

Basics of Data Assimilation

Jake Liu (liuz@ucar.edu)

***Prediction, Assimilation, and Risk Communication Section
Mesoscale & Microscale Meteorology Laboratory
National Center for Atmospheric Research***

MPAS-JEDI Tutorial, INPE, 15-16 August, 2024

1

Outline

- Scalar case
- Case with two state variables
- General n-dimensional case

What is data assimilation?

- A **probabilistic** method to obtain the **best-possible** estimate of **state variables** of a dynamic/physical system
- In the atmospheric sciences, DA typically involves combining a short-term **model forecast** (i.e., **Background** or **Prior**) and **observations**, along with their respective **errors characterization**, to produce an ***analysis (Posterior)*** that can initialize a numerical weather prediction model (e.g., WRF or MPAS)

Scalar Case

- State variable to estimate “ x ”, e.g., consider this morning’s 2-meter temperature at INPE, at 9 am local time, i. e., 12 UTC,
- Now we have a “**background**” (or “prior”) information x_b of x , which is from a 6-h MONAN-v1.0 forecast initiated from 06 UTC GFS analysis.
- We also have an **observation** y of x at a surface station at INPE
- What is the best estimate (**analysis**) x_a of x ?

Scalar Case

- We can simply average x_b and y : $x_a = \frac{1}{2}(x_b + y)$
 - This actually means we trust equally the background and observation, giving them equal weight
- But if x_b and y 's accuracy are different and we have some knowledge about their errors
 - e.g., for background, we have statistics (e.g., mean and variance) of $x_b - y$ from the past
 - For observation, we have instrument error information from manufacturer

Scalar Case

- Then we can do a weighted mean: $x_a = ax_b + by$ in a least square sense, i.e.,

Minimize
$$J(x) = \frac{1}{2} \frac{(x-x_b)^2}{\sigma_b^2} + \frac{1}{2} \frac{(x-y)^2}{\sigma_o^2}$$

Requires
$$\frac{dJ(x)}{dx} = \frac{(x-x_b)}{\sigma_b^2} + \frac{(x-y)}{\sigma_o^2} = 0$$

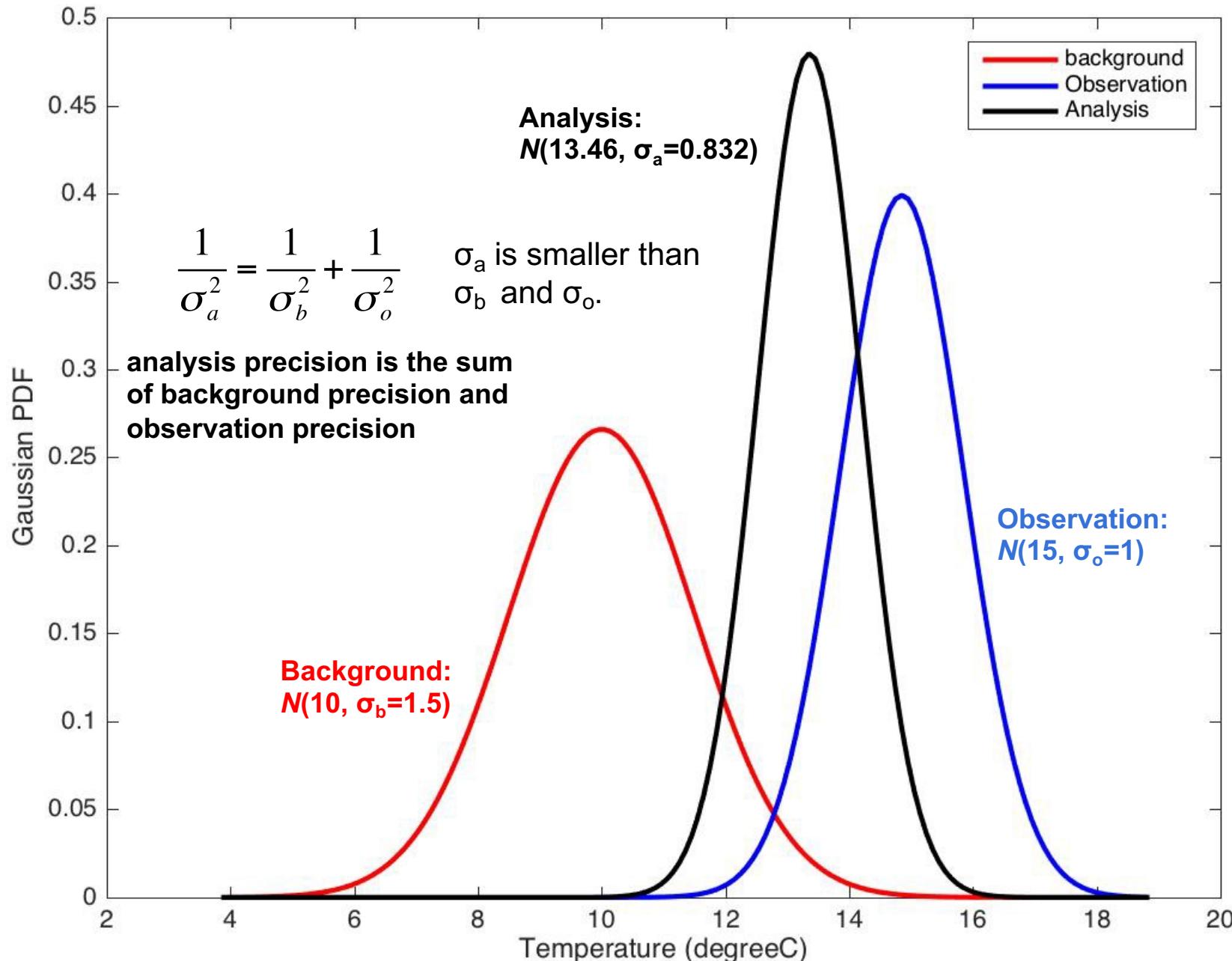
Then we can easily get
$$x_a = \frac{\sigma_o^2}{\sigma_b^2 + \sigma_o^2} x_b + \frac{\sigma_b^2}{\sigma_b^2 + \sigma_o^2} y = \frac{1}{1 + \sigma_b^2/\sigma_o^2} x_b + \frac{1}{1 + \sigma_o^2/\sigma_b^2} y$$

