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1. 3DVar and static B
2. B designed and how it operates
3. B training and tuning
4. Yaml configuration for 3DVar
5. Yaml configuration for Hybrid-3DEnVar

Overview
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• 3DVar uses 𝐁 = 𝐁𝐬.
• 𝐁𝐬 has a climatological characteristics.
• 3DVar is computationally efficient.
• 3DVar is simple in terms of workflow.
• The hybrid B can be benefit from 𝐁𝐬.

𝐉 x = !
" x − x#

$𝐁%𝟏 x − x# + !
" h(x) − y

$𝐑%𝟏 h(x) − y

3DVar and Static Background Error Covariance
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B designed and how it operates (1/6)

• Role of 𝐁 
– weights the importance of 𝐱𝐛 for a given y and 𝐑.
– spreads the observed information in the vertical and horizontal direction.
– spreads the observed information to other variables and imposes the 

balance properties.
• It is difficult to know 𝐁 exactly.

– We don’t know the ”true” state, 𝐱𝐭	.
– The dimension of B is too large.

• Thus, 𝐁 is modeled in a practical way.
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𝐁 =< 𝐱𝐛 − 𝐱𝐭	, 𝐱𝐛 − 𝐱𝐭 >

See Bannister (2008a,b) for more detailed review on B.
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• MPAS-JEDI’s 𝐁𝐬 is designed following that of the GSI* (Wu et al., 2002), except 
the univariate spatial correlation.

• It is constructed as a series of linear variable changes (K1 , K2 and their adjoint; T ) 
around the univariate covariance (ΣCΣT).

• Note that…
– B operates to the MPAS-JEDI’s analysis variable (𝛿𝐱), a set of {𝛿𝑢, 𝛿𝑣, 𝛿𝑇, 𝛿𝑄, 𝛿𝑝!} @ cell center.
– ΣCΣT is represented with {𝛿𝜓, 𝛿𝜒", 𝛿𝑇", 𝛿𝑄, 𝛿𝑝!,"}.

B=K1K2ΣCΣTK2
TK1

T

B designed and how it operates (2/6)
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*Gridpoint Statistical Interpolation
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B=K1K2ΣCΣTK2
TK1

T (3/6)
• K1 is a linear variable change 

   from stream function (𝛿𝜓) and velocity potential (𝛿𝜒	)
   to zonal (𝛿𝑢) and meridional (𝛿𝑣) winds

• K1 directly operates on the native MPAS mesh ( code ).
• K1

T is a corresponding adjoint operator ( code ).
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https://github.com/JCSDA/mpas-jedi/blob/release/3.0.1/src/mpasjedi/LinearVariableChange/Control2Analysis/mpasjedi_linvarcha_c2a_mod.F90
https://github.com/JCSDA/mpas-jedi/blob/release/3.0.1/src/mpasjedi/LinearVariableChange/Control2Analysis/mpasjedi_linvarcha_c2a_mod.F90
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B=K1K2ΣCΣTK2
TK1

T (4/6)
• K2 applies the vertical cross-variable correlation via linear regression

: throuth BUMP Vertical BALance (VBAL) operator

 

– 𝛿𝜓 is a predictor for the balanced part of 𝛿𝜒 , 𝛿𝑇 , and 𝛿𝑝$.
– Full matrix for M & N, diagonal matrix for L

• K2
T is a corresponding adjoint operator.
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• 𝛿𝜒	 = 𝛿𝜒) 	 + 𝛿𝜒' 	 = 𝑳𝛿𝜓	 + 𝛿𝜒'
• 𝛿𝑇	 = 𝛿𝑇) 	 + 𝛿𝑇' 	 = 𝑴𝛿𝜓 + 𝛿𝑇'
• 𝛿𝑝$ 	= 𝛿𝑝$,) + 𝛿𝑝$,' = 𝑵𝛿𝜓	 + 𝛿𝜒'
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Following Derber and Bouttier (1999)
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B=K1K2ΣCΣTK2
TK1

T (5/6)
• ΣCΣT represents the univariate covariance for {𝛿𝜓, 𝛿𝜒', 𝛿𝑇', 𝛿𝑄, 𝛿𝑝$,'}. These 

variables do not have a cross variable covariance anymore.

