
MPAS Mesh Specification

Version 1.0

October 8, 2015

Contents

1 Summary 2

2 Grid Description 3

3 Definitions and Conventions 7

4 Required Variables, Attributes, and Dimensions 9

5 Connectivity and Ordering Requirements 14
5.1 Missing Values . 14
5.2 Requirements relative to edges . 15
5.3 Requirements relative to vertices . 15
5.4 Requirements relative to cells . 17
5.5 Description of boundaries . 17

6 Validation of meshes 18

1

Chapter 1

Summary

This document will describe the required fields for a MPAS mesh. In addition, it will define required
orderings when creating an MPAS mesh. These together should fully describe the MPAS mesh type
and allow users to more easily understand what makes an MPAS mesh.

2

Chapter 2

Grid Description

This chapter provides a brief introduction to the common types of grids used in the MPAS frame-
work.

The MPAS grid system requires the definition of seven elements. These seven elements are
composed of two types of cells, two types of lines, and three types of points. These elements are
depicted in Figure 2.1 and defined in Table 2.1. These elements can be defined on either the plane
or the surface of the sphere. The two types of cells form two meshes, a primal mesh composed of
Voronoi regions and a dual mesh composed of Delaunay triangles. Each corner of a primal mesh
cell is uniquely associated with the “center” of a dual mesh cell and vice versa. So we define the
two mesh as either a primal mesh (composed of cells Pi) or a dual mesh (composed of cells Dv).
The center of any primal mesh cell, Pi, is denoted by xi and the center of any the dual mesh cell,
Dv, is denoted by xv. The boundary of a given primal mesh cell Pi is composed of the set of lines
that connect the xv locations of associated dual mesh cells Dv. Similarly, the boundary of a given
dual mesh cell Dv is composed of the set of lines that connect the xi locations of the associated
primal mesh cells Pi.

As shown in Figure 2.1, a line segment that connects two primal mesh cell centers is uniquely
associated with a line segment that connects two dual mesh cell centers. We assume that these
two line segments cross and the point of intersection is labeled as xe. In addition, we assume that
these two line segments are orthogonal as indicated in Figure 2.1. Each xe is associated with two
distances: de measures the distance between the primal mesh cells sharing xe and le measures the
distance between the dual mesh cells sharing xe.

Since the two line segments crossing at xe are orthogonal, these line segments form a convenient
local coordinate system for each edge. At each xe location a unit vector ne is defined to be parallel
to the line connecting primal mesh cells. A second unit vector te is defined such that te = k× ne.

In addition to these seven element types, we require the definition of sets of elements. In all,
eight different types of sets are required and these are defined and explained in Table 2.2 and Figure
2.2. The notation is always of the form of, for example, i ∈ CE(e), where the LHS indicates the
type of element to be gathered (cells) based on the RHS relation to another type of element (edges).

Table 2.3 provides the names of all elements and all sets of elements as used in the MPAS
framework. Elements appear twice in the table when described in the grid file in more than one
way, e.g. points are described with both cartesian and latitude/longitude coordinates. An “ncdump
-h” of any MPAS grid, output or restart file will contain all variable names shown in second column
of Table 2.3.

3

Table 2.1: Definition of elements used to build the MPAS grid.

Element Type Definition

xi point location of center of primal-mesh cells
xv point location of center of dual-mesh cells
xe point location of edge points where velocity is defined
de line segment distance between neighboring xi locations
le line segment distance between neighboring xv locations
Pi cell a cell on the primal-mesh
Dv cell a cell on the dual-mesh

Table 2.2: Definition of element groups used to reference connections in the MPAS grid. Examples
are provided in Figure 2.2.

Syntax ouptut

e ∈ EC(i) set of edges that define the boundary of Pi.
e ∈ EV (v) set of edges that define the boundary of Dv.
i ∈ CE(e) two primal-mesh cells that share edge e.
i ∈ CV (v) set of primal-mesh cells that form the vertices of dual mesh cell Dv.
v ∈ V E(e) the two dual-mesh cells that share edge e.
v ∈ V I(i) the set of dual-mesh cells that form the vertices of primal-mesh cell Pi.
e ∈ ECP (e) edges of cell pair meeting at edge e.
e ∈ EV C(v, i) edge pair associated with vertex v and mesh cell i.

Table 2.3: Variable names used to describe a MPAS grid.