Or we can write in the form of **analysis increment**

$$x_a - x_b = \frac{\sigma_b^2}{\sigma_b^2 + \sigma_o^2} (y - x_b) = \frac{1}{1 + \sigma_o^2/\sigma_b^2} (y - x_b)$$

Called “Innovation” or O minus B, or OMB

Scalar Case


Minimize
$$J(x) = \frac{1}{2} \frac{(x-x_b)^2}{\sigma_b^2} + \frac{1}{2} \frac{(x-y)^2}{\sigma_o^2}$$

is actually equivalent to maximize a Gaussian Probability Distribution Function (PDF)

$$ce^{-J(x)}$$

Assume errors of X_b and y are unbiased

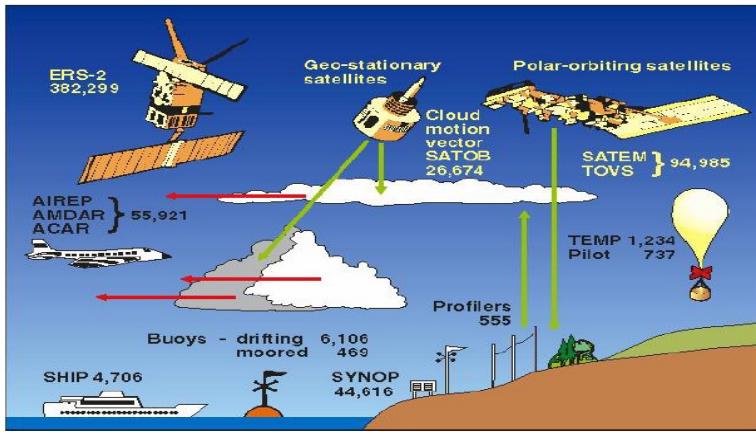
A probabilistic view of scale case

Two state variables case

- Consider two state variables to estimate: INPE and USP's 2m temperatures x_1 and x_2 at 12 UTC today.
- Background from 6-h forecast: x_1^b and x_2^b and their error covariance with correlation c

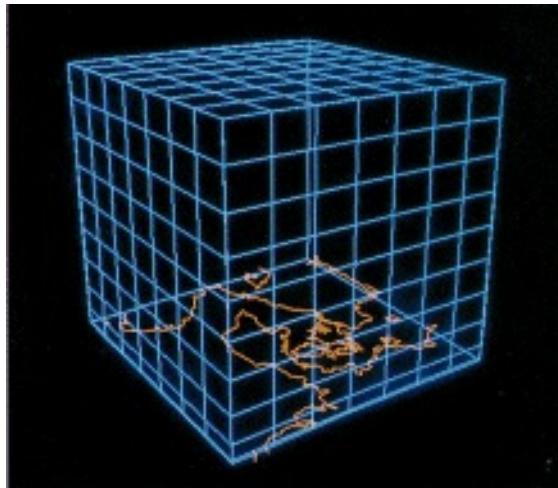
$$\mathbf{B} = \begin{bmatrix} \sigma_1^2 & c\sigma_1\sigma_2 \\ c\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} 1 & c \\ c & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

