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Consensus from meetings about
weather/climate model;

Required features:

e “The solver should integrate the fully compressible
nonhydrostatic equations of motion”

—  Nonhydrostatic: for simulating deep convection and other
weather systems

—  Compressible: meaning un-approximated equations (valid at
all scales, all conditions)

“The solver should conserve mass”

—  Required for long-term simulations (months-to-years), and for
modeling of chemical transport/dispersion

Highly desired features:

e Energy conservation




Compressible Nonhydrostatic Modeling:
Historical Development

 Historically (pre-2000), compressible
nonhydrostatic models did not enforce
conservation of any properties (e.g., total mass,
energy, momentum)

* Reasons include:
— simplicity (less memory overhead)
— efficiency (faster)
— short integration times (hours or days)
— importance? (no clear impact on solutions of interest)




Compressible Nonhydrostatic Modeling:
Recent Developments

* Mass conservation has recently become a
primary design feature of some compressible
nonhydrostatic modeling systems (e.g., WRF
Model developed at NCAR)

e Reasons:

— transport and dispersion applications

— longer integration times (e.g., regional climate
modeling)

— Importance in certain weather systems has become
clear (e.g., hurricane intensity)




Compressible Nonhydrostatic Modeling:
Unresolved Issues

* Energy conservation has rarely been enforced

* Primary reason: complexity!
— Dissipative heating:
from subgrid turbulence
from high-order diffusion

from PBL parameterization
difficult to maintain in constantly evolving community models

— Moist processes:
» sedimentation of hydrometeor energy
« dissipative heating around falling hydrometeors

» debate about exact form of moist equations (multiphase flow
interactions)




Goals of this study

* Determine how conservation of total energy can
be incorporated into the WRF Model’s solver

— at what cost? (e.g., execution time, accuracy,
complexity)

— for what benefit?
« Split-explicit time integration:
— Integrate terms responsible for propagation of

acoustic modes (and gravity waves) on a “small”
timestep

— Integrate all other terms (e.g., advection, diffusion,
moist processes, radiation) on a “large” timestep




From: WRF Model Tutorial notes
(Skamarock and Dudhia, 2008)

Runge-Kutta (e.g., WRF):

3rd order Runge-Kutta, 3 steps
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A traditional approach:

Integrate equations for pressure (7),
velocity (u,w), and potential temperature (0):
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* Primary problem: conservation is not
guaranteed

* “Conservation” is defined as both:

— global conservation of a fundamental variable
(such as total mass, total momentum, and total

energy)

— local conservation during application of a
numerical algorithm ... e.g., finite volume method
(flux of mass out of a control volume = flux of
mass into a neighboring control volume)
« Solution: integrate conservation equations
(e.g., for mass, momentum, etc), and use
finite volume methods




Conservative equations:

Integrate equations for density (p),
momentum (U = pu, W = pw), and entropy (O = pb):
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Solution: recast momentum variables in terms of
perturbations from a recent time ¢:
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— In this system, total mass is conserved (locally and globally)

Klemp et al. (2007, MWR)



Unresolved issues:

* No guarantee of momentum conservation,
owing to form of pressure-gradient terms

* No guarantee of total energy conservation

— In fact, dissipative heating is typically neglected

— Dissipative heating is known to be important at high
wind speeds (e.g., hurricanes) and long-term
integrations (seasonal time scales)




Use total energy. E;, as a predicted variable:
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New solution procedure:
use same techniques as before
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Note:

* All terms are in flux form (except buoyancy) — conservation

* All variables on left side are either held fixed (e*) or are
integrated on the small steps — efficiency and simplicity




Tests

* Developed a prototype code that can integrate all
three equation sets:
— Non-conserving (u, w, w, 0)
— Mass-conserving (U, W, p, ©)
— Mass,Momentum,Energy-conserving (U, W, p, E,)

« Same techniques as WRF Model (ARW):

— 3rd-order Runge-Kutta w/ time-splitting
— Sth-order advection operators (finite-volume-form)
— Cartesian height coordinate




A simple test:

« Warm bubble (*moist benchmark™) case used by
Bryan and Fritsch (2002, MWR)
* No analytic solution, but:

— well resolved (does not collapse to grid-scale)

— well-known solution (produced by many models)
— useful for testing equation sets

 Details:
— 2D, Ax=Az=100 m

— Statically neutral initial state with warm bubble
— Integrate for 1000 s
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Efficiency of dry bubble tests

e Run times:

— Non-conserving: 79 s
(fewer terms on small steps)

— Mass-conserving: 89 s
(more terms on small steps)
(calculation of &t is expensive)

— Mass,Mo,Ene-conserving: 82 s
(more terms on small steps)




Diabatic heating terms in entropy equation:
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— No special treatment needed for diabatic heating on small timesteps
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Examine viscous terms in momentum equations:
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— No extra work needed to account for dissipative heating




Gravity current test case

 2d, isentropic environment
» constant diffusion coefficient (75 m? s1)
*A=100 m:

{(a) non—conserving




Change in total energy:

non—caonserving

moss,mo,ene—conserving

100 200 300 400 500 600 700 800 900
time (s)

— old solver loses energy over time
(owing to lack of dissipative heating)




Difference in internal energy:




Summary

 |tis possible to formulate a compressible
nonhydrostatic solver that conserves (locally and
globally) total mass, momentum, and energy

— only a small increase in cost
— some clear benefits

» Unresolved topics / points for discussion:

— Complicated moisture terms (mostly related to
differential fall velocity in multiphase flows)

— Integration on the sphere?

— Relative merits of conserving other properties
» Higher-order quantities (potential enstrophy, tracer variance),
potential vorticity?
— Relative merits of conservation vs numerical

Implementation
* e.g., vector-invariant form of momentum equations




