Observations (3): Satellite Radiance Data Assimilation

Presented by Ivette Hernández Baños
Based on materials prepared by Zhiquan (Jake) Liu

Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

Outline

- 1. Background
- 2. Principles of satellite measurements
- 3. Radiative Transfer Model
- 4. Radiance DA setting with MPAS-JEDI
- 5. Variational Bias Correction
- 6. All-sky radiance DA

Environmental monitoring satellites

Polar-orbiting satellites vs. Geostationary satellites

ECMWF data coverage for 06 UTC 05/Jul/2015 (All obs DA)

GRAD

Total obs: 483826

AMSU-A

Total obs: 777314

GPSRO

Total obs: 15867

Global forecast improvement over time at ECMWF 2012 (Kirtman et al. 2013)

Global forecast improvement over time at ECMWF 2025 (ECMWF 2025)

Relative impact of observing systems on 24h forecasts (2020-2024)

Increase in satellite sensors monitored at ECMWF 1996-2024

Types of sensors

Passive

Active

GNSS radio occultation

Scan strategies and viewing geometry affect coverage and field-of-view (FOV) resolution:

cross-track scan

 Resolution degrades toward the edge of the swath because the viewing angle changes across the swath

conical scan

- Constant ground resolution
- Generally narrower swaths than cross-track scan swaths

Figure 2. GPM swath measurements

What do satellite instruments measure?

⇒ Different sensors measure radiation at different wavelengths or frequencies (e.g., MW, IR, VIS)

What do satellite instruments measure?

□ Satellite passive sensors observe radiation emitted and scattered from Earth's surface and atmosphere at discrete wavelength intervals

What is radiance?

- Radiance (L) is the amount of energy per unit area per unit time per unit solid angle emitted at a wavelength λ (or frequency v)
 - Recall, c = λv, where c is the speed of light.
- Physically, we can think of radiance as the "brightness" of an object
- □ Radiance is related to geophysical atmospheric variables by the radiative transfer equation
- □ Radiances are often converted to brightness temperature (equivalent blackbody temperature, by inverting Plank function)

Atmospheric Transmittance

- Consider radiation at wavelength λ with radiance $L_{\lambda 0}$ incident upon an <u>absorbing</u> medium of thickness ds
 - Use an absorption coefficient (β_a ; units m⁻¹) to quantify degree of absorption
- Ignore emission from the medium and scattering
- What is the radiance on the other side of the surface?

Atmospheric Transmittance

Beer's Law gives the amount of radiation emerging from the material:

$$L_{\lambda f} = L_{\lambda 0} \exp \left[-\int_{s_1}^{s_2} \beta_a(s) ds \right]$$

 The ratio of the amount of radiation that emerges from the cube to the amount that entered is the <u>transmittance</u>:

$$\tau_{\lambda} = \frac{L_{\lambda f}}{L_{\lambda 0}} = \exp\left[-\int_{s_{1}}^{s_{2}} \beta_{a}(s) ds\right]$$

Atmospheric Transmittance

- Transmittance in the real atmosphere varies in space (<u>especially in the vertical</u>) and time
- Letting a_{λ} denote the <u>absorption</u> of the medium at wavelength λ , then in the absence of scattering:

$$a_{\lambda} + \tau_{\lambda} = 1$$

Radiative Transfer Model

$$L(\nu) = \int_0^\infty B(\nu,T(z)) \left[\frac{d\tau(\nu)}{dz}\right] dz + \text{Surface} + \text{Cloud/Rain Aerosol}$$
 TOA radiance at frequency v Planck function Atmospheric Absorption Emission/reflection Diffusion/scattering (weighting function)

Surface emission R_s

Upwelling atmosphere emission R_A

Reflected solar radiation R_O

Down-welling & reflected atmos.

Emission (R_D)

Radiative Transfer Model

Weighting functions

- ☐ Weighting functions indicate the contribution to the outgoing radiance from various layers of the atmosphere
- Weighting functions are frequency (channel) dependent

Channel selection for NWP data assimilation

- Atmospheric sounding channels (measured radiance has no contribution from the surface)
- Window channels are sensitive to properties associated with land and ocean surfaces as well as clouds

Radiance DA setting with MPAS-JEDI

YAML setting for radiative transfer model

```
clear crtm: &clearCRTMObsOperator
name: CRTM
SurfaceWindGeoVars: uv
Absorbers: [H2O, O3]
linear obs operator:
Absorbers: [H2O]
obs options: &CRTMObsOptions
EndianType: little_endian
CoefficientPath: ./crtm_coeffs_v2/
IRVISlandCoeff: USGS
```

```
- obs space:
   <<: *ObsSpace
    name: amsua_n18
    obsdatain:
      engine:
        type: H5File
        obsfile: ./amsua n18 obs 2018041500.h5
    obsdataout:
      engine:
        type: H5File
        obsfile: ./obsout_da_amsua_n18.h5
    simulated variables: [brightnessTemperature]
    channels: &amsua_n18_channels 1-15
  obs error: *ObsErrorDiagonal
 obs operator:
    <<: *clearCRTMObsOperator
    obs options:
      <<: *CRTMObsOptions
      Sensor_ID: amsua_n18
  get values:
```