- We only have an observation y_1 at the INPE station and its error variance σ_o^2
- Now we want to estimate T at 2 locations with obs at one location

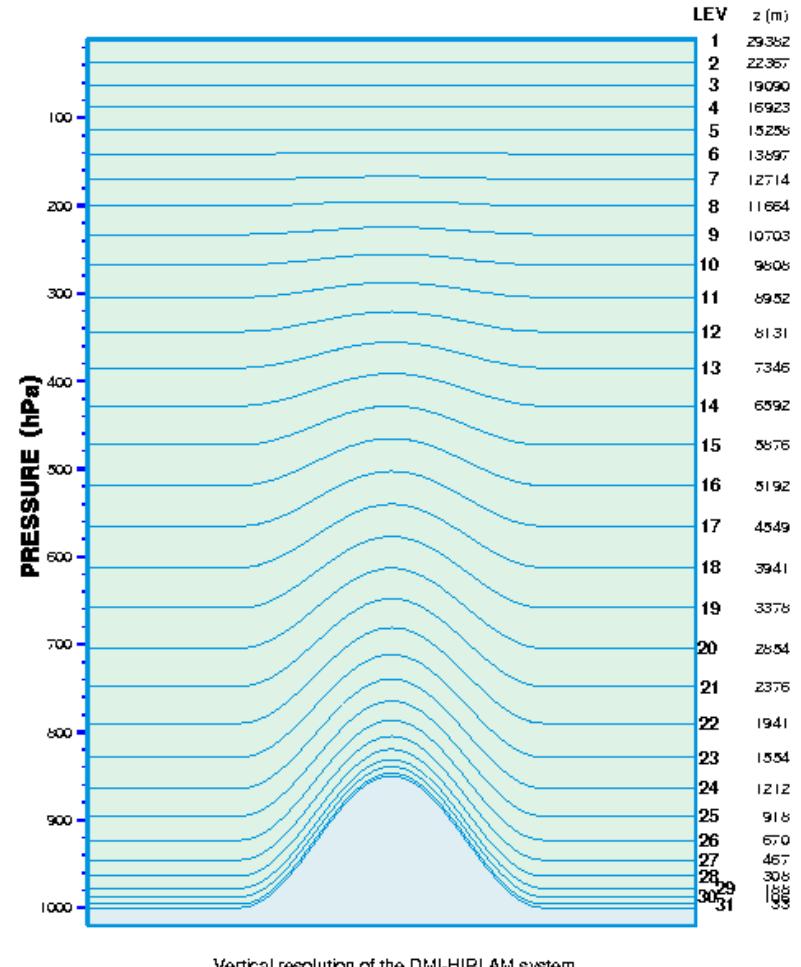

Analysis increment for two variables

$$x_1^a - x_1^b = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_o^2} (y_1 - x_1^b) \leftarrow \text{INPE}$$

$$x_2^a - x_2^b = \frac{c\sigma_1\sigma_2}{\sigma_1^2 + \sigma_o^2} (y_1 - x_1^b) \leftarrow \text{USP}$$


Unobserved variable x_2 gets updated through the error correlation c in the background error covariance.

In general, this correlation can be correlation between two locations (spatial), two variables (multivariate), or two times (temporal).



Observations
 $y^0, \sim 10^5-10^6$

Model state
 $x, \sim 10^7$

General Case

General Case: vector and matrix notation

state vector

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

observation vector

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

background error covariance

$$\mathbf{B} = \begin{bmatrix} \sigma_1^2 & c_{12}\sigma_1\sigma_2 & \dots & \dots \\ c_{12}\sigma_1\sigma_2 & \sigma_2^2 & \dots & \dots \\ \dots & \dots & \ddots & \dots \\ \dots & \dots & \dots & \sigma_m^2 \end{bmatrix} = \sigma \mathbf{C} \sigma$$

Correlation matrix

$m \times m$

Observation error covariance

$$\mathbf{R} = \begin{bmatrix} \sigma_{o1}^2 & 0 & \dots & 0 \\ 0 & \sigma_{o2}^2 & \dots & 0 \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & \dots & \sigma_{on}^2 \end{bmatrix}$$

$n \times n$

General Case: cost function

1 x 1

1 x m

m x m

m x 1

1 x n

n x n

n x 1

$$J(x) = \frac{1}{2}(x - x^b)^T \mathbf{B}^{-1}(x - x^b) + \frac{1}{2}[\mathbf{H}x - y]^T \mathbf{R}^{-1}[\mathbf{H}x - y]$$

\mathbf{H} maps x to y space, e. g., interpolation.

