
Vertical Coordinate Systems



Outline

General

Theta and hybrid sigma-theta

Non-hydrostatic hybrid sigma-theta

Dealing with the boundary layer



The usual suspects

z 

Unattractive for hydrostatic atmosphere models because of 
Richardson’s equation

Used in many ocean models because of steep bottom 
topography

Simple lower boundary condition 

Sigma, and sigma-p

Very widely used in hydrostatic atmosphere models

Less attractive with very-high-resolution models

Theta and sigma-theta hybrids -- discussed below

ALE

Not really a coordinate, more like a set of rules for evolving 
an adaptive vertical grid

Can “try to be” a coordinate, e.g., theta 

Very flexible

Used only in numerical models



Advocates of theta coordinates

Rossby Namias

Eliassen

Hoskins Arakawa

Lorenz Johnson

Bleck Benjamin

Starr

DanielsenNapier-Shaw



Mass conservation in theta space
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The lure of theta coordinates

But theta surfaces intersect the ground.

There is no “vertical motion” in the absence of heating.

This minimizes errors associate with vertical advection.

Any quasi-Lagrangian system has this property.

The pressure-gradient force is a gradient.

This minimizes pressure-gradient errors near topography, 
and spurious generation of vorticity.

The potential vorticity is easily accessible from the wind vector.

Wave momentum transport occurs via isentropic form drag.

It is easy to implement diffusion along theta surfaces.

Both energy and entropy can be conserved (ref Don Johnson).

Relevant to the “cold pole” problem?

Helpful for dealing with the PBL?



Theta coordinates

Where the theta coordinate 
intersects the Earth’s surface, 
we can define “massless 
layers,” following Lorenz 
(1955).

Sign-preserving advection 
schemes such as FCT can be 
used to deal with massless 
layers.

In order to have adequate vertical resolution over the entire globe, 
it is necessary to allocate many theta layers.  A hybrid sigma-theta 
coordinate helps with this problem.

Note spreading of isentropes in the 
tropical troposphere. Many theta 
layers are “wasted” in the tropics.
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The three amigos

Behaves like sigma 
near the lower 
boundary.

Becomes theta 
smoothly and 
naturally 
throughout most 
of the troposphere 
and all of the 
stratosphere.

High-res lower 
troposphere.

Lower boundary 
is a coordinate  
surface.

Mass flows freely 
across layer 
edges.

Pressure-gradient  
force is not a 
gradient.

Lower boundary is 
not a coordinate  
surface.

Mass flows stays 
within layers 
except for heating.

Pressure-gradient 
force is a gradient.

Massless layers are 
“lost” in the 
tropics.

sigma coordinate hybrid coordinateisentropic coordinate



Vertical staggering
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The L-grid has a stationary computational mode in the 
temperature, while the CP grid does not.

The CP-grid knows about potential vorticity.



Moisture staggering

Konor & Arakawa 2000



Hybrid vertical coordinate

Motto: Theta where possible, sigma where necessary.

Konor and Arakawa (1997) 
invented a simple and 
elegant way to transition 
from theta to sigma, near the 
surface and wherever theta 
decreases upward.

The  method works without 
any if-statements.



Generalized vertical coordinate 
(Konor and Arakawa)

Suppose that is of the form

where increases upward, so that

We require monotonicity:

which can be ensured by choosing

We specify and solve for .
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Example
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Starting HS



H2O stays in the troposphere.



Lots of shallow cumulus clouds



Meridional mass circulation

Townsend & Johnson 1985
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The mass streamfunction in sigma coordinates for the zonally 
averaged mass transport is defined by
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The Hadley circulations extend from equator to mid-latitudes. The 
Ferrell circulations are poleward of the Hadley circulations.
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The isentropic mass streamfunction for the zonally averaged 
mass transport is defined by

and

The Hadley circulations extend from equator to pole. No 
Ferrell circulations. 
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The effects of moisture 

Pauluis et al. 2008



Pauluis et al. 2008



e

Lq c T
e p C

TC : Temperature at lifting condensation level (LCL, parcel theory)

TC : Constant (270K, application discussed here) 
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Equivalent potential temperature



!e = f (! )+ g(! )"e
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Having defined 

we now write
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Non-hydrostatic hybrid-
coordinate regional model

Mike Toy’s disertation

Tested on Boulder windstorm 
case -- breaking mountain 
waves

ALE, but tries to be Konor-
Arakawa coordinate

Slide from Mike Toy



• In z coordinates:
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Vertical momentum transport

Another coordinate is the terrain-following " coordinate, in 
which both terms of the momentum flux are retained:
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• In a generalized vertical coordinate (#):
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• Mountain height = 10 m

• Mountain half-width = 2 km
• Mean zonal wind = 20 m s-1

• Steady state reached in ~ 1.11 hours

Diagnosed momentum fluxes 

Nonhydrostatic gravity waves in an isothermal, uniform 
flow over a small mountain

   

!