• Σ (and ΣT) is a diagonal matrix with error standard deviation 
: through either BUMP VARiance (VAR) operator or SABER StdDev operator

• C is a block diagonal matrix. Each blocks represents the spatial correlation for 
each variables for {𝛿𝜓, 𝛿𝜒', 𝛿𝑇', 𝛿𝑄, 𝛿𝑝$,'}. 
– through BUMP Normalized Interpolated Convolution on an Adaptive 

Subgrid (NICAS; Ménétrier, 2020) operator
– BUMP NICAS directly operates on the MPAS’s unstructured mesh.
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B=K1K2ΣCΣTK2
TK1

T (6/6)
• Even with a single variable, the dimension for spatial correlation is still large.
• BUMP NICAS applies the spatial correlation with a subset of full grid (𝐂𝐬), rather 

than with a full grid (𝐂). The correlation on the subgrid is interpolated (𝐒) to the 
full grid with a normalization factorn (𝐍). 

• The correlation function follows
the shape of Gaspari-Cohn (1999)’s
5th order functions, for the given lengths. 
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𝐂 ≅ $𝐂 = 𝐍𝐒𝐂𝐬𝐒𝐓𝐍𝐓 𝐍 : diagonal matrix for normalization
     (to ensure the diagonal component of C equals “1”)
𝐒 = 𝐒𝐯𝐒𝐡 : Interpolation from sub-sampled to full mesh

ℝ0×0 ℝ0!×0! with 𝑛! ≪ 𝑛 
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B=K1K2ΣCΣTK2
TK1

T

• In previous slides, we learned how B is designed and each operator works.
• Some of the operators requires the known parameters.

• K2 needs the regression coefficients (i.e., L, M, and N).
• The error standard deviation constructs Σ.
• The horizontal and vertical correlation lengths are required for C.

•  How can we estimate (or train or calibrate) these parameters ?
– From some samples : proxy for background error
– Need to apply the inverse of each operator

10

( Like GEN_BE in WRFDA or GSI )
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• We can estimate the required static B parameters from samples of forecast 
differences with two different lead times, which is called “NMC method”.

• In the hands-on practice, we will take the 48 hour- and 24 hour- forecast 
differences as a proxy of background error. 

• Alternatively, we can use the ensemble forecast as a proxy of background 
error, which is called “ensemble method”.

• After a proxy of background error (some form of perturbations) is determined, 
we can process the following procedures to estimate the static B parameters.

B training and tuning (1/6)
11

More in the hands-on practice
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• K1 does not have parameters. It is basically some spatial derivative operator. 
However, we still need to apply its inverse to the training samples to estimate the 
other static B parameters.

• K1
-1 ( converting 𝑢 and 𝑣 to 𝜓 and 𝜒) is not trivial on the unstructured grid.

• So we…
1) Interpolate {𝑢, 𝑣} on the unstructured grid to regular lat/lon grid,
2) Calculate {𝜓, 𝜒} on the regular lat/lon grid through “uv2sfvpf” function of NCL, 
3) Interpolate {𝜓, 𝜒} on the regular lat/lon to the MPAS unstructured grid.

• For convenience, ”temperature” and “specific humidity” are also pre-calculated.
• So the perturbation fields {𝜹𝝍,𝜹𝝌, 𝜹𝑻,𝜹𝑸, 𝜹𝒑𝒔} can be obtained by subtracting 

the 24 hour forecast from 48 hour forecast at the same valid time.

B training and tuning (2/6)
12

More in the hands-on practice
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• The parameters in K2 can be estimated with BUMP Vertical BALance (VBAL) 
driver.

• The regression coefficients (𝑳, 𝑴, and 𝑵) can be obtained by multiplying inverse 
of auto-covariance matrix < 𝜹𝝍, 𝜹𝝍 > to the cross-covariance matrices <
𝛿𝜓, 𝛿𝜒 > , < 𝛿𝜓, 𝛿𝑇 >, and < 𝛿𝜓, 𝛿𝑝$ >.

• Usually, the auto- and cross-covariance matrices are averaged over some 
latitude bands.

