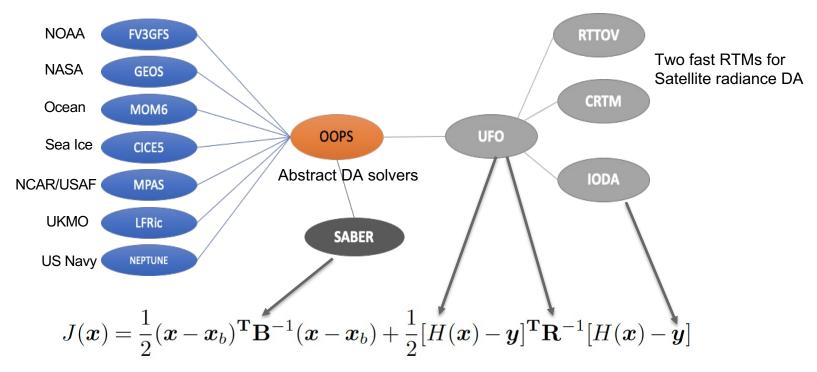

MPAS-JEDI Overview and Introduction to Practical Sessions

Jake Liu (liuz@ucar.edu)



Joint Effort for Data assimilation Integration (JEDI)

led by Joint Center for Satellite Data Assimilation (JCSDA)

JCSDA and all partner groups contributing to JEDI's development

History of MPAS-JEDI

- Started from early 2018
- 1st release, September 2021
- 1st publication, Liu et al. (2022), EnVar and all-sky AMSU-A DA
- 2nd release, June 2023
- 2nd publication, Guerrette et al. (2023), Ensemble of EnVar
- 1st tutorial, September 2023 at NCAR
- 3rd publication, Jung et al. (2024), Multivariate B, 3DVar, hybrid
- 3rd release, September 2024

MPAS-JEDI publications

Liu Z et al., 2022: Data Assimilation for the Model for Prediction Across Scales - Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation, Geosci. Model Dev., 15, 7859–7878.

Guerrette, J. J. et al., 2023: Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta): ensemble of 3D ensemble-variational (En-3DEnVar) assimilations, Geosci. Model Dev., 16, 7123–7142.

Jung et al.. 2024: Three-dimensional variational assimilation with a multivariate background error covariance for the Model for Prediction Across Scales–Atmosphere with the Joint Effort for data Assimilation Integration (JEDI-MPAS 2.0.0-beta), Geosci. Model Dev., 17, 3879–3895.

Ha, S. et al., 2024: Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0), Geosci. Model Dev., 17, 4199–4211.

Sun, T. et al., 2025: All-sky AMSU-A radiance data assimilation using the gain-form of Local Ensemble Transform Kalman filter within MPAS-JEDI-2.1.0: implementation, tuning, and evaluation, EGUsphere [preprint].

Schwartz C.S. et al., 2025: A first step toward global ensemble-based data assimilation at convection-allowing scales using MPAS and JEDI, Monthly Weather Review, Accepted.

Latest stable version: MPAS-JEDI-3.0.2, Nov. 2024

- MPAS-JEDI-3.0.2 code accessible from
 - https://github.com/JCSDA/mpas-bundle/tree/3.0.2
- Based on the latest version of MPAS-A model and its interface to JEDI
 - https://github.com/MPAS-Dev/MPAS-Model/tree/v8.2.2
 - https://github.com/JCSDA/mpas-jedi/tree/release/3.0.2
 - Fixed a bug related to vertical height coordinate input to GNSS RO operator

Code of other repos as of September 2024 when making the 3.0.0 release:

https://github.com/JCSDA/oops https://github.com/JCSDA/saber https://github.com/JCSDA/ufo https://github.com/JCSDA/ioda

Other related tools:

- Python-based Diagnostic/Verification package included in: https://github.com/JCSDA/mpas-jedi/tree/release/3.0.2/graphics
- Data assimilation cycling Workflow based on cylc: https://github.com/NCAR/MPAS-Workflow
- Observation processing, format conversion: https://github.com/NCAR/obs2ioda