Terminology in DA: **observation operator**

Superscript 'T': **transpose** of a vector or matrix,

Superscript '-1': **inverse** of a symmetric covariance matrix

Minimize $J(x)$ is equivalent to maximize a multi-dimensional Gaussian PDF

$$\text{Constant}^* e^{-J(x)}$$

General Case: analytical solution

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

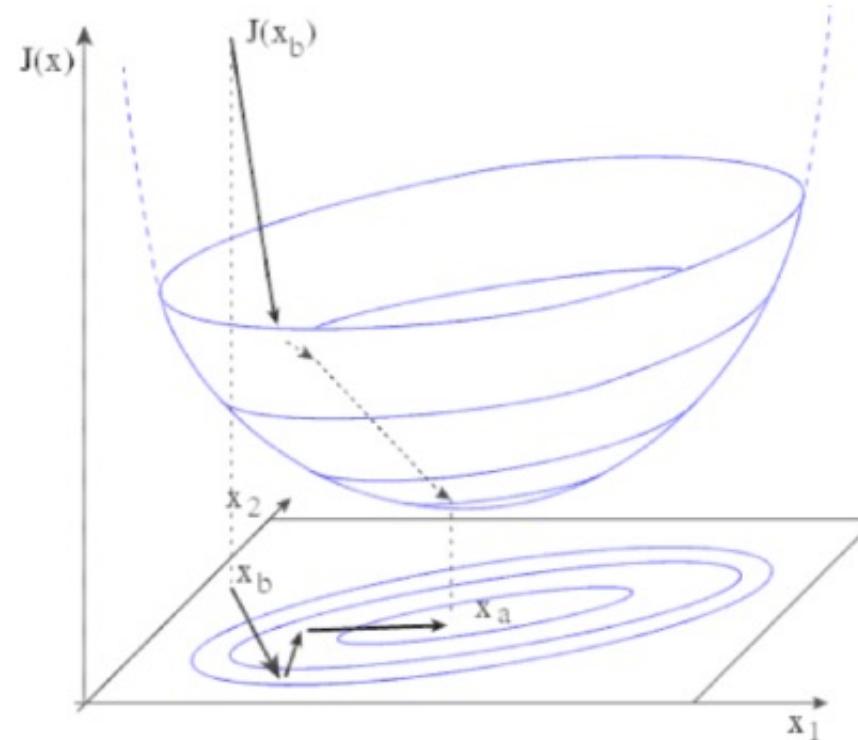
$$\nabla J_x(\mathbf{x}) = \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b) - \mathbf{H}^T \mathbf{R}^{-1} [\mathbf{y} - \mathbf{Hx}] = 0$$

$m \times 1$

This leads to analytical solution for the analysis increment:

$$x^a - x^b = \boxed{\mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}} \boxed{[y - \mathbf{H}x^b]} \quad \begin{array}{c} \uparrow \\ \text{Kalman gain matrix} \end{array} \quad \begin{array}{c} \uparrow \\ \text{Innovation or OMB vector} \end{array}$$

$\mathbf{H}\mathbf{B}\mathbf{H}^\top$: background error covariance projected into observation space


BH^T : background error covariance projected into cross background-observation space

Iterative algorithm to find minimum of cost function

- **Descending algorithms**

- Descending direction: γ_n (N-dimensional vector)
- Descending step: μ_n

$$x_{n+1} = x_n + \mu_n \gamma_n$$

from Bouttier and Courtier 1999

Precision of Analysis with optimal B and R

$$\mathbf{A}^{-1} = \mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}$$

Generalization of scalar case $\frac{1}{\sigma_a^2} = \frac{1}{\sigma_b^2} + \frac{1}{\sigma_o^2}$

Or in another form: $\mathbf{A} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{B}$

