Galerken Methods for Global Atmospheric Dynamical Cores

Mark Taylor Sandia National Laboratories

NCAR: Jim Edwards, Aimé Fourner, Peter Lauritzen, Ram Nair, Amik St-Cyr, Joe Tribbia

Univ. Michigan: Christiane Jablonowski

Galerkin Methods – Informal definition:

Expand unknowns in basis functions and exactly solve a system of integral equations

- Global Spectral Methods:
 - Basis functions are global and smooth (spherical harmonics)
- Continuous Galerkin
 - AKA: the finite element method
 - Basis functions are globally C0, but have compact support over a few elements
- Discontinuous Galerken (DG)
 - See Ram Nair's talk
 - Galerkin within each element, but elements tied together through edge/ surface fluxes

C0 Finite Element Method

Example equation for *h*:

$$\frac{\partial h}{\partial t} + \nabla \cdot (h \mathbf{u}) = 0$$

Integral formulation:

$$\int \psi \frac{\partial h}{\partial t} - \int \nabla \psi \cdot (h \mathbf{u}) = 0$$

Define a finite dimensional functional space, H1 (traditional choice: globally C0, piecewise polynomials)

Find $h \in H_1$ which solves equation exactly for all $\psi \in H_1$

Finite element method approximates the functional space, not the differential operators. This makes it easier to preserve many integral properties of these operators.

C0 Finite Element Method

Solve for h:

$$\int \psi \frac{\partial h}{\partial t} - \int \nabla \psi \cdot (h \boldsymbol{u}) = 0 \quad \forall \psi \in H_1$$

Sufficient to find solution for every basis function: $\operatorname{span}\{\phi_i\} = H_1$

Expand h in this basis: $h = \sum_{j} h_{j} \phi_{j}$

$$\sum_{i} \int \phi_{i} \phi_{j} \frac{\partial h_{j}}{\partial t} = \int \nabla \phi_{i} \cdot (h \mathbf{u}) \qquad \forall \phi_{i}$$

$$\frac{\partial h_{j}}{\partial t} = M_{ij}^{-1} \int \nabla \phi_{i} \cdot (h \mathbf{u}) \qquad M_{ij} = \int \phi_{i} \phi_{j}$$
Mass Matrix

C0 Finite Element Method

- Using exact integration, mass matrix inversion means time dependent equations becomes implicit – not competitive?
- Juergen Steppeler: possible new approach for 2nd order formulation with diagonal mass matrix
- Spectral Element Method (implemented in NCAR's HOMME)
 - Diagonal Mass Matrix obtained by replacing integrals with GL quadrature and clever choice of basis functions.
 - Limited to quadrilateral or hexahedral grids. (no trianlges or hexagons)
 - Quadrature errors too large at low order (2, 3)
 - Expensive (CFL from GL points) at high order
 - 4th order (my personal preference)

Spectral Element Method

- Excellent Dynamics via Compatibility
 - Conserves anything in conservation form
 - Can conserve energy, vorticity in primitive variables

Minimal Grid Imprinting

- 4th order
- FE method (treats all elements identically)
- Hyperviscosity (grad^4) instead of grid-dependent limiters.

Consistent Advection

- No limiter: (4th order) oscillatory and not acceptable
- Sign preserving + hyperviscosity (3rd order)
- Monotone (2nd order) and more dissipative than FV/DG for advection of discontinuities

AMR

- One of the few methods where local mesh refinement actually reduces the global error levels (shallow water test cases on the sphere)
- Conforming grids (Fournier et al, MWR 2004)
- Nonconforming grids (St-Cyr et al, MWR 2006)

Compatible Numerical Methods Local Properties

The key integral property of the continuum equations needed to show local conservation, for scalar h and vector v, is:

$$\int_{\Omega} \mathbf{v} \cdot \nabla h + \int_{\Omega} h \nabla \cdot \mathbf{v} = \oint_{\partial \Omega} h \mathbf{v} \cdot \hat{n}$$

Taking Ω to be a single element, the spectral element gradient and divergence operators DIV() and GRAD() satisfy:

$$\sum_{\Omega} \mathbf{v} \cdot \text{GRAD}(h) + \sum_{\Omega} h \operatorname{DIV}(\mathbf{v}) = \sum_{\partial \Omega} h \mathbf{v} \cdot \hat{n}$$

Where the sum over Ω is the Gauss-Lobatto approximation to the integral over an element, and the sum over the boundary of Ω is the natural Gauss-Lobatto approximation to the line integral around the boundary of the element.