Main features with MPAS-JEDI

- Deterministic analysis:
 - 3DVar, 3D/4DEnVar, and hybrid-3D/4DEnVar with dual-resolution capability
- Ensemble analysis:
 - Ensemble of EnVar (EDA) with perturbed observations
 - LETKF and Gain form of LETKF (LGETKF)
- Analysis directly done on MPAS unstructured grid for uniform or variable-resolution mesh, global or regional mesh
 - Analysis Variables: u/v wind, Temperature, Specific Humidity, and Surface Pressure
- Allow to assimilate cloud-/precipitation-affected MW/IR satellite radiance data
 - Using CRTM (Community Radiative Transfer Model)
 - With mixing ratios of hydrometeors as part of analysis variables
- Radar DA: reflectivity and radial velocity
- Surface DA: Ps, t2m, q2m, u10, v10
- GNSS RO DA with multiple choices of RO operators

Instructions for practical exercises

https://www2.mmm.ucar.edu/projects/mpas-jedi/tutorial/202506NCAS

Basic info for working on NCAR HPC Derecho

ssh –x username@derecho.hpc.ucar.edu

(Mac users may need to use 'ssh -Y')

You should be under bash after login: "echo \$SHELL"

Submitting Jobs with PBS

qsub script	Submit a job script				
qstat -u \$USER	Check the status of your pending and running jobs				
qdel job-id	Delete a queued or running job				

This tutorial uses an account number: **UMMM0012** and the 'main' queue

Copy the "mpas_jedi_tutorial" folder

cd /glade/derecho/scratch/\${USER}

cp -r /glade/derecho/scratch/liuz/mpasjedi_tutorial202506NCAS ./mpas_jedi_tutorial

Is -I mpas_jedi_tutorial, you will see

1st Practice: build and test MPAS-JEDI

1. loading spack-stack build environment

2. cmake step3. make step4. ctest step

1. loading spack-stack-1.6.0

- cd mpas-jedi-tutorial
- mkdir mpas_bundle_v3
- cd mpas_bundle_v3
- git clone –b release/3.0.2 https://github.com/JCSDA/mpasbundle code
- source ./code/env-setup/gnuderecho.sh
- module list

Install spack-stack on your own machine will be covered Tomorrow afternoon.