• Due to the large condition number of auto-covariance matrix, a pseudo-inverse 
is used with an Eigenvalue Decomposition.

• This step will also apply K2
-1 to the training samples and write out the 

unbalanced samples {𝜹𝝍, 𝜹𝝌𝒖, 𝜹𝑻𝒖, 𝜹𝑸, 𝜹𝒑𝒔,𝒖}, which are used for the next 
step.

B training and tuning (3/6)
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• Σ is estimated from unbalanced samples with BUMP VARiance (VAR) driver.

• The horizontal-, vertical- correlation lengths for the unbalanced variables are 
estimated from samples with BUMP Hybrid Diagnostics (HDIAG) driver.
– It defines the low-resolution grid for computation and the diagnostic point is randomly 

selected for different horizontal separation distances.
– For different horizontal separation distances, the raw sample correlations are calculated.
– The vertical correlation is also calculated at each computation grid, between each level 

and the neighboring levels.
– These raw sample correlations are averaged over all computation grid or locally.
– Finally, HDIAG fits the Gaspari-Cohn’s function for each averaged correlation curves.

B training and tuning (4/6)
14
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• Additional tunings are applied.
• Reducing the error STD for all variables by a 

factor of 1/3
– To scale the 24 hour difference in the NMC-

type perturbations as 6 hour (typical DA 
cycle)

• Reducing the diagnosed horizontal lengths 
for 𝛿𝜓	and 𝛿𝜒' by a factor of ½
– To match the wind variance near the small 

separations better
– The implied wind variance is proportional to 

the second derivatives of 𝛿𝜓	and 𝛿𝜒! .

B training and tuning (5/6)

Sample correlation structure
Fitted structure to Gaspari-Cohn’s 5th order function
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• For a given horizontal and vertical correlation lengths, NICAS driver will pre-
generate the correlation values on the subgrid, the interpolation weights and 
indices between subgrid and full grid, and the normalization factors.

• The subgrid will be determined by a given horizontal and vertical correlation 
lengths and some yaml keys.

B training and tuning (6/6)
16

   nicas:
    resolution: 8
    max horizontal grid size: 15000  #default 

number of grid point to represent a single correlation function 

number of maximum horizontal grid to define the “subgrid”
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Regression coefficients 𝑴 (part of K2)
at 34.8° N latitude

Ratio of balanced variance
 to total variance
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Error standard dev. Σ Horizontal corr. lengths Vertical corr. lengths

18
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Single T obs test

19

𝜹𝒖 𝜹𝒗 𝜹𝑻

Model level = 15

Model level = 10

Model level = 20

𝜹𝒑𝒔

obs location
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B=ΣCΣT

20

Previous slides describe ‘multivariate’ B.
MPAS-JEDI can easily do ‘univariate’ B, in that case:

i.e., no cross-variable correlation between analysis variables of {𝛿𝑢, 𝛿𝑣, 𝛿𝑇, 𝛿𝑄, 𝛿𝑝$}

This should work both for global and regional MPAS meshes. 
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Yaml configuration for 3DVar (1/6)
cost function:
 cost type: 3D-Var
 window begin: 2018-04-14T21:00:00Z
 window length: PT6H

 analysis variables: &incvars 
[spechum,surface_pressure,temperature,uReconstructMeridional,uReconstructZonal]

 background:
  state variables: 
[spechum,surface_pressure,temperature,uReconstructMeridional,uReconstructZonal,theta,rh
o,u,qv,pressure,landmask,xice,snowc,skintemp,ivgtyp,isltyp,snowh,vegfra,u10,v10,lai,smo
is,tslb,pressure_p]
  filename: ./bg.2018-04-15_00.00.00.nc
  date: &analysisDate 2018-04-15T00:00:00Z

21

{ 3D-Var, 4D-Ens-Var, 3D-FGAT }

With a focus on “cost function.background error” section

Analysis time is at the center of assimilation window.

Background state is read from this file.

The variables that are used for the minimization algorithm.

