Basics of Data Assimilation

Jake Liu (liuz@ucar.edu)

Prediction, Assimilation, and Risk Communication Section
Mesoscale & Microscale Meteorology Laboratory
National Center for Atmospheric Research

h NCAR MPAS-JEDI Tutorial, INPE, 15-16 August, 2024

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.
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- Scalar case

- Case with two state variables

- General n-dimensional case




What is data assimilation?

- A probabilistic method to obtain the best-possible estimate of state
variables of a dynamic/physical system

- In the atmospheric sciences, DA typically involves combining a
short-term model forecast (i.e., Background or Prior) and
observations, along with their respective errors characterization, to
produce an analysis (Posterior) that can initialize a numerical weather
prediction model (e.g., WRF or MPAS)
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Scalar Case

State variable to estimate “x”, e.g., consider this morning’s 2-meter
temperature at INPE, at 9 am local time, i. e., 12 UTC,

Now we have a “background” (or “prior”) information x, of X, which is
from a 6-h MONAN-v1.0 forecast initiated from 06 UTC GFS analysis.

We also have an observation y of x at a surface station at INPE

What is the best estimate (analysis) x, of x?
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Scalar Case

: 1
. We can simply average xb and y: X, =5 (X, + )
— This actually means we trust equally the background and observation, giving
them equal weight

- But if xb and y’s accuracy are different and we have some knowledge
about their errors

— e.g., for background, we have statistics (e.g., mean and variance) of x, — y from
the past

— For observation, we have instrument error information from manufacturer
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Scalar Case

- Then we can do a weighted mean: X, = ax, + by in a least square sense,

l.e.,
Minimize  J(x) =1 (=%)" 1 Gemy)
— 2 2
2 o 2 o
Requires dJ(x) _ (x—xp) + (x=y) _ 0
dx 2 2
Oy O,
Then we can easily get X = %, X, 0% y = 1 | 1 y
a  oi+or b T oi+o? l+o7/c2 b " 1+02/07}
Or we can write in the form of anaﬂsis iIncrement Called “Innovation” or O minus B, or OMB
e
Xg =Xp = o +0'2 (y xb) 1+62/62 (y xb)
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Scalar Case

Minimize J(X) 1 (x— 35219) + 1 (x— )’)

(jb (70

is actually equivalent to maximize a Gaussian Probability
Distribution Function (PDF)

ce '

Assume errors of X, and y are unbiased
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A probabilistic
view of
scale case
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Two state variables case
Consider two state variables to estimate: INPE and USP’s 2m temperatures
X4 and x, at 12 UTC today.

Background from 6-h forecast: x4 and x,°? and their error covariance with
correlation ¢

B o) co0, o1 0“1 c”01 O]
coo, o | L0 ox]lc 110 o

We only have an observation y; at the INPE station and its error variance
0,2

Now we want to estimate T at 2 locations with obs at one location
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Analysis increment for two variables

2
a b O, b
Ol +O'0
a b CO'1(72 b
X, =X, =——(y,— X)) «<— USP
O, +0,

Unobserved variable x, gets updated through the error correlation ¢ in the background
error covariance.

In general, this correlation can be correlation between two locations (spatial), two
variables (multivariate), or two times (temporal).
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General Case: vector and matrix notation

state vector observation vector
X1 32
X = )?2 Y= y 2
_Xm_ _yn_
background error covariance Observation error covariance
o 0,0, ... ... oy 0 ... O
2
_| €100, 0, 0 o> ... 0
B= . =0Co R = o2 .
o T .
" Correlation matrix 0 O'fn

mXm ) N X N




General Case: cost function
1 x1 ITXm mxmmx1 1xn nxn nx1

J<x>=%(x—xbe'l(x—xb)%[Hx—y]TR'l[Hx—y]

H maps x to y space, e. g., interpolation.

Terminology in DA: observation operator

Superscript ‘T’: transpose of a vector or matrix,
Superscript -1': inverse of a symmetric covariance matrix

Minimize J(x) is equivalent to maximize a multi-dimensional Gaussian PDF

-J
Constant* € (x)
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General Case: analytical solution
Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

VJ () =B (x-x,)—H"R [y —Hx] =0

m x 1
This leads to analytical solution for the analysis increment:

x'—x" < BH"(HBH" +R) |y - Hx’)
t

Kalman gain matrix Innovation or OMB vector

HBHT : background error covariance projected into observation space

BHT : background error covariance projected into cross background-observation space
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Iterative algorithm to find minimum of cost function

- Descending algorithms Jx)

— Descending direction: y, (N-
dimensional vector)

— Descending step:u,

Xne1 = Xy + Mn)/n /.,n// \4/———’ =

»
X

from Bouttier and Courtier 1999
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Precision of Analysis with optimal B and R

A—l — B—l 1 HTR—IH

[
ek
[

Generalization of scalar case - =t

Or in another form: A =(I- KH)B
With
K=BH'(HBH' +R)"'

called Kalman gain matrix

NCAR
UCAR




Precision of analysis: more general formulation

A=(I-KH)B (I-KH)' +KR K"

where B; and R, are “true” background and observation error covariances.

This formulation is valid for any given gain matrix K, which could be
suboptimal (e.g., due to incorrect estimation/specification of B and R).
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Analysis increment with a single humidity observation

x—x" =BH"(HBH" +R) [y - Hx"]

b C,.O,0
X —xb = Sl

b
> l; (Ve = X)
Uk +Gok

It is generalization of previous
two variables case:

2

a b O, b
A =X = 2(y1_x1)
(ﬂ_+C%
Xy =X, =———=(y —X;) a—

o, +0, cv_options=6 in WRFDA
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Other Remarks

Observation operator H() can be non-linear and thus analysis error PDF is
not necessarily Gaussian

J(x) can have multiple local minima. Final solution of least square depends
on starting point of iteration, e.g., choose the background x, as the first guess.




Other Remarks

B matrix is of very large dimension, explicit inverse of B is impossible,
substantial efforts in data assimilation were given to the estimation and
modeling of B.

- B shall be spatially-varied and time-evolving according to weather regime.
- Analysis can be sub-optimal if using inaccurate estimate of B and R.

- Could use non-Gaussian PDF
— Thus not a least square cost function

— Difficult (usually slow) to solve; could transform into Gaussian problem via variable
transform
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Variational vs. Ensemble DA

They are solving the same cost function, by using different techniques

These days, combining both techniques are common at operational centers
— NOAA/NCEP: hybrid-4DEnVar + LETKF
— ECMWEF: ensemble of 4DVar
— UKMO: hybrid-4DVar + LETKF

NCAR
UCAR



Further reading

Inverse Problem Theory and
Methods for Model
Parameter Estimation

Albert Taramtola
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