Curr	ently Loaded Modules:					
1)	ecflow/5.8.4		35)	base-env/1.0.0	69)	json-schema-validator/2.1
2)	mysq1/8.0.33		36)	boost/1.83.0	70)	odc/1.4.6
3)	ncarenv/23.09	(S)	37)	openblas/0.3.24	71)	py-attrs/21.4.0
4)	gcc/12.2.0		38)	py-setuptools/63.4.3	72)	py-pycparser/2.21
5)	stack-gcc/12.2.0		39)	py-numpy/1.22.3	73)	py-cffi/1.15.1
6)	craype/2.7.20		40)	bufr/12.0.1	74)	py-findlibs/0.0.2
7)	cray-mpich/8.1.25		41)	ecbuild/3.7.2	75)	py-eccodes/1.5.0
8)	libfabric/1.15.2.0		42)	libpng/1.6.37	76)	py-f90nml/1.4.3
9)	cray-pals/1.2.11		43)	openjpeg/2.3.1	77)	py-h5py/3.7.0
10)	stack-cray-mpich/8.1.25		44)	eccodes/2.32.0	78)	py-cftime/1.0.3.4
11)	tar/1.34		45)	eigen/3.4.0	79)	py-netcdf4/1.5.8
12)	gettext/0.21.1		46)	eckit/1.24.5	80)	py-bottleneck/1.3.7
13)	libxcrypt/4.4.35		47)	fftw/3.3.10	81)	py-numexpr/2.8.4
14)	zlib/1.2.13		48)	fckit/0.11.0	82)	py-et-xmlfile/1.0.1
15)	sqlite/3.43.2		49)	fiat/1.2.0	83)	py-openpyx1/3.1.2
16)	util-linux-uuid/2.38.1		50)	ectrans/1.2.0	84)	py-six/1.16.0
17)	python/3.10.13		51)	qhul1/2020.2	85)	py-python-dateutil/2.8.2
18)	stack-python/3.10.13		52)	atlas/0.35.1	86)	py-pytz/2023.3
19)	nghttp2/1.57.0		53)	git-lfs/3.3.0	87)	py-pyxlsb/1.0.10
20)	curl/8.4.0		54)	gsibec/1.1.3	88)	py-xlrd/2.0.1
21)	cmake/3.23.1			gsl-lite/0.37.0	89)	py-xlsxwriter/3.1.7
22)	git/2.41.0		56)	libjpeg/2.1.0	90)	py-xlwt/1.3.0
23)	pkg-config/0.29.2		57)	krb5/1.19.2	91)	py-pandas/1.5.3
24)	hdf5/1.14.0		58)	libtirpc/1.3.3	92)	py-pybind11/2.11.0
25)	snappy/1.1.10		59)	hdf/4.2.15	93)	py-pycodestyle/2.11.0
26)	zstd/1.5.2		60)	jedi-cmake/1.4.0	94)	py-pyhdf/0.10.4
27)	c-blosc/1.21.5		61)	libxt/1.1.5	95)	libyam1/0.2.5
28)	netcdf-c/4.9.2		62)	libxmu/1.1.4	96)	py-pyyaml/6.0
29)	nccmp/1.9.0.1		63)	libxpm/3.5.12	97)	py-scipy/1.11.3
30)	netcdf-fortran/4.6.1		64)	libxaw/1.0.13	98)	py-packaging/23.1
31)	parallel-netcdf/1.12.2		65)	udunits/2.2.28	99)	py-xarray/2023.7.0
32)	parallelio/2.5.10		66)	ncview/2.1.9	100)	sp/2.5.0
33)	py-pip/23.1.2		67)	netcdf-cxx4/4.3.1		jedi-base-env/1.0.0
34)	wget/1.20.3		68)	json/3.10.5	102)	jedi-mpas-env/1.0.0
						50 50

Where

S: Module is Sticky, requires --force to unload or purge

2. cmake step

- mkdir build; cd build
- git Ifs install
- **cmake** ../code # cmake will look for ../code/CMakeLists.txt file, this will take ~15-20min

before doing cmake under ~code

CMakeLists.txt
env-setup
LICENSE
README.md
scripts

after doing cmake under ~code

```
CMakeLists.txt
                oops
                README.md
crtm
env-setup
                saher
ioda
                scripts
                test-data-release
ioda-data
LICENSE
                ufo
MPAS
                ufo-data
mpas-jedi
                vader
mpas-jedi-data
```

after doing cmake under ~build

```
bin
                          1ib64
CMakeCache.txt
                          Makefile
CMakeFiles
                          module
cmake install.cmake
                          MPAS
CPackConfig.cmake
                          mpas-bundle-config.cmake
CPackSourceConfig.cmake
                          mpas-bundle-config-version.cmake
crtm
                          mpas-jedi
CTestTestfile.cmake
                          mpas-jedi-data
DartConfiguration.tcl
                          oops
                          saber
_deps
ecbuild-cache.cmake
                          share
ecbuild.log
                          test_data
ecbuild tmp
                          Testing
etc
                          ufo
ioda
                          ufo-data
ioda-data
                          vader
lib
```

Portions of lines from "vi code/CMakeLists.txt"

ECMWF software packages pre-built into spack-stack, thus not appear under ~code

```
ecbuild_bundle( PROJECT eckit GIT "https://github.com/ecmwf/eckit.git" TAG 1.24.4 ) ecbuild_bundle( PROJECT fckit ecbuild_bundle( PROJECT atlas GIT "https://github.com/ecmwf/fckit.git" TAG 0.34.0 )
```