Radiance DA setting with MPAS-JEDI

YAML settings for channel selection and quality control

```
obs filters:
  - filter: PreQC
    maxvalue: 0
# Useflag check #amsua-n18
  - filter: Bounds Check
    filter variables:
    - name: brightnessTemperature
      channels: *amsua_n18_channels
    test variables:
    - name: ObsFunction/ChannelUseflagCheckRad
      channels: *amsua n18 channels
      options:
        channels: *amsua n18 channels
        use_flag: [-1, -1, -1, -1, 1,
                    1, 1, 1, 1, -1,
                   -1, -1, -1, -1, -1 ]
    minvalue: 1.0e-12
    action:
      name: reject
  - filter: Background Check
    threshold: 3.0
    <<: *multiIterationFilter
```

Much more you can set for quality control, but not able to cover too much this time

Modeling errors for satellite radiances

Modeling errors for satellite radiances

JEDI's bias correction coefficient file

```
satbias_amsua_n18.h5
satbias_cov_mhs_n18.h5
```

```
netcdf satbias_amsua_n18 {
dimensions:
        nchannels = 15;
        npredictors = 12 ;
variables:
        float bias_coeff_errors(npredictors, nchannels) ;
        float bias_coefficients(npredictors, nchannels);
        int channels(nchannels);
        int nchannels(nchannels) ;
                nchannels:suggested_chunk_dim = 15LL ;
        int npredictors(npredictors);
                npredictors:suggested_chunk_dim = 12LL ;
        float number_obs_assimilated(nchannels);
        string predictors(npredictors);
// global attributes:
                string :_ioda_layout = "ObsGroup" ;
                :_ioda_layout_version = 0 ;
```

Variable names in file may be changed with the latest JEDI code.

```
predictors = "constant", "zenith_angle", "cloud_liquid_water",
    "lapse_rate_order_2", "lapse_rate",
    "cosine_of_latitude_times_orbit_node", "sine_of_latitude", "emissivity",
    "scan_angle_order_4", "scan_angle_order_3", "scan_angle_order_2",
    "scan_angle";
```

YAML setting for VarBC

```
obs bias:
   input file: {{biasCorrectionDir}}/satbias_amsua_n18.h5
   output file: {{OutDBDir}}{{MemberDir}}/satbias_amsua_n18.h5
    variational bc:
     predictors: &predictors3
     - name: constant
     - name: lapse rate
       order: 2
       tlapse: &amsua18tlap {{fixedTlapmeanCov}}/amsua_n18_tlapmean.txt
     - name: lapse_rate
        tlapse: *amsua18tlap
     - name: emissivity
     - name: scan angle
        order: 4
     - name: scan angle
        order: 3
     - name: scan_angle
        order: 2
    covariance:
      minimal required obs number: 20
      variance range: [1.0e-6, 10.]
      step size: 1.0e-4
      largest analysis variance: 10000.0
      prior:
        input file: {{biasCorrectionDir}}/satbias cov amsua n18.h5
        inflation:
          ratio: 1.1
          ratio for small dataset: 2.0
      output file: {{OutDBDir}}}{{MemberDir}}/satbias_cov_amsua_n18.h5
```

$$B(\beta) = \sum_{i=1}^{N} \beta_i p_i$$

```
J_{b}: background term for x
J_{0}: corrected observation term
J(x, \beta) = (x_{b} - x)^{T} B_{x}^{-1}(x_{b} - x) + [y - H(x) - B(\beta)]^{T} R^{-1} [y - H(x) - B(\beta)]
+ (\beta_{b} - \beta)^{T} B_{\beta}^{-1}(\beta_{b} - \beta)
J_{p}: background term for β
```

Situation-dependent all-sky obs error model

All-sky obs error model for AMSU-A channel 15:

 Observation error is a function of cloud liquid water path retrieved from channel 1 and 2's brightness temperature

Gilbert Skill Score of 1-10-day rainfall FC w.r.t. CMORPH obs

Liu et al., 2022

Added value of all-sky AMSU-A

Day-1 forecast

Error STD reduction

Improvement concentrated in cloudy regions of Tropics Up to 12-14%

Observations vs. Day-3 forecast

ABI channel 13 BTs (degree C) valid at 00 UTC 9 May 2018

Observations

3DEnVar exps @ global 15km-3km variable-resolution mesh (centered over US) with the 80member 15km ensemble input

FSSs for 1-h accumulated rainfall aggregated over 31 forecasts

Concluding Remarks

- □ Radiance DA is complex
 - Cloudy radiative transfer, QC, bias correction, all-sky obs error model
 - Different complexity for assimilating different sensors' data
- ☐ Much more to explore for satellite DA in general
 - Visible band, near IR, active sensors, small satellites, ...
- □ JEDI framework allows much greater flexibility to configure/tune without code change, ease science discovery
 - e.g., you can combine the use of CRTM and RTTOV in the same run!