!t
u =

1

m

!

!"
#p
! #z

!x
$ (m !" #) #u

%

&
'
'

(

)
*
*

Vertical momentum flux 
= constant

= 0

Slide from Mike Toy



Profiles of vertical flux of horizontal 
momentum at t = 1.11 hours

Terrain-following " (Eulerian) coordinate ! coordinate (mostly)

Small-amplitude gravity wave experiment
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Figure 5.20: Isentropic surfaces (black curves) at time t = 1hr10min for the 11 January 1972 Boulder windstorm simulations using 

the ! coordinate with (a) 500 levels and (b) 125 levels in the lowest 25 km, and the hybrid coordinate with 125 levels in 

the lowest 25 km for (c) "
min

 = 20 K and (d) "
min

 = 270 K.  The contour interval is 8 K and selected isentropes are labeled.  

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface. 

Slide from Mike Toy



  

 

Figure 5.21: Isentropic surfaces (black curves) at time t = 2hours for the 11 January 1972 Boulder windstorm simulations using the ! 

coordinate with (a) 500 levels and (b) 125 levels in the lowest 25 km, and the hybrid coordinate with 125 levels in the 

lowest 25 km for (c) "
min

 = 20 K and (d) "
min

 = 270 K.  The contour interval is 8 K and selected isentropes are labeled.  

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface. 

Slide from Mike Toy



  

 
 

Figure 5.22: Static stability N  2
 = g!  -1

!! /!z at time t = 2 hours for the 11 January 1972 Boulder windstorm simulations using the " 

coordinate with (a) 500 levels and (b) 125 levels in the lowest 25 km, and the hybrid coordinate with 125 levels in the 

lowest 25 km for (c) !
min

 = 20 K and (d) !
min

 = 270 K. 
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Figure 5.23: Isentropic surfaces (black curves) at time t = 3hours for the 11 January 1972 Boulder windstorm simulations using the ! 

coordinate with (a) 500 levels and (b) 125 levels in the lowest 25 km, and the hybrid coordinate with 125 levels in the 

lowest 25 km for (c) "
min

 = 20 K and (d) "
min

 = 270 K.  The contour interval is 8 K and selected isentropes are labeled.  

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface.. 

Slide from Mike Toy



The embedded PBL:
A 20-year-old “wild idea”

The PBL is the layer that is 
directly and strongly influenced by 
the lower boundary, primarily 
through turbulent processes.

The PBL’s depth varies 
dramatically in both time and 
space. 

The top of the PBL is usually very 
well defined.

Air crosses the PBL top as a result 
of turbulent and convective 
processes that must be  
parameterized.



From Bjorn Stevens

Potent processes at the PBL top



Konor et al. 2009



FIG. 4. Monthly-mean PBL-depth (hPa, with 30 hPa contour interval, left column), TKE (m2s-2, with 0.2 m2s-2 contour 

intervals, middle column) and stratocumulus incidence (with 0.1 contour interval, right column) for January (uppermost row), 

April (second from top), July (third from top) and October (lowermost row). 

Konor et al. 2009



Konor et al. 2009



FIG. 13. Monthly-mean longitudinal potential temperature flux by eddies (K m sec-1).  Upper and lower panels are for January and July, 

respectively.  Left and right columns show results from the multi-layer CONTROL and single-layer simulation, respectively.

Konor et al. 2009



FIG. 16. Monthly-mean PBL depth (hPa, above) and stratocumulus incidence for July from fixed-sigma simulation. 

See Fig. 4 for contour intervals.

Konor et al. 2009



Conclusions

Hybrid sigma-theta coordinates behave well in 
hydrostatic models.

At higher resolution, hybrid z-theta is probably 
a better choice.

The hybrid coordinate may need smoothing via 
an ALE approach.

Special approaches are needed to deal with the 
PBL. An embedded PBL can give good results.


