
Introduction to JEDI

MPAS-JEDI Tutorial St. Andrews, UK June 2025
Christian Sampson

Contributors: Nate Crossette, Fabio Diniz

2

The JCSDA

JCSDA
Team

NCAR
UCAR

NOAA
NWS

NOAA
NESDIS

NASA
GMAO

NOAA
OAR

Navy

Air
Force

Academia,
private sector &

international
partners

3

The People of the JCSDA
Joint Center for Satellite Data Assimilation

JEDI Team Application Teams

Algo Infra Interfaces &
Optimization

In-KindsObs CRTM

COMPO SOCA

NCAR/
MMM UKMO NASA/

GMAO
NOAA
(many)

US
NAVY

JCSDA Employees

4

MPAS-JEDI

Joint Effort for Data assimilation Integration
• Generic (model-agnostic), unified data assimilation

framework for Research AND Operations
o JEDI is run with toy models (Lorenz95/QG) up to Earth

system coupled models

Generic Code Model Interfaces

FV3-JEDI

SOCA

LFRic-JEDI

Models

MPAS

GEOS
UFS/GFS
MOM6, CICE6

LFRic

ROMS-JEDI ROMS

SABER

OOPS

VADER

CRTM

IODA

UFO

5

JEDI Components
• OOPS: Object Oriented Prediction System

o Generic data assimilation algorithms

• VADER: VAriable DErivation Repository
o Generic variable changes

• SABER: System Agnostic Background Error Representation
o Generic background error covariance models (B-matrix)

• UFO: Unified Forward Operator
o Collection of model-agnostic observation operators

• CRTM: Community Radiative Transfer Model
o Simulation of satellite radiances

• IODA: Interface for Observation Data Access
o Performs all the I/O for the observations

JEDI is 80-90% C++17 except:
 - CRTM ~90% FORTRAN
 - UFO ~30% FORTRAN

6

JEDI Components

𝐽 𝑥 =
1
2
𝑥 − 𝑥! "𝐵#$ 𝑥 − 𝑥! +

1
2
𝑦% −𝐻𝑥 "𝑅#$(𝑦& −𝐻𝑥)

SABER

VADER
(If model variables differ
from analysis variables)

UFO, CRTM

IODA

OOPS

𝛁𝐉 𝐱 → 𝟎

Forecast 4D-Var

Model Covariance Obs. Operator

…

Uses

EnKF

Abstract Layer (OOPS)

Obs. SpaceState

Generic
Algorithms

Abstract
Interfaces …

EDA

FV3MOM6

Implements

NEPTUNE …
Specific
Implementations

Generic
Implementations UFO IODA

GNSSROCRTM …

SABER

Model-agnostic
components
implementing part
of the OOPS
interface.

Generic Layer

JEDI - Abstraction and Genericity

Model-agnostic
Abstract Interface

MPAS

8

How is JEDI code ‘Generic’?
DA in one sentence:

Update a model state using new observations accounting for errors: obs,
background, (model).

JEDI uses the atlas::FieldSet as a generic data structure to hold
state information (and atlas::FunctionSpace for model geometry).

‘Workhorse’ object in generic JEDI algorithms
ndarray is to numpy; as atlas::FieldSet is to JEDI

https://github.com/ecmwf/atlas
https://sites.ecmwf.int/docs/atlas/

From ECMWF

https://github.com/ecmwf/atlas
https://sites.ecmwf.int/docs/atlas/

9

How is JEDI Code ‘Generic’?

temperature

pressure

eastward wind

northward wind

lvl1
lvl2
lvl3

m
et

ad
at

a

JEDI wrapper for atlas::FieldSet
- Access variables/fieldnames
- Access individual field
- Perform operations

10

How is JEDI code ‘Generic’?

Model-facing classes in OOPS are
class templates

oops/scr/
 |- test/
 |- oops/
 |- assimilation/
 --> |- interface/

State.h
 ...
 |- runs/
 ...

