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Global Spectral Methods:

– Basis functions are global and smooth (spherical harmonics)  

Continuous Galerkin

– AKA: the finite element method

– Basis functions are globally C0, but have compact 
support over a few elements

Discontinuous Galerken (DG)  

– See Ram Nair's talk

– Galerkin within each element, but elements tied together through edge/
surface fluxes 

Galerkin Methods – Informal definition: 

Expand unknowns in basis functions and exactly solve a system
of integral equations



C0 Finite Element Method

∂h
∂ t
∇⋅hu=0Example equation for h:

Integral formulation:  

Define a finite dimensional functional space, H1  
(traditional choice:  globally C0, piecewise polynomials)

Find                 which solves equation exactly for all 

Finite element method approximates the functional space,
not the differential operators.  This makes it easier to
preserve many integral properties of these operators.

∫∂h∂ t −∫∇⋅hu=0

h∈H 1 ∈H1



C0 Finite Element Method

Solve for h:   

h=∑
j

h j j

Sufficient to find solution for every basis function:  

Expand h in this basis:
  

∑
j
∫ ij ∂h j∂ t =∫∇i⋅hu ∀i

span { i}=H 1

∫∂h∂ t −∫∇⋅hu=0 ∀∈H 1

∂ h j
∂ t
=M ij

−1∫∇i⋅hu M ij=∫i j

Mass Matrix



C0 Finite Element Method

Using exact integration, mass matrix inversion means time 
dependent equations becomes implicit – not competitive?

Juergen Steppeler: possible new approach for 2nd order formulation 
with diagonal mass matrix

Spectral Element Method (implemented in NCAR's HOMME)

– Diagonal Mass Matrix obtained by replacing integrals with GL 
quadrature and clever choice of basis functions.

– Limited to quadrilateral or hexahedral grids.  (no trianlges or 
hexagons)   

– Quadrature errors too large at low order (2, 3) 

– Expensive (CFL from GL points) at high order

– 4th order (my personal preference)



Spectral Element Method

Excellent Dynamics via Compatibility
– Conserves anything in conservation form

– Can conserve energy, vorticity in primitive variables

Minimal Grid Imprinting

– 4th order

– FE method (treats all elements identically)

– Hyperviscosity (grad^4) instead of grid-dependent limiters.   

Consistent Advection
– No limiter: (4th order) oscillatory and not acceptable

– Sign preserving + hyperviscosity (3rd order)

– Monotone (2nd order) and more dissipative than FV/DG for advection of 
discontinuities

AMR
– One of the few methods where local mesh refinement actually reduces the 

global error levels (shallow water test cases on the sphere)

– Conforming grids (Fournier et al, MWR 2004)

– Nonconforming grids (St-Cyr et al, MWR 2006)



Compatible Numerical Methods
Local Properties

The key integral property of the continuum equations needed to show 
local conservation, for scalar h and vector v, is:

Taking Ω to be a single element, the spectral element gradient
and divergence operators DIV() and GRAD() satisfy:

∑

v⋅GRADh∑


hDIV v=∑

∂
hv⋅n

∫

v⋅∇ h∫


h∇⋅v=∮

∂
hv⋅n

Where the sum over Ω is the Gauss-Lobatto approximation to the integral over 
an element, and the sum over the boundary of Ω is the natural Gauss-Lobatto 
approximation to the line integral around the boundary of the element.   



Compatible Numerical Methods

Integration by parts insures conservation

Curl Grad = 0 can improve vorticity evolution

Many schemes have this property on orthogonal Cartesian grids

Continuous Galerkin methods have these properties on arbitrary grids 
in general curvilinear coordinates.    

Discrete operators and discrete integral satisfy continuum properties:

∫∇⋅ p v =∫ p∇⋅v∫ v⋅∇ p=0
∫∇⋅u×v =∫ v⋅∇×u−∫u⋅∇×v=0

∇×∇ p=0
∇⋅∇×u=0



Test 2: Baroclinic instability.  Surface pressure at day 9. The tests starts with balanced initial 
conditions that are overlaid by a Gaussian hill perturbation. The perturbation grows into a 
baroclinic wave. Some models show cubed-sphere or icosahedral grid imprinting in the Southern 
Hemisphere.  High order methods show spectral ringing in the 1000mb contour. 

GISS-BQ CAM EUL CAM-FV isen

GME

OLAMICON

GEOS-FVcubeGEOS-FV

HOMME



Energy Balance in Aqua Planet
CAM/HOMME moist hydrostatic primitive equations

Dissipation:  Aqua planet simulations need about 1 
W/m^2  KE dissipation
– Far more than is needed to control 2 dx mode.
– Dissipation too closely tied to the grid can lead to large grid 

imprinting  (replaced element filters with hyperviscosity)
– KE dissipation added to T equation (à la CAM-EUL)
– Remaining TE dissipation is from Robert filter and Q dissipation 

that is not added to T equation

Example: from a typical snapshot in Aqua Planet:
KE = 0.28e7 J/m^2
IE  = 0.26e10 J/m^2
                           Forcing    Transfer   Dissipation   (W/m^2)
      d(KE)/dt =         -2.6         +2.8         -0.86   
      d(IE)/dt   =         0.83        -2.8           0.86

TE Numerical Diffusion:   -0.00061 W/m^2 



Challenges for a Non-Hydrostatic 
version of HOMME-SE

Collocated method: has A-grid like 2 dx mode that requires dissipation (KE 
or tracer variance). 