Model-agnostic components of JEDI

```
ecbuild bundle( PROJECT oops
                                    GIT "https://github.com/JCSDA/oops.git"
                                                                                      TAG d772173 )
ecbuild bundle( PROJECT vader
                                    GIT "https://github.com/JCSDA/vader.git"
                                                                                      TAG 6d56a1e )
ecbuild bundle( PROJECT saber
                                    GIT "https://github.com/JCSDA/saber.git"
                                                                                      TAG bba6f7e )
ecbuild bundle( PROJECT crtm
                                    GIT "https://github.com/JCSDA/CRTMv3.git"
                                                                                      TAG 73102a2 )
ecbuild bundle( PROJECT ioda-data GIT "https://github.com/JCSDA-internal/ioda-data.git"
                                                                                        TAG bcb0754 )
ecbuild bundle( PROJECT ioda
                                 GIT "https://github.com/JCSDA/ioda.git"
                                                                                        TAG d49ed17 )
                                 GIT "https://github.com/JCSDA-internal/ufo-data.git"
ecbuild bundle( PROJECT ufo-data
                                                                                        TAG 9e4eb40 )
ecbuild_bundle( PROJECT ufo
                                 GIT "https://github.com/JCSDA/ufo.git"
                                                                                        TAG 94d50d6 )
```

MPAS-specific components of MPAS-JEDI

```
ecbuild_bundle( PROJECT MPAS GIT "https://github.com/MPAS-Dev/MPAS-Model" TAG v8.2.2 )

option(ENABLE_MPAS_JEDI_DATA "Obtain mpas-jedi test data from mpas-jedi-data repository (vs tarball)" ON)

ecbuild_bundle( PROJECT mpas-jedi-data GIT "https://github.com/JCSDA-internal/mpas-jedi-data.git" TAG 12cdc56 )

ecbuild bundle( PROJECT mpas-jedi GIT "https://github.com/JCSDA/mpas-jedi" TAG 3.0.2.mmm )
```


3. make step under an interactive job

- qsub -A ummm0012 -N build-bundle -q main
 -l job_priority=premium -l walltime=03:00:00
 -l select=1:ncpus=128:mem=235GB -I
- source ../code/env-setup/gnu-derecho.sh
- make -j20

MPAS and MPAS-JEDI related executables under ~build/bin

```
mpas atmosphere
mpas_atmosphere_build_tables
mpas_init_atmosphere
mpasjedi_convertstate.x
mpasjedi_converttostructuredgrid.x
mpasjedi eda.x
mpasjedi_enkf.x
mpasjedi_enshofx.x
mpasjedi_ens_mean_variance.x
mpasjedi_error_covariance_toolbox.x
mpasjedi_forecast.x
mpasjedi_gen_ens_pert_B.x
mpasjedi hofx3d.x
mpasjedi_hofx.x
mpasjedi_process_perts.x
mpasjedi_rtpp.x
mpasjedi_saca.x
mpasjedi_variational.x
mpas_namelist_gen
mpas_parse_atmosphere
mpas parse init atmosphere
mpas_streams_gen
```


4. ctest step, also under an interactive job

export LD_LIBRARY_PATH=/glade/derecho/scratch/\${USER}/mpas_jedi_tutorial/mpas_bundle_v3/build/lib:\$LD_LIBRARY_PATH cd mpas-jedi

```
ctest
```

• • • • • •

```
Start 58: test_mpasjedi_3dvar_2pe
58/59 Test #58: test_mpasjedi_3dvar_2pe .................
                                                             Passed
                                                                     4.28 sec
     Start 59: test_mpasjedi_3dhybrid_bumpcov_bumploc_2pe
59/59 Test #59: test_mpasjedi_3dhybrid_bumpcov_bumploc_2pe .....
                                                             Passed
                                                                      3.69 sec
100% tests passed, 0 tests failed out of 59
Label Time Summary:
executable = 33.28 sec*proc (13 tests)
mpasjedi = 319.85 sec*proc (59 tests)
mpi = 314.23 sec*proc (58 tests)
script
             = 286.58 sec*proc (46 tests)
Total Test time (real) = 319.94 sec
```

What a ctest case "Passed" means?