Element Name Size Comment

xi {x,y,z}Cell nCells cartesian location of xi
xi {lon,lat}Cell nCells longitude and latitude of xi
xv {x,y,z}Vertex nVertices cartesian location of xv
xv {lon,lat}Vertex nVertices longitude and latitude of xv
xe {x,y,z}Edge nEdges cartesian location of xe
xe {lon,lat}Edge nEdges longitude and latitude of xe
de dcEdge nEdges distance between xi locations
le dvEdge nEdges distance between xv locations

e ∈ EC(i) edgesOnCell (nEdgesMax,nCells) edges that define Pi.
e ∈ EV (v) edgesOnVertex (3,nCells) edges that define Dv.
i ∈ CE(e) cellsOnEdge (2,nEdges) primal-mesh cells that share edge e.
i ∈ CV (v) cellsOnVertex (3,nVertices) primal-mesh cells that define Dv.
v ∈ V E(e) verticesOnEdge (2,nEdges) dual-mesh cells that share edge e.
v ∈ V I(i) verticesOnCell (nEdgesMax,nCells) vertices that define Pi.

4

xi

xv

xe

location of edge points

centers of dual-mesh cells

centers of primal-mesh cells

dual-mesh cell,Dv

primal-mesh cell, Pi

line segments
are orthogonal.

de

le

Figure 2.1: Definition of elements used to build the MPAS grid. Also see Table 2.1.

5

P1

e1

e2

e3

e4

e5

e6

P3D2 D1

D3

D4 D5

D6

P2
D7

D8D9

D 10

e7

e8

e9

e10

e11

e ∈ EV (D1) = [e1, e6, e7]

e ∈ EC(P1) = [e1, e2, e3, e4, e5, e6]

i ∈ CE(e1) = [P1, P2]

i ∈ CV (D1) = [P1, P2, P3]

v ∈ V E(e1) = [D1, D2]

e ∈ ECP (e1) = [e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11]

e ∈ ECV (P1, D1) = [e1, e6]

v ∈ V C(P1) = [D1, D2, D3, D4, D4, D5, D6]

Figure 2.2: Definition of element groups used to reference connections in the MPAS grid. Also see
Table 2.2.

6

Chapter 3

Definitions and Conventions

The meshes used by MPAS are Voronoi tessellations (VTs), in which MPAS identifies three types of
elements: cells, edges, and vertices. Cells are simply the Voronoi cells in the tessellation, edges are
the boundaries between adjacent Voronoi cells, and vertices are the corners of cells. In MPAS, cells
are nominally located at the Voronoi generating points, which, for centroidal Voronoi tessellations,
are the mass centoids of the Voronoi cells with respect to a density function, and edges are nominally
located at the midpoints of edges. Figure 3.1 shows three cells with their associated edges and
vertices.

Figure 3.1: Three cell Voronoi tessellation with Cells denoted by blue circles, edges by orange
triangles, and vertices by red squares.

The VT meshes used by MPAS may be defined on the Cartesian plane or on a sphere. In the
case of planar meshes, areas and distances are assumed to be Euclidean, and the mesh is defined
on the plane z = 0. In the case of spherical meshes, areas and distances are computed in spherical
geometry; cells, edges, and vertices are constrained to lie on the surface of the sphere, and the
sphere is centered at the origin, (x, y, z) = (0, 0, 0). In all cases, the coordinate systems assumed
by MPAS meshes are right-handed. Figure 3.2 provides and illustration of VT meshes on the
Cartesian plane and on the sphere. There are no requirements for the radius of the sphere, however
an attribute sphere radius is required to be defined that defines the radius of the sphere.

7

(a) Planar Voronoi tessellation (b) Spherical Voronoi tessellation

Figure 3.2: Examples of Voronoi tessellations

8

Chapter 4

Required Variables, Attributes, and
Dimensions

The following list of attributes are required by the MPAS framework. All MPAS meshes should
contain these global attributes.

• on a sphere
Type: Character
Valid Values: ”YES” or ”NO”
Description: Defines if the mesh describes points that lie on the surface of a sphere or not.

• sphere radius
Type: Double
Valid Values: Any positive real value
Description: Value of the radius of the sphere the points are defined on. Can be set to 0 or
1 if in a plane.

• mesh id
Type: Character
Valid Values: Any combination of lowercase letters and numbers.
Description: Typically a random string use for tracking mesh provenance.

• mesh spec
Type: Character
Valid Values: Any valid version of the MPAS mesh specification Description: Defines the
version of the MPAS Mesh specification the mesh conforms to.