With

$$\mathbf{K} = \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$$

called Kalman gain matrix

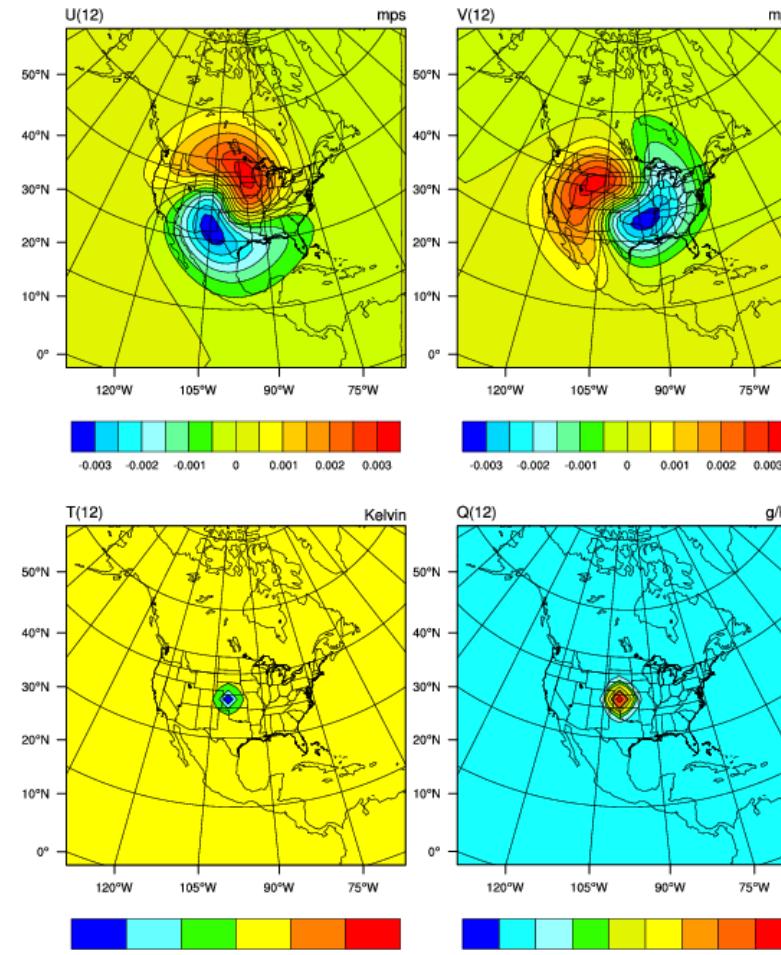
Precision of analysis: more general formulation

$$A = (I - KH)B_t(I - KH)^T + KR_tK^T$$

where B_t and R_t are “true” background and observation error covariances.

This formulation is valid for any given gain matrix K , which could be suboptimal (e.g., due to incorrect estimation/specification of B and R).

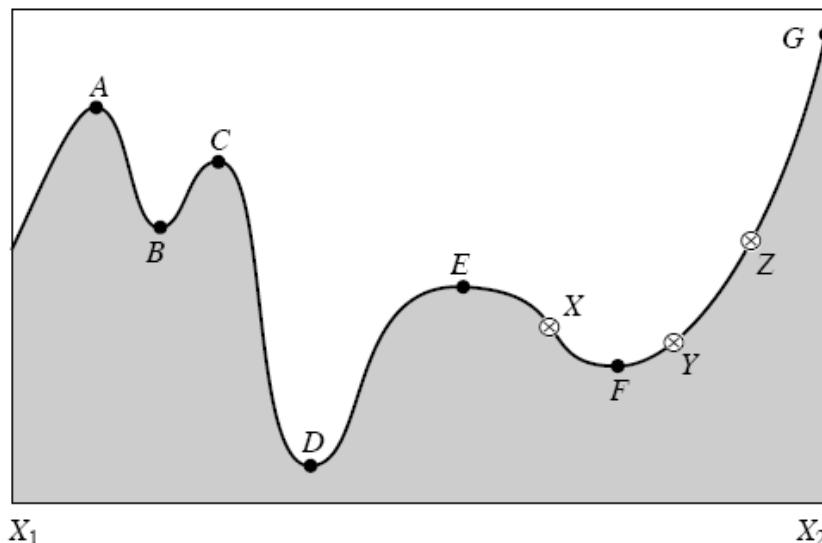
Analysis increment with a single humidity observation


$$x^a - x^b = \mathbf{B}\mathbf{H}^T(\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}[\mathbf{y} - \mathbf{H}x^b]$$

$$x_l^a - x_l^b = \frac{c_{lk}\sigma_l\sigma_k}{\sigma_k^2 + \sigma_{ok}^2}(y_k - x_k^b)$$