Each test run will produce text log files (Under ~/build/mpas-jedi/test/testoutput)

```
4denvar_bumploc.ref
4denvar_bumploc.run
4denvar_bumploc.run.ref
4denvar_ID.ref → existing reference file
4denvar_ID.run → full text log file for the present test
4denvar_ID.run.ref → shortened reference file
convertstate_bumpi (part of the 4denvar_ID.run)
convertstate_bumpinterp.run
convertstate_bumpinterp.run.ref
convertstate_unsinterp.ref
```

- → 4denvar_ID.run.ref is compared with the existing 4denvar_ID.ref.
- → The test is deemed as "Passed" if numerical values between the two files are identical or within a tolerance.

Yaml configuration files under ~mpas-jedi/test/testinput

useful for learning how to run various mpas-jedi applications

3denvar_2stream_bumploc.yaml 3denvar_amsua_allsky.yaml 3denvar amsua bc.vaml 3denvar bumploc.yaml 3denvar dual resolution.yaml 3dfgat pseudo.yaml 3dfgat.yaml 3dhybrid bumpcov bumploc.yaml 3dvar_bumpcov_nbam.yaml 3dvar bumpcov ropp.vaml 3dvar_bumpcov_rttovcpp.yaml 3dvar_bumpcov.yaml 3dvar.yaml 4denvar bumploc.yaml 4denvar ID. yaml 4denvar VarBC nonpar.yaml 4denvar VarBC.vaml 4dfgat_append_obs.yaml 4dfgat.vaml 4dhybrid bumpcov bumploc.yaml convertstate.yaml converttostructuredgrid latlon.yaml dirac bumpcov.yaml

dirac bumploc.vaml dirac noloc.vaml dirac_spectral_1.yaml dirac_spectral_no_wind.yaml eda 3dhybrid 1.yaml eda 3dhybrid 2.yaml eda 3dhybrid 3.yaml eda 3dhybrid 4.vaml eda_3dhybrid.yaml enshofx_1.yaml enshofx_2.yaml enshofx_3.yaml enshofx_4.yaml enshofx 5.yaml enshofx.yaml ens_mean_variance.yaml errorcovariance.vaml forecast.yaml gen_ens_pert_B.yaml geometry_iterator_2d.yaml geometry iterator 3d.yaml geometry.yaml detvalues.yaml

hofx3d nbam.vaml hofx3d ropp.vaml hofx3d_rttovcpp.yaml hofx3d.yaml hofx4d_pseudo.yaml hofx4d.yaml increment.yaml letkf 3dloc.vaml lgetkf_height_vloc.yaml ldetkf.vaml linvarcha.yaml model.yaml obslocalizations.yaml obslocalization vertical.yaml obslocalization.yaml obsop name map.vaml parameters_bumpcov.yaml parameters_bumploc.yaml process_perts_spectral_no_wind.yaml rtpp.yaml state.yaml unsinterp.yaml

Further reading about ctest

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/testing/index.html

- JEDI Testing
 - Running ctest
 - Manual Execution
 - The JEDI test suite
 - Tests as Applications
 - Initialization and Execution of Unit Tests
 - Anatomy of a Unit Test
 - Integration and System (Application) Testing
 - JEDI Testing Framework
- Adding a New Test
 - Step 1: Create a File for your Test Application
 - Step 2: Define A Test Fixture
 - Step 3: Define Your Unit Tests
 - Step 4: Register your Unit Tests with eckit
 - Step 6: Create an Executable
 - Step 7: Create a Configuration File
 - Step 8: Register all files with CMake and CTest
 - Adding an Application Test

Single vs. Double precision build of mpas-bundle

- For other practical sessions, you will use pre-compiled executables of mpas-bundle with the single-precision mode
 - /glade/derecho/scratch/liuz/mpas_bundle_v3.0.2_public_gnuSP

Just need a one-line change in building MPAS model

Note: ctest reference files are produced with the double-prevision build, thus some of ctest cases with single-precision build will fail due to difference larger than tolerance