

Yin-Yang grid

[Yi Jing: the Book of Changes]

The universe (both space and time) can be divided into **Yin** and **Yang**, Which is composed with *metals*(金), *water*(水), *wood*(木), *fire*(火) and *soil*(土). For example, the **moon** is due to Yin, and the **sun** belong to Yang. The energy of the atmosphere comes from the sun.

Provided by Dr. Kageyama, ESC, who is the developer of the Yin-Yang grid

(From Peng et al, EGU 2004)

yin-yang grid

Advantages: relatively isotropic, relatively uniform resolution, conformal. Local refinement is possible.

Disadvantages: boundaries (overlaps)
need special treatment. Local
refinements at boundaries
would also need special
treatment.

Yin-Yang Grid

The necessary and sufficient condition for global conservation is as

$$\int_{\Gamma_E} g_E d\Gamma = \int_{\Gamma_E} g_N d\Gamma$$

$$\int_{\Gamma_N} g_E d\Gamma = \int_{\Gamma_N} g_N d\Gamma$$

The sufficient condition is

$$g_E d\Gamma = g_N d\Gamma$$

 $d\Gamma$ denotes any part of the boundary of N,E, e.g. EF.

(From Peng et al, EGU 2004)

Yin-Yang Grid

Linear integration (i.e. piecewise-constant fluxes) is stable, conservative, but inaccurate for higher-order transport schemes.

Higher-order flux integration can be designed to be conservative and accurate, but have not proven stable.

Conservative Interpolation for Overlapping Grids

Chessire and Henshaw (SIAM J. Sci. Comput. 1994)

Conservative Interpolation for Overlapping Grids

Chessire and Henshaw (SIAM J. Sci. Comput. 1994)

(8)
$$\mathbf{F}_{1,N_1+1} = \sum_{j=M_1}^{M_2} \gamma_j \mathbf{F}_{2,j} \qquad 0 \le M_1 \le M_2 \le N_2,$$
(9)
$$\mathbf{F}_{2,0} = \sum_{j=L_1}^{L_2} \beta_j \mathbf{F}_{1,j} \qquad 0 \le L_1 \le L_2 \le N_1.$$

(9)
$$\mathbf{F}_{2,0} = \sum_{j=L_1}^{L_2} \beta_j \mathbf{F}_{1,j} \qquad 0 \le L_1 \le L_2 \le N_1.$$

Fig. 4. Interpolation of endpoints.

Introduce the discrete approximation to the integral I(t),

$$S(t) = \sum_{k=1}^{2} \sum_{i=0}^{N_k} \alpha_{k,i} \mathbf{u}_{k,i} h_{k,i}.$$