If limiters are needed on density:

– Exact conservation only of quantities in conservation form

– If quasi-monotone advection is required, method drops to 2nd order.  
Can we come up with a 3rd order quasi-monotone limiter?

Vertical Coordinates

– 2D + Lagrange?

– 3D spectral elements?

Non-hydrostatic equation formulation

– Conservation form and some primitive variable formulations

We are still using leapfrog + Robert filter



Spectral Element Advection Slides



Sign Preserving and Monotone Advection

∂
∂ t
q =−∇⋅quAdvection Equation

Spectral Elements:    

Apply Leapfrog: 

Equivalent to: 

    

∂
∂ t
q j=M ij

−1∫∇i⋅q u

q∗=qt−12t RHS t
qt1=M−1 q∗

qt1=qt−12t M−1 RHS t

Theorem:   The element means q
0
, defined so that the element mass (ρq)* = (ρq

0
)*, 

is monotone.  Thus it is always possible to find a mass conserving monotone 
reconstruction of q* within each element, before application of M-1

The spectral element mass matrix inverse will preserve monotonicity. (not true for 
general CG methods)  



Cosine Bell                     Gaussian                  Half Cylinder 



Sign Preserving and Monotone Advection
Primitive Equations

GEOS-FV HOMMEInitial Condition

2D spectral element advection coupled with Lagrangian vertical
coordinate and Lauritzen PPM based remap.  

Remap appied twice per timestep (because of Leapfrog).     

    



Test 3: Pure Advection. Latitude-height cross section of a 3D slotted ellipse tracer 
distribution after one revolution around the sphere (day 12). The 3D winds are prescribed. 
The slotted ellipse has followed a trajectory path with three wave cycles in the vertical 
direction. The test evaluates the diffusion characteristics of the advection algorithm.

GISS-BQ CAM EUL CAM-FV isen

GME

OLAMICON

GEOS-FVcubeINITIAL STATE

HOMME



Backup Slides



Hyper Viscosity:  mixed FE formulation

∫∂h∂ t   =−∫∇⋅∇ b
∫b = ∫∇⋅∇ h

∂ h
∂ t   =−b

b = h

F. Giraldo,  Trajectory Calculations for Spherical Geodesic Grids in Cartesian 
Space, MWR 1999  

Weak form, integrated by parts:



Jablonowski and Williamson, A Baroclinic Instability 
Test Case for Atmospheric Model Dynamical Cores, 
Q.J.R. Meteorol. Soc. (2006)

– Dynamical core only: no atmospheric physics
– L2 error in surface pressure as a function of 

time shown below
– Converges under mesh refinement to 

reference solution (uncertainty in reference 
solution is yellow shaded region)

 Test 2: Baroclinic Instability Test 



High Resolution Results - CAM 3.4 Physics



Resolution Viscosity PRECC PRECL CLDTOT TMQ

EUL T42 5m 1.0E+16 1.71 1.11 0.64 20.21

HOMME 1.9 5m 1.0E+16 1.76 1.14 0.66 20.09

EUL T85 5m 1.0E+15 1.59 1.38 0.60 19.63

HOMME 1.0 5.5m 1.0E+15 1.59 1.43 0.61 19.67

HOMME 1.0 5.5m 3.0E+14 1.45 1.58 0.59 19.71

EUL T170 5m 1.5E+14 1.44 1.62 0.55 19.13

HOMME 0.5 5m 1.5E+14 1.48 1.62 0.55 19.36

HOMME 0.5 5m 5.0E+13 1.39 1.70 0.53 19.18

T340 5m 1.5E+13 1.36 1.75 0.50 18.75

Physics dt

Aqua Planet Global Mean Quantities 

Compared to the size of the resolution signal, there is a remarkable 
agreement between CAM/HOMME and CAM/Eulerian  



Precipitation PDFs

H
O

M
M

E
F

V
 &

 E
ul

er
ia

n

1mm bin-size 10mm bin-size



Aqua Planet Experiment:  Zonal Data
Comparison with FV & Eulerian Dycore
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Fixed Mesh Scalability CAM/HOMME 

•Good scalability down to 1 element per processor for both resolutions, suggesting target 0.1 
degree resolution should scale to 250K processors.

• Integration rates better than 5 simulated years/day at resolutions down to 0.25 degree

•BGL results: 1 processor per node due to memory constraints.  BGP results use 4 processor 
cores per node. BGP is 4x-8x faster per node.  



Gallery of Cubed-Sphere Problems

Sources: 

M Taylor et al., 2007 PDEs on the Sphere 
Workshop, Exeter

YJ Kim et al., 2006 PDEs on the Sphere Workshop,  
Monterey

B. Wyman et al., 12th Annual CCSM Workshop, 
June 19-21, 2007

NASA/GFDL FV ModelHOMME (w/o hyperviscosity)

NRL NSEAM/NOGAPS-physics



Minimal cubed-sphere grid imprinting

Pressure vertical velocity contoured on the 4'th eta-level.  This field
is one of the most sensitive to grid imprinting.  

Noise characteristics of CAM/HOMME quite similar to the near 
perfectly isotropic CAM/Eulerian model.  
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