Methods are implemented on
generic concepts of
MODEL::state and
MODEL::geometry

Model-specific
definitions are
written in model
interfaces and fill
the class template

11

Example of Templated Function

// Template function to create a vector from two numbers of the same type
template <typename T>
std::vector<T> makeVec(T num1, T num2) {
 std::vector<T> resultVector;
 resultVector.push_back(num1);
 resultVector.push_back(num2);
 return resultVector;

}

std::vector<int> makeVec(int num1, int num2) {
 std::vector<int> resultVector;
 resultVector.push_back(num1);
 resultVector.push_back(num2);
 return resultVector;
}

std::vector<double> makeVec(double num1, double num2) {
 std::vector<double> resultVector;
 resultVector.push_back(num1);
 resultVector.push_back(num2);
 return resultVector;
}

std::vector<int> v1=makeVec(int num1, int num2); std::vector<double> v2=makeVec(double num1, double num2);

If in the main program these are called

The compiler knows to make these two functions for you

T is the type, could be int, double, float…

12

Example of a Templated Class
// T will be the type of the vector's components (e.g., int, double, float)
template <typename T>
class vectorClass {
private:
 T m_x; // The x-component of the 2D vector
 T m_y; // The y-component of the 2D vector
public:
 // Constructor: This function takes two numbers and initializes
 // the x and y components of our 2D vector.
 vectorClass(T x_val, T y_val) : m_x(x_val), m_y(y_val) {
 }
 // Member function: Calculates the dot product of this vector
 T dotProduct(const vectorClass<T>& other) const {
 // The dot product of two 2D vectors (x1, y1) and (x2, y2)
 return (m_x * other.m_x) + (m_y * other.m_y);
 }
 //A public getter for the x-component
 T getX() const {
 return m_x;
 }
 //A public getter for the y-component
 T getY() const {
 return m_y;
 } };

int main() {

 // --- Example 1: Using vectorClass with integers ---

 // Create the first integer vector (3, 4)

 vectorClass<int> vec1_int(3, 4);

 // Create the second integer vector (5, 6)

 vectorClass<int> vec2_int(5, 6);

 // Calculate the dot product

 int dot_product_int = vec1_int.dotProduct(vec2_int);

 // --- Example 2: Using vectorClass with doubles ---

 // Create the first double vector (1.5, 2.0)

 vectorClass<double> vec1_double(1.5, 2.0);

 // Create the second double vector (2.5, 3.0)

 vectorClass<double> vec2_double(2.5, 3.0);

 // Calculate the dot product

 double dot_product_double = vec1_db.dotProduct(vec2_db);

 }

Main Program

13

What is a Model Interface?

• Defines the MODEL type (using traits)
• Defines model-specific implementations of:

o State
• Defines toFieldSet() & fromFieldSet() methods

o Increment
o Geometry

• Ports model geometry to atlas::FunctionSpace
o Variable Changes (can use VADER)

• Provides access to TLM (if one exists; needed for 4DVar)
• Setup & run model forecast
• Provides model-filled templates of OOPS::Applications

14

OOPS Orchestration
How does JEDI do things with a model?

MPAS-JEDI Variational Application FV3-JEDI Variational Application

15

OOPS Orchestration
DA ‘tasks’ are defined as subclasses of OOPS::Application

What the application does is defined in the
execute()method.

oops/src/
 |- test/
 |- oops/
 |- assimilation/
 |- base/
 |- generic/
 |- interface/
--> |- runs/

Application.h
 Variational.h
 ...
 ...

oops/src/
 |- test/
 |- oops/
 |- assimilation/
 |- base/
 |- generic/
 |- interface/
--> |- runs/

Application.h
Variational.h

 ...
 ...

16

YAML Ain’t Markup Language

Experiments are setup in yaml files

YAML files are read by eckit and written
into eckit::Configuration object
that is passed to OOPS.