In addition to the above attributes, there are three other attributes that may be required. When
on a sphere is set to ”NO”, the following attribute is required:

• is periodic
Type: Character
Valid Values: ”YES” or ”NO”
Description: Defines if the mesh has any periodic boundaries. This is only used to determine
if other attributes should be read.

If is periodic is set to ”YES”, the following two attributes are required as well:

9

• x period
Type: Double
Valid Values: Any positive real value
Description: Defines the period of the mesh in the X direction

• y period
Type: Double
Valid Values: Any positive real value
Description: Defines the period of the mesh in the Y direction

All MPAS cores are required to define the following dimensions for framework.

• nCells - The number of primary cells in the mesh.

• nEdges - The number of edges in the mesh.

• nVertices - The number of vertices in the mesh, or the number cells in the dual mesh.

• vertexDegree - The maximum number of cells connected to a dual cell (or the number of
corners in a dual cell).

• maxEdges - The maximum number of vertices and edges on any primary cell.

• maxEdges2 - The value of maxEdges times 2.

The following list of fields are required by all MPAS cores, and the MPAS framework assumes
these fields exist.

• latCell - Latitude in radians of all cell centers
Dimensions: nCells
Valid Values: Reals in the range of −π

2 to π
2 .

Special Notes: Could be computed internally.

• lonCell - Longitude in radians of all cell centers.
Dimensions: nCells
Note: In a plane this should be given a constant value of 0.
Valid Values: Reals in the range of 0 to 2 ∗ π.
Special Notes: Could be computed internally.

• xCell - x axis position of all cell centers.
Dimensions: nCells

• yCell - y axis position of all cell centers.
Dimensions: nCells

• zCell - z axis position of all cell centers.
Dimensions: nCells

10

• indexToCellID - Global cell ID for all cell centers.
Dimensions: nCells

• latEdge - Latitude in radians of all edge locations.
Dimensions: nEdges
Valid Values: Reals in the range of −π

2 to π
2 .

Special Notes: Could be computed internally.

• lonEdge - Longitude in radians of all edge locations.
Dimensions: nEdges
Valid Values: Reals in teh range of 0 to 2 ∗ π.
Special Notes: Could be computed internally.

• xEdge - x axis position of all edge locations.
Dimensions: nEdges

• yEdge - y axis position of all edge locations.
Dimensions: nEdges

• zEdge - z axis position of all edge locations.
Dimensions: nEdges

• indexToEdgeID - Global edge ID for all edge locations.
Dimensions: nEdges

• latVertex - Latitude in radians of all cell vertices.
Dimensions: nVertices
Valid Valids: Reals in the range of −π

2 to π
2 .

Special Notes: Could be computed internally.

• lonVertex - Longitude in radians of all cell vertices.
Dimensions: nVertices
Valid Valids: Reals in the range of 0 to 2 ∗ π.
Special Notes: Could be computed internally.

• xVertex - x axis position of all cell vertices.
Dimensions: nVertices

• yVertex - y axis position of all cell vertices.
Dimensions: nVertices

• zVertex - z axis position of all cell vertices.
Dimensions: nVertices

• indexToVertexID - Global vertex ID for all cell vertices.
Dimensions: nVertices

• nEdgesOnCell - Number of edges on a given cell.
Dimensions: nCells

• nEdgesOnEdge - Number of edges on a given edge. Used to reconstruct tangential velocities.
Dimensions: nEdges

11

• cellsOnEdge - Cell indices that saddle a given edge.
Dimensions: 2 * nEdges

• edgesOnCell - Edge indices that surround a given cell.
Dimensions: maxEdges * nCells

• edgesOnEdge - Edge indices that are used to reconstruct tangential velocities.
Dimensions: maxEdges2 * nEdges

• cellsOnCell - Cell indices that surround a given cell.
Dimensions: maxEdges * nCells

• verticesOnCell - Vertex indices that surround a given cell.
Dimensions: maxEdges * nCells

• verticesOnEdge - Vertex indices that saddle a given edge.
Dimensions: 2 * nEdges

• edgesOnVertex - Edge indices that radiate from a given vertex.
Dimensions: vertexDegree * nVertices

• cellsOnVertex - Cell indices that radiate from a given vertex.
Dimensions: vertexDegree * nVertices

• weightsOnEdge - Weights used to reconstruct tangential velocities.
Dimensions: maxEdges2 * nEdges
Special Notes: Could be computed internally.

• dvEdge - Distance in meters between the vertices that saddle a given edge.
Dimensions: nEdges
Special Notes: Could be computed internally.