Compatible Numerical Methods

Discrete operators and discrete integral satisfy continuum properties:

$$\int \nabla \cdot (p \mathbf{v}) = \int p \nabla \cdot \mathbf{v} + \int \mathbf{v} \cdot \nabla p = 0$$

$$\int \nabla \cdot (\mathbf{u} \times \mathbf{v}) = \int \mathbf{v} \cdot \nabla \times \mathbf{u} - \int \mathbf{u} \cdot \nabla \times \mathbf{v} = 0$$

$$\nabla \times \nabla p = 0$$

$$\nabla \cdot \nabla \times \mathbf{u} = 0$$

- Integration by parts insures conservation
- Curl Grad = 0 can improve vorticity evolution
- Many schemes have this property on orthogonal Cartesian grids
- Continuous Galerkin methods have these properties on arbitrary grids in general curvilinear coordinates.

Test 2: Baroclinic instability. Surface pressure at day 9. The tests starts with balanced initial conditions that are overlaid by a Gaussian hill perturbation. The perturbation grows into a baroclinic wave. Some models show cubed-sphere or icosahedral grid imprinting in the Southern Hemisphere. High order methods show spectral ringing in the 1000mb contour.

Energy Balance in Aqua Planet CAM/HOMME moist hydrostatic primitive equations

- Dissipation: Aqua planet simulations need about 1
 W/m^2 KE dissipation
 - Far more than is needed to control 2 dx mode.
 - Dissipation too closely tied to the grid can lead to large grid imprinting (replaced element filters with hyperviscosity)
 - KE dissipation added to T equation (à la CAM-EUL)
 - Remaining TE dissipation is from Robert filter and Q dissipation that is not added to T equation

Example: from a typical snapshot in Aqua Planet:

$$KE = 0.28e7 \text{ J/m}^2$$

 $IE = 0.26e10 \text{ J/m}^2$

Forcing Transfer Dissipation (W/m^2)
$$d(KE)/dt = -2.6 +2.8 -0.86$$
 $d(IE)/dt = 0.83 -2.8 0.86$

TE Numerical Diffusion: -0.00061 W/m^2

Challenges for a Non-Hydrostatic version of HOMME-SE

- Collocated method: has A-grid like 2 dx mode that requires dissipation (KE or tracer variance).
- If limiters are needed on density:
 - Exact conservation only of quantities in conservation form
 - If quasi-monotone advection is required, method drops to 2nd order.
 Can we come up with a 3rd order quasi-monotone limiter?
- Vertical Coordinates
 - 2D + Lagrange?
 - 3D spectral elements?
- Non-hydrostatic equation formulation
 - Conservation form and some primitive variable formulations
- We are still using leapfrog + Robert filter

Spectral Element Advection Slides

Sign Preserving and Monotone Advection

Advection Equation
$$\frac{\partial}{\partial t}(\rho q) = -\nabla \cdot (\rho q) \boldsymbol{u}$$

Spectral Elements:
$$\frac{\partial}{\partial t}(\rho q)_j = M_{ij}^{-1} \int \nabla \phi_i \cdot (\rho q \mathbf{u})$$

Apply Leapfrog:
$$(\rho q)^{t+1} = (\rho q)^{t-1} + 2 \Delta t M^{-1} RHS(t)$$

Equivalent to:
$$(\rho \, q)^* = (\rho \, q)^{t-1} + 2 \, \Delta \, t \, RHS(t)$$

$$(\rho \, q)^{t+1} = M^{-1} (\rho \, q)^*$$

Theorem: The element means q_0 , defined so that the element mass $(\rho q)^* = (\rho q_0)^*$, is monotone. Thus it is always possible to find a mass conserving monotone reconstruction of q^* within each element, *before* application of M^{-1}

The spectral element mass matrix inverse will preserve monotonicity. (not true for general CG methods)

Cosine Bell

Gaussian

Half Cylinder

HOMME 0.97° min= 3.70e-43 max=992.7HOMME 0.97° min= 3.43e-19 max=997.0 HOMME 0.97° min= 7.63e-44 max=1127.2

Sign Preserving and Monotone Advection Primitive Equations

2D spectral element advection coupled with Lagrangian vertical coordinate and Lauritzen PPM based remap.