17

Configuring a Run
cost function:
 # 4dfgat utilizes the 4D-Var cost function with an identity linear model
 cost type: 4D-Var
 time window:
 begin: '2018-04-14T21:00:00Z'
 length: PT3H
 geometry:
 nml_file: "./Data/480km/namelist.atmosphere_2018041421"
 streams_file: "./Data/480km/streams.atmosphere"
 model:
 name: MPAS
 tstep: PT30M
 model variables: &modvars
 [temperature, spechum, uReconstructZonal, uReconstructMeridional, surface_pressure,
 theta, rho, u, qv, pressure, landmask, xice, snowc, skintemp, ivgtyp, isltyp,
 qc, qi, qr, qs, qg, pressure_p, snowh, vegfra, u10, v10, lai, smois, tslb, w]
 analysis variables: &incvars
 - temperature
 - spechum
 - uReconstructZonal
 - uReconstructMeridional
 - surface_pressure
 background:
 state variables: *modvars

Type of cost function

DA window

The model we want

Variables

Resolution/Geometry

Cost
Function
Name and
window

Model

Analysis
variables

Background

Cost
Function
Whole

18

 - temperature
 - spechum
 - uReconstructZonal
 - uReconstructMeridional
 - surface_pressure
 background:
 state variables: *modvars
 filename: "./Data/480km/bg/restart.2018-04-14_21.00.00.nc"
 date: '2018-04-14T21:00:00Z'
 background error:
 covariance model: MPASstatic
 date: '2018-04-14T21:00:00Z'
 observations:
 observers:
 - obs space:
 name: Radiosonde
 obsdatain:
 engine:
 type: H5File
 obsfile: Data/obs/mpasobsappend1/sondes_obs_2018041500_m.nc4
 obsdataout:
 engine:
 type: H5File
 obsfile: Data/os/obsout_4dfgat_append_obs_sondes.nc4
 simulated variables: [airTemperature, windEastward, windNorthward, specificHumidity]
 obs operator:
 name: VertInterp
 observation alias file: testinput/obsop_name_map.yaml
 obs error:
 covariance model: diagonal

Variables

File location

B matrix we choose

First Obs Type

Output / OMA,OMB

Obs Operator we want to the obs type

R matrix for the obs type

Analysis
variables

Background

B Matrix

Observations

Start Obs Section

Cost
Function
Whole

19

 obs operator:
 name: VertInterp
 observation alias file: testinput/obsop_name_map.yaml
 obs error:
 covariance model: diagonal
 obs filters:
 - filter: PreQC
 maxvalue: 3
 - filter: Background Check
 threshold: 3
 - obs space:
 name: GnssroRefNCEP
 obsdatain:
 engine:
 type: H5File
 obsfile: Data/ufo/testinput_tier_1/gnssro_obs_2018041500_s.nc4
 obsdataout:
 engine:
 type: H5File
 obsfile: Data/os/obsout_4dfgat_append_obs_gnssroref.nc4
 simulated variables: [atmosphericRefractivity]
 obs operator:
 name: GnssroRefNCEP
 obs options:
 use_compress: 0
 obs error:
 covariance model: diagonal
 obs filters:
 - filter: Domain Check
 where:

Obs Operator we want to the obs type

R matrix for the obs type

QC for the obs type

Similar section for
another obs type

Observations

Cost
Function
Whole

20

 threshold: 3
 - filter: ROobserror
 apply at iterations: 0,1
 variable: refractivity
 errmodel: NCEP
 - obs space:
 name: SfcPCorrected
 obsdatain:
 engine:
 type: H5File
 obsfile: Data/ufo/testinput_tier_1/sfc_obs_2018041500_m.nc4
 obsdataout:
 engine:
 type: H5File
 obsfile: Data/os/obsout_4dfgat_append_obs_sfc.nc4
 simulated variables: [stationPressure]
 obs operator:
 name: SfcPCorrected
 da_psfc_scheme: UKMO # or WRFDA
 linear obs operator:
 name: Identity
 observation alias file: testinput/obsop_name_map.yaml
 obs error:
 covariance model: diagonal
 obs filters:
 - filter: PreQC
 maxvalue: 3
 - filter: Difference Check
 apply at iterations: 0,1
 reference: MetaData/stationElevation