Background state usually includes more that just “analysis variables”
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cost function:
 ...
 background error:
  covariance model: SABER
  saber central block:
   saber block name: BUMP_NICAS
   ... more config ...
  saber outer blocks:
  - saber block name: StdDev
   ... more config ...
  - saber block name: BUMP_VerticalBalance
   ... more config ...
  linear variable change:
   linear variable change name: Control2Analysis
   ... more config ...

Yaml configuration for 3DVar (2/6)

C

Σ
K2

K1

22

B=K1K2ΣCΣTK2
TK1

T

In order of forward (TL) operations



MPAS-A and MPAS-JEDI Tutorial, University of St Andrews, UK, June 23-27, 2025

Yaml configuration for 3DVar (3/6)
 background error:
  covariance model: SABER
  saber central block:
   saber block name: BUMP_NICAS
   active variables: &ctlvars 
[stream_function,velocity_potential,temperature,spechum,surface_pressure]
   read:
    io:
     data directory: ./BUMP_files/bump_nicas
     files prefix: bumpcov_nicas
    drivers:
     multivariate strategy: univariate
     read local nicas: true

23

B=K1K2ΣCΣTK2
TK1

T

Note that there is NO distinction with “total” and “unbalanced” variable names in the YAMLs or files.

Read the pre-generated NICAS files. Here, ”local” nicas means one NICAS 
file per one processor. C.f. “read global nicas: true” reads single NICAS file, 
which contains the information over all domain.

“univariate” strategy is used for covariance
C.f. “duplicated” or “crossed” strategy is 
used when NICAS is used for localization
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Yaml configuration for 3DVar (4/6)
 background error:
  covariance model: SABER
  saber central block:
   saber block name: BUMP_NICAS
   ... more config ...
  saber outer blocks:
  - saber block name: StdDev
   read:
    model file:
     filename: ./BUMP_files/stddev/mpas.stddev_0p33.2018-04-15_00.00.00.nc
     date: *analysisDate
     stream name: control

24

B=K1K2ΣCΣTK2
TK1

T

Read the standard deviation values from MPAS file format.
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Yaml configuration for 3DVar (5/6)
  - saber block name: BUMP_VerticalBalance
   read:
    io:
     data directory: ./BUMP_files/bump_vertical_balance
     files prefix: bumpcov_vbal
    drivers:
     read local sampling: true
     read vertical balance: true
    vertical balance:
     vbal:
     - balanced variable: velocity_potential
      unbalanced variable: stream_function
      diagonal regression: true
     - balanced variable: temperature
      unbalanced variable: stream_function
     - balanced variable: surface_pressure
      unbalanced variable: stream_function

25

B=K1K2ΣCΣTK2
TK1

T

Read the pre-generated “local” VBAL & sampling files.

These describe the designed 
balance (regression) relationship.
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Yaml configuration for 3DVar (6/6)
 background error:
  covariance model: SABER
  saber central block:
   saber block name: BUMP_NICAS
   ... more config ...
  saber outer blocks:
  - saber block name: StdDev
   ... more config ...
  - saber block name: BUMP_VerticalBalance
   ... more config ...
  linear variable change:
   linear variable change name: Control2Analysis
   input variables: *ctlvars
   output variables: *incvars

26

B=K1K2ΣCΣTK2
TK1

T
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• 3DEnVar uses 
cost function: 
 background error:
  covariance model: ensemble
    ... more config ...

Yaml configuration for Hybrid-3DEnVar (1/2)
• 3DVar uses 

cost function:
  background error:
  covariance model: SABER
    ... more config ...

• We can configure the hybrid covariance as a linear combination of other Bs !

Bhybrid = 𝛼Bstatic + 𝛽Bensemble

27

(Hamill and Snyder, 2000)
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Yaml configuration for Hybrid-3DEnVar (2/2)
28

• We can configure the hybrid covariance as a linear combination of other Bs !
 background error:
  covariance model: hybrid

    components:
  - weight:
    value: 0.5
   covariance:
    covariance model: SABER

        ... more config ...
  - weight:
    value: 0.5
   covariance:
    covariance model: ensemble

        ... more config ...

Bhybrid = 𝛼Bstatic + 𝛽Bensemble

The weights can be a simple scalar value or
they can be read from a file, which varies spatially.
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