ime , jms , jme , &
899 its , ite , jts , jte , &
900 its , ite , jts , jte )
901 CALL set_physical_bc2d( grid%msfv , 'y' , config_flags , &
902 ids , ide , jds , jde , &
903 ims , ime , jms , jme , &
904 its , ite , jts , jte , &
905 its , ite , jts , jte )
906 CALL set_physical_bc2d( grid%sina , 'r' , config_flags , &
907 ids , ide , jds , jde , &
908 ims , ime , jms , jme , &
909 its , ite , jts , jte , &
910 its , ite , jts , jte )
911 CALL set_physical_bc2d( grid%cosa , 'r' , config_flags , &
912 ids , ide , jds , jde , &
913 ims , ime , jms , jme , &
914 its , ite , jts , jte , &
915 its , ite , jts , jte )
916 CALL set_physical_bc2d( grid%e , 'r' , config_flags , &
917 ids , ide , jds , jde , &
918 ims , ime , jms , jme , &
919 its , ite , jts , jte , &
920 its , ite , jts , jte )
921 CALL set_physical_bc2d( grid%f , 'r' , config_flags , &
922 ids , ide , jds , jde , &
923 ims , ime , jms , jme , &
924 its , ite , jts , jte , &
925 its , ite , jts , jte )
926
927 #ifndef WRF_CHEM
928 DEALLOCATE(CLDFRA_OLD)
929 #endif
930 #ifdef DM_PARALLEL
931 # include "HALO_EM_INIT_1.inc"
932 # include "HALO_EM_INIT_2.inc"
933 # include "HALO_EM_INIT_3.inc"
934 # include "HALO_EM_INIT_4.inc"
935 # include "HALO_EM_INIT_5.inc"
936 # include "PERIOD_BDY_EM_INIT.inc"
937 # include "PERIOD_BDY_EM_MOIST.inc"
938 # include "PERIOD_BDY_EM_CHEM.inc"
939 #endif
940
941 CALL wrf_debug ( 100 , 'module_start: start_domain_rk: Returning' )
942
943 RETURN
944
945 END SUBROUTINE start_domain_em
946