Similar section for
another obs type

Observations

Cost
Function
Whole

21

 value: GeoVaLs/height_above_mean_sea_level_at_surface
 threshold: 500
 - filter: Background Check
 apply at iterations: 0,1
 threshold: 3

variational:
 minimizer:
 algorithm: DRPCG
 iterations:
 - geometry:
 nml_file: "./Data/480km/namelist.atmosphere_2018041421"
 streams_file: "./Data/480km/streams.atmosphere"
 linear model:
 # 4dfgat utilizes the generic identity linear model, implemented in oops::IdentityLinearModel
 name: Identity
 increment variables: *incvars
 tstep: PT30M
 ninner: '10'
 gradient norm reduction: 1e-10
 - geometry:
 nml_file: "./Data/480km/namelist.atmosphere_2018041421"
 streams_file: "./Data/480km/streams.atmosphere"
 linear model:
 # 4dfgat utilizes the generic identity linear model, implemented in oops::IdentityLinearModel
 name: Identity
 increment variables: *incvars
 tstep: PT30M
 ninner: '10'
 gradient norm reduction: 1e-10
 test: 'on'

Choose minimizer scheme

Resolution of inner loop

Linear model, here it’s a 4d-Var cost function so we need one

Number of inner loops or, norm reduction to reach

First
outer loop

next
outer loop

Define how the variational run will go

Variational
Run
Config

22

variational:
 minimizer:
 algorithm: DRPCG
 iterations:
 - geometry:
 nml_file: "./Data/480km/namelist.atmosphere_2018041421"
 streams_file: "./Data/480km/streams.atmosphere"
 linear model:
 # 4dfgat utilizes the generic identity linear model, implemented in oops::IdentityLinearModel
 name: Identity
 increment variables: *incvars
 tstep: PT30M
 ninner: '10'
 gradient norm reduction: 1e-10
 - geometry:
 nml_file: "./Data/480km/namelist.atmosphere_2018041421"
 streams_file: "./Data/480km/streams.atmosphere"
 linear model:
 # 4dfgat utilizes the generic identity linear model, implemented in oops::IdentityLinearModel
 name: Identity
 increment variables: *incvars
 tstep: PT30M
 ninner: '10'
 gradient norm reduction: 1e-10
 test: 'on'
 continuous DA:
 obs append directory: Data/obs/mpasobsappend2

output:
 filename: "Data/states/mpas.4dfgat_append_obs.$Y-$M-$D_$h.$m.$s.nc"
 stream name: analysis

Output path

Choose minimizer scheme

Resolution of inner loop

Linear model, here it’s a 4d-Var cost function so we need one

Number of inner loops or, norm reduction to reach

First
outer loop

next
outer loop

Define how the variational run will go

New feature in JEDI, add more obs in before this outer loop starts

Variational
Run

Config

Output

23

oops/src/oopsassimilation/CostFunction.h

oops/src/oops/Variational.h

Instantiation

cost function:
 cost type: 4D-Var
 time window:
 begin: '2018-04-14T21:00:00Z'
 length: PT3H

 …
variational:
 minimizer:
 algorithm: DRPCG
 iterations:

 - iteration 1 config
 …
 - iteration 2 config
 …
 - iteration 3 config
 …
output:
 …

24

JEDI configurability and choices
From : jedi-bundle/fv3-jedi/test/testinput/4dvar_hybrid_linear_model.yaml

From : jedi-bundle/fv3-jedi/test/testinput/4dvar_geos_cf.yaml

25

Running the Executable

Assuming you have set your JEDI_ROOT and JEDI_BUILD directories you can execute by passing your
yaml config to the relevant executable like so providing the path to your yaml file of course.

26

JEDI Capabilities & Features

Models:
- Lorenz95, QG (native toy models)
- FV3-JEDI
- MPAS-JEDI
- SOCA

Background Error Models (SABER):
- BUMP
- Explicit Diffusion
- Spectral Filtering
- GSI Interface (limited)

DA Flavors:
- 3DVar/3D-FGAT
- 4DVar (-Weak Constraint)
- 4DEnVar
- EnKF (LETKF, GETKF)

UFO:
- Wide collection of Obs

Operators (remote & in-situ)
- Bias correction
- Quality Control

27

JEDI Recent Accomplishments: TEMPO

TEMPO NO2 assimilation using JEDI and GEOS-CF
at ~25km (c360) resolution.

Assimilation of recently released TEMPO observations, first
to do it and thus available to the partners!

