Cycling DA with MPAS-JEDI and overview on graphics package

Ivette Hernández Baños

Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

Outline

- ❖ Overview on the two-stream I/O (input/output) approach
 - > 2-stream I/O in MPAS-JEDI
- Cycling DA with MPAS-JEDI
- Graphics package
 - > Functionalities
 - > Examples

2-stream I/O approach

In Large Ensembles:

- Each member writes its own restart file
- Time-invariant fields are replicated
- This leads to redundant storage

Opt

Optimization approach:

- Store time-invariant fields **once**
- Reference shared fields across ensemble members

Running cycling DA more efficiently!!!

2-stream I/O approach

Real-data initial conditions

1. Processing static fields

In namelist.init atmosphere:

2. Interpolating meteorological fields

In namelist.init_atmosphere:

```
&preproc_stages

| config_static_interp = true | config_static_interp = false |
| config_native_gwd_static = true | config_native_gwd_static = false |
| config_vertical_grid = false | config_wertical_grid = true |
| config_met_interp = false | config_input_sst = false |
| config_input_sst = false | config_input_sst = false |
| config_frac_seaice = true |
```

In streams.init atmosphere:

In streams.init_atmosphere:

From MPAS-A User's guide

2-stream I/O approach

namelist.atmosphere:

```
&preproc_stages
    config_static_interp = false
    config_native_awd_static = false
    config_vertical_grid = true
    config_met_interp = false
    config_input_sst = false
    config_frac_seaice = false
/
```

streams.init_atmosphere:

→ We use "mpasout" file instead of "restart" file for background and analysis files

New stream

*time invariant fields in a separate file *mpasout file excludes time invariant fields in the invariant file and also physical tendency fields

Dual role in DA cycling—input and output—updated through the analysis process

Ha et al. (2024): https://doi.org/10.5194/gmd-17-4199-2024

MPAS-JEDI reads in two streams (two files):

- "invariant" stream: mesh info, sfc input variables (landmask, soilcomp, ivgtyp, albedo12m, etc) and parameters for gravity wave drag over orography, vertical coordinate etc.
- "da_state" stream (i.e., 'mpasout' file): fields needed for DA purposes (either analysis variables or fixed input needed for CRTM or other obs operators).

Cold start (1st bkg generation)

Cycling DA

```
<immutable_stream name="invariant"</pre>
                                                                              <immutable_stream name="invariant"</pre>
                                                                      VS.
                  type="input"
                                                                                                 type="input"
                  precision="single"
                                                                                                 precision="single"
                  filename_template="x1.655362.invariant.nc"
                                                                                                 filename_template="invariant.655362.nc"
                  io_type="pnetcdf,cdf5"
                                                                                                 io_type="pnetcdf,cdf5"
                  input_interval="initial_only" />
                                                                                                 input_interval="initial_only" />
<immutable_stream name="input"</pre>
                                                                              <immutable_stream name="input"</pre>
                  type="input"
                                                                                                 type="input"
                  precision="single"
                                                                                                 precision="single"
                  filename_template≤"x1.655362.init.nc"
                                                                                                 filename_templatempasin.$Y-$M-$D_$h.$m.$s.nc
                  io_type="pnetcdf,cdf5"
                                                                                                 io_type="pnetcdf,cdf5"
                  input_interval="initial_only" />
                                                                                                 input_interval="initial_only" />
<immutable_stream name="da_state"</pre>
                                                                              <immutable stream name="da state"</pre>
                  type="output"
                                                                                                 type="output"
                  precision="single"
                                                                                                 precision="single"
                  clobber mode="truncate"
                                                                                                 clobber_mode="truncate"
                  filename_template="mpasout.$Y-$M-$D_$h.$m.$s.nc"
                                                                                                 filename_template="mpasout.$Y-$M-$D_$h.$m.$s.nc"
                  packages="jedi_da"
                                                                                                 packages="jedi_da"
                  io_type="pnetcdf,cdf5"
                                                                                                 io_type="pnetcdf,cdf5"
                  output_interval="06:00:00" />
                                                                                                 output_interval="6:00:00" />
```


Changes in the **namelist.atmosphere**:

Cold start forecast:

→ invariant stream file should be set to the invariant.nc file, generated by MPAS init_atmosphere executable

```
&restart
    config_do_restart = false
    config_do_DAcycling = false

&assimilation
    config_jedi_da = true
used for cycling DA experiments
that analyze uncoupled fields in
restart files

run within the JEDI data
assimilation framework
```

MPAS-Atmosphere Model User's Guide Version 8.2.0

Changes in the **namelist.atmosphere**:

Forecast in cycling DA:

→ input stream should point the file generated from da_state stream in streams.atmosphere

```
&restart
    config_do_restart = false
    config_do_DAcycling = true

&assimilation
    config_jedi_da = true

used for cycling DA experiments
that analyze uncoupled fields in
restart files

run within the JEDI data
assimilation framework
```

MPAS-Atmosphere Model User's Guide Version 8.2.0

Cycling DA with MPAS-JEDI

Model-specific:

- Invariant file
- MPAS-A lookup tables
- Mesh partition file
- stream_list. files
- streams.atmosphere
- namelist.atmosphere

Cycling DA with MPAS-JEDI

MPAS-JEDI-specific:

- YAML configuration file
- geovars.yaml
- keptvars.yaml
- obsop_name_map.yaml
- templateFields. file (link to background file)
- Copy of mpasout into mpasin (analysis or IC for MPAS-A) → updated after DA
- Observations
- mpasjedi executable

Cycling DA with MPAS-JEDI

Model variables on the MPAS mesh to geovars.yaml Geophysical Variables at Locations (GeoVals) for UFO MPAS-A variables that we want to keep in keptvars.yaml memory Mapping between observation variable obsop name map.yaml names and MPAS-JEDI specific variable names Copy of background files with modified templateFields. file

"XTIME" variable (converted date strings into NetCDF-compatible character arrays) to get geometry information from MPAS-A

Graphics package

- □ Developed at NSF NCAR/MMM to aid in diagnosing results with MPAS and MPAS-JEDI
 - ☐ Observation space verification can be used for any JEDI model interface
- Python scripts
- ☐ Currently, only operates on NSF NCAR's Derecho HPC

➤ Open-source: https://github.com/JCSDA/mpas-jedi/tree/release/3.0.2/graphics

but **NOT** supported

- □ Produces statistics for selected diagnostics using the `DiagSpaces` selection.
- ☐ Distributed generation of information results in a database of processed statistics, stored in HDF5 files
- ☐ Distributed diagnostic files across multiple experiments, multiple cycle initial times, and multiple forecast lengths
- □ Enables portable reading of user-selected variables from multiples types of UFO feedback files (ObsSpace, GeoVaLs, ObsDiagnostics)
- ☐ Supports PBS script to submit verification jobs on Casper and Cheyenne
- □ IODA observation convention updates
- ☐ Updated QC flag numbers based on recent changes in UFO
- ☐ Users can select specific observation types, channels and variables to plot

DiagSpaces:

Sondes, aircraft, AMV winds, GNSSRO, surface pressure AMSU-A (NOAA-15, NOAA-18,

NOAA-19, METOP-A, METOP-B)

MHS (NOAA-18, NOAA-19,

METOP-A, METOP-B)

IASI (METOP-A, METOP-B,

METOP-C)

ABI (GOES-16)

AHI (Himawari-8)

Analyzed variables:

2m T

2m Q

10m U and V

Ps

Γ

Theta

rho

W

Ps

U and V

Qv

Qv 1 to 10 model level

Qv 11 to 20 model level

Qv 21 to 30 model level

Qv 31 to 40 model level

QV 41 to 55 model level

Binning methods:	☐ Types of plots:
☐ global	Time series plots with or without
□ by latitude bands: Tro (-30.0, 30.0),	confidence intervals calculated using
NXTro (30.0, 90.0), SXTro (-90.0, -30.0), NMid (30.0, 60.0), SMid (-60.0, -30.0),	bootstrap resampling profile plots of binned data (e.g., over pressure or latitude on the y-axis) with
NPol (60.0, 90.0), SPol (-90.0, -60.0)	and without confidence intervals
by tropical latitude bands: ITZC (-5.0, 5.0),	☐ maps of 2D-binned statistics
STro (-30.0, -5.0), NTro (5.0, 30.0))	□ score-card
by cloudiness: clear, mixed-pixels, cloudy, all- sky	standalone: OmA/OmB diagnostics, observations locations, analysis
□ Latitude vs Pressure 2D□ Longitude vs Latitude 2D	increments, cost function

Brightness temperature as a function of cloud

Count, Mean, STD, RMS, RMS relative difference

fraction 2D

How to run it?

