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Consensus from meetings about
weather/climate model:

Required features:
• “The solver should integrate the fully compressible

nonhydrostatic equations of motion”
– Nonhydrostatic: for simulating deep convection and other

weather systems
– Compressible: meaning un-approximated equations (valid at

all scales, all conditions)

• “The solver should conserve mass”
– Required for long-term simulations (months-to-years), and for

modeling of chemical transport/dispersion

Highly desired features:
• Energy conservation



Compressible Nonhydrostatic Modeling:
Historical Development

• Historically (pre-2000), compressible
nonhydrostatic models did not enforce
conservation of any properties (e.g., total mass,
energy, momentum)

• Reasons include:
– simplicity (less memory overhead)
– efficiency (faster)
– short integration times (hours or days)
– importance? (no clear impact on solutions of interest)



Compressible Nonhydrostatic Modeling:
Recent Developments

• Mass conservation has recently become a
primary design feature of some compressible
nonhydrostatic modeling systems (e.g., WRF
Model developed at NCAR)

• Reasons:
– transport and dispersion applications
– longer integration times (e.g., regional climate

modeling)
– importance in certain weather systems has become

clear (e.g., hurricane intensity)



Compressible Nonhydrostatic Modeling:
Unresolved Issues

• Energy conservation has rarely been enforced
• Primary reason:  complexity!

– Dissipative heating:
• from subgrid turbulence
• from high-order diffusion
• from PBL parameterization
• difficult to maintain in constantly evolving community models

– Moist processes:
• sedimentation of hydrometeor energy
• dissipative heating around falling hydrometeors
• debate about exact form of moist equations (multiphase flow

interactions)



Goals of this study

• Determine how conservation of total energy can
be incorporated into the WRF Model’s solver
– at what cost?  (e.g., execution time, accuracy,

complexity)
– for what benefit?

• Split-explicit time integration:
– Integrate terms responsible for propagation of

acoustic modes (and gravity waves) on a “small”
timestep

– Integrate all other terms (e.g., advection, diffusion,
moist processes, radiation) on a “large” timestep



From: WRF Model Tutorial notes

(Skamarock and Dudhia, 2008)

Runge-Kutta (e.g., WRF):



A traditional approach:

small time steps large time steps



• Primary problem:  conservation is not
guaranteed

• “Conservation” is defined as both:
– global conservation of a fundamental variable

(such as total mass, total momentum, and total
energy)

– local conservation during application of a
numerical algorithm … e.g., finite volume method
(flux of mass out of a control volume = flux of
mass into a neighboring control volume)

• Solution:  integrate conservation equations
(e.g., for mass, momentum, etc), and use
finite volume methods



Conservative equations:



→ In this system, total mass is conserved (locally and globally)

Klemp et al. (2007, MWR)



Unresolved issues:

• No guarantee of momentum conservation,
owing to form of pressure-gradient terms

• No guarantee of total energy conservation
– In fact, dissipative heating is typically neglected
– Dissipative heating is known to be important at high

wind speeds (e.g., hurricanes) and long-term
integrations (seasonal time scales)





Note:

• All terms are in flux form (except buoyancy) → conservation

• All variables on left side are either held fixed (e∗) or are
integrated on the small steps → efficiency and simplicity



Tests

• Developed a prototype code that can integrate all
three equation sets:
– Non-conserving (u, w, π, θ)
– Mass-conserving (U, W, ρ, Θ)
– Mass,Momentum,Energy-conserving (U, W, ρ, Et)

• Same techniques as WRF Model (ARW):
– 3rd-order Runge-Kutta w/ time-splitting
– 5th-order advection operators (finite-volume-form)
– Cartesian height coordinate



A simple test:

• Warm bubble (“moist benchmark”) case used by
Bryan and Fritsch (2002, MWR)

• No analytic solution, but:
– well resolved (does not collapse to grid-scale)
– well-known solution (produced by many models)
– useful for testing equation sets

• Details:
– 2D, Δx = Δz = 100 m
– Statically neutral initial state with warm bubble
– Integrate for 1000 s



Non-conserving Mass-conserving

run time:  79 s run time:  89 s

θ′ (K) at t = 1000 s



Non-conserving Mass,Mo,Ene-conserving

run time:  79 s run time:  82 s

θ′ (K) at t = 1000 s



Non-conserving Mass-conserving

run time:  79 s run time:  89 s

w (m/s) at t = 1000 s



Non-conserving Mass,Mo,Ene-conserving

run time:  79 s run time:  82 s

w (m/s) at t = 1000 s



Efficiency of dry bubble tests

• Run times:

– Non-conserving:  79 s
   (fewer terms on small steps)

– Mass-conserving:  89 s
   (more terms on small steps)
   (calculation of π is expensive)

– Mass,Mo,Ene-conserving:  82 s
   (more terms on small steps)



→ No special treatment needed for diabatic heating on small timesteps



Non-conserving Mass,Mo,Ene-conserving

run time:  111 s run time:  121 s

Saturated case:  θe′ (K) at t = 1000 s



→ No extra work needed to account for dissipative heating



Gravity current test case

• 2d, isentropic environment
• constant diffusion coefficient (75 m2 s-1)
• Δ = 100 m:



Change in total energy:

→ old solver loses energy over time
(owing to lack of dissipative heating)



Difference in internal energy:



Summary
• It is possible to formulate a compressible

nonhydrostatic solver that conserves (locally and
globally) total mass, momentum, and energy
– only a small increase in cost
– some clear benefits

• Unresolved topics / points for discussion:
– Complicated moisture terms (mostly related to

differential fall velocity in multiphase flows)
– Integration on the sphere?
– Relative merits of conserving other properties

• Higher-order quantities (potential enstrophy, tracer variance),
potential vorticity?

– Relative merits of conservation vs numerical
implementation

• e.g., vector-invariant form of momentum equations