28

JEDI Recent Accomplishments: B Diffusion
Addition of explicit diffusion model for background errors

29

JEDI Recent Acomplishments: Multi-Scale
Localization

Ensemble (on gaussian grid)

Spectral
Representation

waveband
filter Filtered ensemble members: long waveband

(above); short wave-band (below)

30

Results from Single Obs Test:

JEDI Recent Acomplishments: Multi-Scale
Localization

Increment from localizing only the long waveband Increment from localizing only the short waveband

Incomplete TLM (simple TLM)
Complete TLM

times

time

𝑡! 𝑡"

HTLM update(𝛿𝑥⃗ 𝑡# $ = 𝑁#𝛿𝑥⃗ 𝑡# %)

JEDI Recent Accomplishments: HTLM

Hybrid Tangent Linear Model (HTLM)

Linearization error with GEOS and fv3-tlm
comparing no HTLM and HTLM runs with
different numbers of ensemble members for
the updated variable of NO2

Linearization error with GEOS and fv3-tlm
comparing HTLM runs with different
numbers of ensemble members (ZOOMED
IN FROM LEFT) for the updated variable NO2

Linearization error with GEOS and fv3-tlm
comparing no HTLM and HTLM runs with
different influence region sizes for the air
pressure thickness which was not directly
updated by the HTLM

● The HTLM is showing good reduction in linearization errors
● The linearization error is still reduced well even with relatively small ensemble sizes
● We also see reduction in linearization error for variables we don’t directly update with the HTLM
● The linearization error reduction is also robust in update frequency.

No HTLM

HTLM Runs

Zoomed in HTLM Runs

Benefit to variables
not directly updated
as well

No HTLM

HTLM Runs

JEDI Recent Accomplishments: HTLM

No HTLM

HTLM with Global
Regularization

HTLM with Adaptive
Regularization and SVD
cutoff , no global
regularization

HTLM with global
Regularization,
Adaptive
Regularization, and
SVD cutoff

Improved linearization errors

Added an (maximum condition number based) adaptive regularization scheme and svd truncation to the HTLM.

When enabled shows improved linearization error, especially over several timesteps.

JEDI Recent Accomplishments: HTLM

first guess forecast
updated forecast
observation

time

previous forecast

𝑡! 𝑡"

After first outer loop

JEDI Recent Accomplishments: CDA

Traditional 4d-Var

first guess forecast
updated forecast
observation

time

previous forecast

𝑡! 𝑡"

After first outer loop

After Second Outer Loop

JEDI Recent Accomplishments: CDA

Traditional 4d-Var

first guess forecast
updated forecast
observation

time

previous forecast

𝑡! 𝑡"

After first outer loop

Observation valid in window but just arrived.

After Second Outer LoopJEDI Recent Accomplishments: CDA

Continuous DA (CDA)

first guess forecast
updated forecast
observation

time
𝑡! 𝑡"

Observation valid in window but just arrived.

After Second Outer Loop
With new obs

After Second Outer Loop
Without new obs

JEDI Recent Accomplishments: CDA

Continuous DA (CDA)

Normalized Increment

SCAT Wind

Additional increments in locations where

obs are added between outer loops.

JEDI Recent Accomplishments: CDA

39

JEDI Recent Acomplishments: Benchmarking

- Weatherbench scores against ERA5 and scorecard
capability to compare experiments available in
EWOK (work with OBS and INFRA teams)

- Metrics RMSE, MAE, Forecast bias
- Variables from ERA5 reanalysis

40

Current JEDI Efforts

• Transition to Operations
• JEDI optimizations for CPUs & GPUs
• Continuous DA, with window shifts.

*ESA

JEDI is meant to focus efforts in such a way that
innovation is shared, accelerated, and does not need
to be reproduced. In addition, once observations are
available in JEDI they should be available to any
model with a JEDI interface.

41

Questions?

JEDI Documentation: https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
JEDI Forum: https://forums.jcsda.org/ (requires account to post/comment)
Github: https://github.com/JCSDA (public)

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/index.html
https://forums.jcsda.org/
https://github.com/JCSDA

