Vertical Coordinate Systems
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Outline

® General
® Theta and hybrid sigma-theta
® Non-hydrostatic hybrid sigma-theta

® Dealing with the boundary layer



The usual suspects

@z

A Unattractive for hydrostatic atmosphere models because of
Richardson’s equation

A Used in many ocean models because of steep bottom
topography

A Simple lower boundary condition

® Sigma, and sigma-p
A Very widely used in hydrostatic atmosphere models
A Less attractive with very-high-resolution models

® Theta and sigma-theta hybrids -- discussed below

® ALE

A Not really a coordinate, more like a set of rules for evolving
an adaptive vertical grid

A Can “try to be” a coordinate, e.g., theta
A Very flexible
A Used only in numerical models



Advocates of theta coordinates

Lorenz




Mass conservation in theta space

f(0)
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The lure of theta coordinates

®There is no “vertical motion” in the absence of heating.
A This minimizes errors associate with vertical advection.
A Any quasi-Lagrangian system has this property.

®The pressure-gradient force is a gradient.

A This minimizes pressure-gradient errors near topography,
and spurious generation of vorticity.

®The potential vorticity is easily accessible from the wind vector.

®Wave momentum transport occurs via isentropic form drag.

@It is easy to implement diffusion along theta surfaces.

@®Both energy and entropy can be conserved (ref Don Johnson).
A Relevant to the “cold pole” problem?

® Helpful for dealing with the PBL?

But theta surfaces intersect the ground.



Theta coordinates

Where the theta coordinate
intersects the Earth’s surface,
we can define “massless

layers,” following Lorenz
(1955).

Pressure ()

Sigh-preserving advection
schemes such as FCT can be
used to deal with massless
layers.

Q
Latit ude

Note spreading of isentropes in the
tropical troposphere. Many theta
layers are “wasted” in the tropics.

In order to have adequate vertical resolution over the entire globe,

it is necessary to allocate many theta layers. A hybrid sigma-theta
coordinate helps with this problem.



The three amigos

sigma coordinate

Lower boundary
is a coordinate
surface.

Mass flows freely
across layer
edges.

Pressure-gradient
force is not a
gradient.

isentropic coordinate

Lower boundary is
not a coordinate
surface.

Mass flows stays
within layers
except for heating.

Pressure-gradient
force is a gradient.

Massless layers are
“lost” in the
tropics.

hybrid coordinate

Behaves like sigma
near the lower
boundary.

Becomes theta
smoothly and
naturally
throughout most
of the troposphere
and all of the
stratosphere.

High-res lower
troposphere.



Vertical staggering

Lorenz grid Charney-Phillips grid

The L-grid has a stationary computational mode in the
temperature, while the CP grid does not.

The CP-grid knows about potential vorticity.
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Hybrid vertical coordinate

Motto: Theta where possible, sigma where necessary.

Konor and Arakawa (1997)
invented a simple and
elegant way to transition
from theta to sigma, near the
surface and wherever theta
decreases upward.

The method works without
any if-statements.




Generalized vertical coordinate

(Konor and Arakawa)

Suppose that & is of the form

C=flo)+glo)p

where O increases upward, so that

g(oc)—=0 a o—o;

f(o)—=0 and g(o)—1 a o—o,

We require monotonicity:

9 = 9’ + ag9+gﬁ>0
Jdo dOo Jdo 00
which can be ensured by choosing
9’ + o8 Hmin+g(£) =0, g>0,
00 d0 00 /in

We specify g(o) and solve for (o) .
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H20 stays in the troposphere.

Zonal Mean WATER VAPOR SPECIFIC HUMIDITY (Difference)
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Height {km)

Lots of shallow cumulus clouds
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The mass streamfunction in sigma coordinates for the zonally
averaged mass transport is defined by

a;l;, = 2ma® cosg| m,& | and G;I:; = ~2macosq| m,y|

The Hadley circulations extend from equator to mid-latitudes. The
Ferrell circulations are poleward of the Hadley circulations.

mass streamfunction ¥, (10*° kg s™)
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The isentropic mass streamfunction for the zonally averaged
mass transport is defined by

oW,
0@

= 274’ COS(p[mQQ] and 8;1;‘9 = -27a COSqu[mev]

The Hadley circulations extend from equator to pole. No
Ferrell circulations.

mass streamfunction ¥, (10'° kg s™)
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The effects of moisture

Stream function on dry isentropes - annual mean
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Equivalent potential temperature

Pressure (mb)
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Recursive definition of C,

Having defined

we NOW Wwrite

= 4t A

C=flo)+glo)o

C. = f(€)+g(C)e,

Ps

Ce/10 \O,




Non-hydrostatic hybrid-
coordinate regional model

® Mike Toy’s disertation

® Tested on Boulder windstorm
case -- breaking mountain
waves

® ALE, but tries to be Konor-
Arakawa coordinate

Slide from Mike Toy



Vertical momentum transport

* |n z coordinates:

() Zonal mean

()’ Perturbation

* |n H coordinates:

J0— 1 a| oz

g, 00|  ox

A “quasi-Lagrangian
view”
p'oz
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Vertical momentum transport

* |n a generalized vertical coordinate (7):

=D

Generalized vertical
velocity

Another coordinate is the terrain-following o coordinate, in
which both terms of the momentum flux are retained:

%)
o' moyw

0x



Diagnosed momentum fluxes

Nonhydrostatic gravity waves in an isothermal, uniform
flow over a small mountain

* Mountain height = [0 m * Mean zonal wind =20 m s’!
* Mountain half-width =2 km  ® Steady state reached in ~ |.I | hours




Small-amplitude gravity wave experiment

Profiles of vertical flux of horizontal
momentum att = l.l | hours

Terrain-following o (Eulerian) coordinate 6 coordinate (mostly)
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Isentropic surfaces (black curves) at time ¢=1hr10min for the 11 January 1972 Boulder windstorm simulations using
the o coordinate with (a) 500 levels and (b) 125 levels in the lowest 25km, and the hybrid coordinate with 125 levels in
the lowest 25km for (¢) 6 . =20K and (d) 6_. =270K. The contour interval is 8K and selected isentropes are labeled.

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface.

Slide from Mike Toy
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Figure 5.21: Isentropic surfaces (black curves) at time t=2hours for the 11 January 1972 Boulder windstorm simulations using the o
coordinate with (a) 500 levels and (b) 125 levels in the lowest 25km, and the hybrid coordinate with 125 levels in the
lowest 25km for (¢) 6_. =20K and (d) € . =270K. The contour interval is 8K and selected isentropes are labeled.

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface.

Slide from Mike Toy
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Figure 5.22: Static stability N>=g0'06/0z at time r=2hours for the 11 January 1972 Boulder windstorm simulations using the &
coordinate with (a) 500 levels and (b) 125 levels in the lowest 25km, and the hybrid coordinate with 125 levels in the
lowest 25km for (¢) 6 . =20K and (d) 6_. =270K.
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Figure 5.23: Isentropic surfaces (black curves) at time t=3hours for the 11 January 1972 Boulder windstorm simulations using the o
coordinate with (a) 500 levels and (b) 125 levels in the lowest 25km, and the hybrid coordinate with 125 levels in the
lowest 25km for (¢) 6_. =20K and (d) € . =270K. The contour interval is 8K and selected isentropes are labeled.

The bold red curves in panels (b)-(d) show the locations of every tenth model coordinate surface..

Slide from Mike Toy



The embedded PBL:
A 20-year-old “wild idea”

® The PBL is the layer that is
directly and strongly influenced by
the lower boundary, primarily
through turbulent processes.

® The PBL’s depth varies
dramatically in both time and
space.

® The top of the PBL is usually very
well defined.

® Air crosses the PBL top as a result
of turbulent and convective
processes that must be
parameterized.




Potent processes at the PBL top

; 9 :i-—.__% l warm, dry, subsiding free-troposphere
entrainment warm'ing,drying :—._ * ‘ * 4% - radiative drivin%

surface heat and moisture fluxes

LA TETIRTET DIIRT YR
- = AaASIOORAwS -.‘+ ‘.‘

288.96 299.83 307.22 1.96 8.91 0 0.29 0.61 cool ocean

From Bjorn Stevens



Konor et al. 2009
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FIG. 4. Monthly-mean PBL-depth (hPa, with 30 hPa contour interval, left column), TKE (m?s2, with 0.2 m?s-? contour
intervals, middle column) and stratocumulus incidence (with 0.1 contour interval, right column) for January (uppermost row),

April (second from top), July (third from top) and October (lowermost row).

Konor et al. 2009
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a) PBL thickness

Composite diurnal cycles at 60W-10S during January
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FIG. 13. Monthly-mean longitudinal potential temperature flux by eddies (K m sec’!). Upper and lower panels are for January and July,

respectively. Left and right columns show results from the multi-layer CONTROL and single-layer simulation, respectively.

Konor et al. 2009



a) Mean PBL depth July
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FIG. 16. Monthly-mean PBL depth (hPa, above) and stratocumulus incidence for July from fixed-sigma simulation.

See Fig. 4 for contour intervals.

Konor et al. 2009



Conclusions

® Hybrid sigma-theta coordinates behave well in
hydrostatic models.

@® At higher resolution, hybrid z-theta is probably
a better choice.

® The hybrid coordinate may need smoothing via
an ALE approach.

@ Special approaches are needed to deal with the
PBL. An embedded PBL can give good results.