Observation space:

OmA/OmB

python **DiagnoseObsStatistics.py** -n 36 -p ./dbOut -o obsout -g geoval -d ydiags -app variational -nout 2

Forecast vs observations (HofX)

python DiagnoseObsStatistics.py -n 36-p ./dbOut -o obsout -g geoval -d ydiags -app hofx

Model space (vs GFS analysis):

Forecast vs model

python DiagnoseModelStatistics.py YYYYMMMDDDHHH -n 36 -r ./x1.655362.init

Graphics package: examples

Experiment folders structure: ivette_3dvar_OIE120km_WarmStart

```
Verification
    - bg
      -mean/YYYYMMMDDDHHH/diagnostic stats
      -mean/YYYYMMMDDDHHH/diagnostic stats
                                                                         obs
      -mean/YYYYMMMDDDHHHH/diagnostic stats
                                                                           stats da aircraft.h5
                                                                                                             - model
                                                                           stats da amsua aqua.h5
                                                                           stats da amsua metop-a.h5
                                                                                                                -stats mpas.h5
                                                                           stats da amsua metop-b.h5
                                                                          stats da amsua n15.h5
0hr
                                                                          - stats da amsua n18.h5
120hr
                                                                           stats da amsua n19.h5
- 24hr
                                                                          stats da gnssrobndropp1d.h5
48hr
                                                                          stats da mhs metop-a.h5
· 72hr
                                                                          - stats da mhs metop-b.h5
96hr
                                                                          - stats da mhs n18.h5
  diag.2018-05-16 00.00.00.nc ->
                                                                          stats da mhs n19.h5
 model
                                                                          stats da satwind.h5
 obs
                                                                          stats da satwnd.h5
 restart.2018-05-16 00.00.00.nc ->
                                                                          stats da sfc.h5
                                                                           stats da sondes.h5
```


Graphics package: functionalities

How to run it?

<u>analyze_config.py</u>: top-level script that controls cycle times and forecast length, verification configuration, experiments and statistics to analyze, and analysis types to apply to the statistics

Observation space:

Carry out analyses for all DiagSpaces that contain "amsua" python AnalyzeStats.py -d amsua

Job-submission examples:

./SpawnAnalyzeStats.py -nout 2 -d amsua_,sonde,airc,sfc,gnssro,satw ./SpawnAnalyzeStats.py -app hofx -d mhs,amsua,abi_,ahi_,sonde,airc,sfc,gnssro,satw

Model space (vs GFS analysis):

./SpawnAnalyzeStats.py -d mpas

Graphics package: functionalities

How to set it up?

analyze config.py: Most common parameters to set up for 6hr verification

General settings

```
dbConf['firstCycleDTime'] = dt.datetime(2018,4,15,0,0,0)
dbConf['lastCycleDTime'] = dt.datetime(2018,5,14,18,0,0)

# time increment (TimeInc) between valid Cycle (cy) date-times
dbConf['cyTimeInc'] = dt.timedelta(hours=6)
```

Verification type and Verification space

```
## VerificationType
# OPTIONS: 'omb/oma', 'forecast'
# 'omb/oma' - calculated from a da application, only available when
# VerificationSpace=='obs'
# 'forecast' - single- or multi-duration forecasts either in observation or model space
VerificationType = 'forecast'

## VerificationSpace
# OPTIONS: 'obs', 'model'
# 'obs' - observation space
# 'model' - compare to analyses in model space, only available when VerificationType=='forecast'
VerificationSpace = 'obs'
```

Experiment names (cntrlExpName has to match!!)

```
## cntrlExpName is the experiments key of the control experiment, which is used for DiffCI analyses
dbConf['cntrlExpName'] = 'clrama'

## experiments - dictionary with key, value pairs as follows

# + the key is a short name for the experiment (see expNames below)

# + the value is the directory where the verification statistics files are located

# + if using MPAS-Workflow, users only need to add one new `experiments` entry per experiment and

* select their desired VerificationType and VerificationSpace above

experiments = OrderedDict()

experiments['clrama'] = \
    'guerrett_3dhybrid-60-60-iter_gnssrorefncep_030kmI60km_ensB-SE80+RTPP70_VarBC_RefNCEP_2ndDoaDob' +
    deterministicVerifyDir
```


Graphics package: examples

rms: % diff, from benchmark

rms: % diff. from benchmark

rms: % diff, from benchmark

Graphics package: examples

MPAS 6-h verification vs GFS analysis

MPAS 5-days verification vs GFS analysis

Contributions for new diagnostics/capabilities are welcome!!!

https://github.com/JCSDA/mpas-jedi/tree/develop/graphics

References

Duda, M., Fowler, L., Skamarock, B., Roesch, C., Jacobsen, D., & Ringler, T. (2024). *MPAS-Atmosphere Model User's Guide Version 8.2.0* (Last updated: June 27, 2024). UCAR. https://www2.mmm.ucar.edu/projects/mpas/mpas_atmosphere_users_guide_8.2.0.pdf

Ha, S., Guerrette, J. J., Hernández Baños, I., Skamarock, W. C., and Duda, M. G.: Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0), Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/qmd-17-4199-2024, 2024.