It is generalization of previous two variables case:

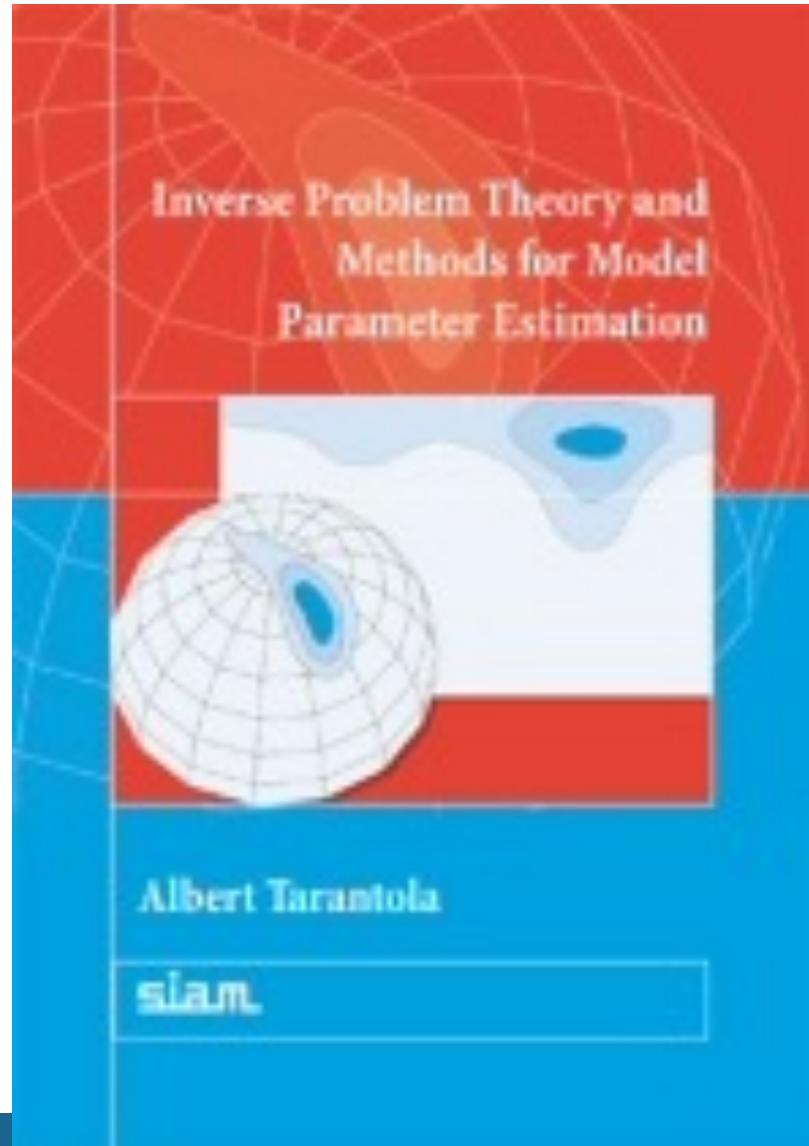
$$x_1^a - x_1^b = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_o^2}(y_1 - x_1^b)$$


$$x_2^a - x_2^b = \frac{c\sigma_1\sigma_2}{\sigma_1^2 + \sigma_o^2}(y_1 - x_1^b)$$

cv_options=6 in WRFDA

Other Remarks

- Observation operator $H()$ can be non-linear and thus analysis error PDF is not necessarily Gaussian
- $J(x)$ can have multiple local minima. Final solution of least square depends on starting point of iteration, e.g., choose the background x_b as the first guess.


Other Remarks

- **B** matrix is of very large dimension, explicit inverse of **B** is impossible, substantial efforts in data assimilation were given to the estimation and modeling of **B**.
- **B** shall be spatially-varied and time-evolving according to weather regime.
- Analysis can be sub-optimal if using inaccurate estimate of **B** and **R**.
- Could use non-Gaussian PDF
 - Thus not a least square cost function
 - Difficult (usually slow) to solve; could transform into Gaussian problem via variable transform

Variational vs. Ensemble DA

- They are solving the same cost function, by using different techniques
- These days, combining both techniques are common at operational centers
 - NOAA/NCEP: hybrid-4DEnVar + LETKF
 - ECMWF: ensemble of 4DVar
 - UKMO: hybrid-4DVar + LETKF

Further reading