Remap appied twice per timestep (because of Leapfrog).

Test 3: Pure Advection. Latitude-height cross section of a 3D slotted ellipse tracer distribution after one revolution around the sphere (day 12). The 3D winds are prescribed. The slotted ellipse has followed a trajectory path with three wave cycles in the vertical direction. The test evaluates the diffusion characteristics of the advection algorithm.

Backup Slides

Hyper Viscosity: mixed FE formulation

$$\frac{\partial h}{\partial t} + \dots = -\nu \Delta b$$
$$b = \Delta h$$

Weak form, integrated by parts:

$$\int \psi \frac{\partial h}{\partial t} + \dots = -\nu \int \nabla \psi \cdot \nabla b$$
$$\int \psi b = \int \nabla \psi \cdot \nabla h$$

F. Giraldo, *Trajectory Calculations for Spherical Geodesic Grids in Cartesian Space*, MWR 1999

Test 2: Baroclinic Instability Test

Jablonowski and Williamson, A Baroclinic Instability Test Case for Atmospheric Model Dynamical Cores, Q.J.R. Meteorol. Soc. (2006)

- Dynamical core only: no atmospheric physics
- L2 error in surface pressure as a function of time shown below
- Converges under mesh refinement to reference solution (uncertainty in reference solution is yellow shaded region)

High Resolution Results - CAM 3.4 Physics CLIMATOLOGY

Aqua Planet Global Mean Quantities

Resolution	Physics dt	Viscosity	PRECC	PRECL	CLDTOT	TMQ
EUL T42	5m	1.0E+16	1.71	1.11	0.64	20.21
HOMME 1.9	5m	1.0E+16	1.76	1.14	0.66	20.09
EUL T85	5m	1.0E+15	1.59	1.38	0.60	19.63
HOMME 1.0	5.5m	1.0E+15	1.59	1.43	0.61	19.67
HOMME 1.0	5.5m	3.0E+14	1.45	1.58	0.59	19.71
EUL T170	5m	1.5E+14	1.44	1.62	0.55	19.13
HOMME 0.5	5m	1.5E+14	1.48	1.62	0.55	19.36
HOMME 0.5	5m	5.0E+13	1.39	1.70	0.53	19.18
T340	5m	1.5E+13	1.36	1.75	0.50	18.75

Compared to the size of the resolution signal, there is a remarkable agreement between CAM/HOMME and CAM/Eulerian

Aqua Planet Experiment: Zonal Data Comparison with FV & Eulerian Dycore

Fixed Mesh Scalability CAM/HOMME

- •Good scalability down to 1 element per processor for both resolutions, suggesting target 0.1 degree resolution should scale to 250K processors.
- Integration rates better than 5 simulated years/day at resolutions down to 0.25 degree
- •BGL results: 1 processor per node due to memory constraints. BGP results use 4 processor cores per node. BGP is 4x-8x faster per node.

Gallery of Cubed-Sphere Problems

NRL NSEAM/NOGAPS-physics 60N 45N 30N 15N 15S 45S 60S 0 30E 6DE 90E 120E 150E 180 150W 120W 90W 60W 30W 0 NSEAM (N3FBL20) CTRL LONGITUDE [Deq] Nax: 28, Nint D, Aver 2

Sources:

50°E

M Taylor et al., 2007 PDEs on the Sphere Workshop, Exeter

150°E

YJ Kim et al., 2006 PDEs on the Sphere Workshop, Monterey

110°W

B. Wyman et al., 12th Annual CCSM Workshop, June 19-21, 2007

Minimal cubed-sphere grid imprinting

Pressure vertical velocity contoured on the 4'th eta-level. This field is one of the most sensitive to grid imprinting.

Noise characteristics of CAM/HOMME quite similar to the near perfectly isotropic CAM/Eulerian model.