• dcEdge - Distance in meters between the cells that saddle a given edge.
Dimensions: nEdges
Special Notes: Could be computed internally.

• angleEdge - Angle in radians an edge’s normal vector makes with the local eastward direction.
Dimensions: nEdges
Special Notes: Could be computed internally.

• areaCell - Area in square meters for a given cell of the primary mesh.
Dimensions: nCells
Special Notes: Could be computed internally.

• areaTriangle - Area in square meters for a given triangle of the dual mesh.
Dimensions: nVertices
Special Notes: Could be computed internally.

• kiteAreasOnVertex - The intersection area of areaTriangle with each cell that radiates from
a given vertex.
Dimensions: vertexDegree * nVertices
Special Notes: Could be computed internally.

12

• meshDensity - The value of the generating density function at each cell center.
Dimensions: nCells

13

Chapter 5

Connectivity and Ordering
Requirements

This chapter defines the general requirements for all MPAS meshes. Along with specific require-
ments for different element types (cell, edge, vertex). These include ordering specifications for one
type of element relative to another.

• MPAS meshes must be defined using a right handed coordinate system.

• Spherical grids must be centered at (0,0,0).

• Two arrays that are both relative to the element type must be ordered in the exact same way
if possible.
For example: When on a particular cell, edgesOnCell(n, iCell) should be the edge between
iCell and cellsOnCell(n, iCell).

• Input meshes are required to have a time dimension that is the unlimited (record) dimension.

When creating an MPAS mesh, it is recommended to ensure the correct connectivity ordering
relative to edges, then vertices, then cells. Ordering things in this way simplifies the process.

5.1 Missing Values

Often when setting up a mesh for MPAS, there might be a cell that is missing a neighbor across
one or more of it’s edges. An example of this would be an ocean mesh where land cells are actually
removed from the domain.

When this occurs, connectivity lists (for example cellsOnCell) need to be updated to account
for this missing element. In this case, the entry in the connectivity list should be replaced by a
value of 0.

Additionally, there are instances where an element (for example a cell) has less edges than the
maxEdges dimension. For example, if a heptagon is present in the mesh, maxEdges would have a
value of 7, any hexagons or pentagons in the mesh would only have 6 and 5 edges, respectively. In
this case, the connectivity list for each element with less entries needs to be padded. For MPAS
meshes, the padding is arbitrary (meaning MPAS doesn’t care what the padding is). Some external
tools have requirements about this padding (some require the last entry be repeated, while others
require padding with zeroes). It’s recommended to explore your entire tool chain, and ensure the
padding is setup consistently for all of your tools.

14

5.2 Requirements relative to edges

At a given edge, two vectors ~u and ~v are defined as the normal and tangential vectors, respectively.
These are defined as:

~u = cellsOnEdge(2, iEdge)− cellsOnEdge(1, iEdge) (5.1)

~v = verticesOnEdge(2, iEdge)− verticesOnEdge(1, iEdge) (5.2)

where cellsOnEdge and verticesOnEdge are the indices for the cells and vertices that make up an
edge respectively. They should be expanded to their full coordinates in order to make a vector.
Their coordinates are defined in the xCell, yCell, zCell, xVertex, yVertex, and zVertex fields.

• The surface normal vector must be defined as ~u× ~v.

• Angle edge must be the angle in radians ~u makes with the local eastward direction on a
sphere, or the local x direction in a plane.

• edgesOnEdge must run counter-clockwise, beginning with the edges that surround cellsOnEdge(1,
iEdge) and ending with the edges that surround cellsOnEdge(2, iEdge).
The current edge must be omitted from the list of edgesOnEdge, but can be assumed to be
both the starting and ending position when checking for counter-clockwise ordering.

• weightsOnEdge must be ordered in exactly the same order as edgesOnEdge. i.e. weight-
sOnEdge(1, iEdge) can be assumed to apply to edgesOnEdge(1, iEdge).

cell 1

cell 2

vertex 2vertex 1

u

v

cell 1

cell 2

vertex 2

vertex 1

u

v

N

angleEdge

Figure 5.1: Ordering of elements relative to edges.

5.3 Requirements relative to vertices

• Cells and Edges must run counter-clockwise around a given vertex.

15

cell1

cell2

edgesOnEdge(5, iEdge)

edgesOnEdge(4, iEdge)

edgesOnEdge(1, iEdge)

edgesOnEdge(2, iEdge)

edgesOnEdge(3, iEdge)

edgesOnEdge(6, iEdge)

edgesOnEdge(7, iEdge)

edgesOnEdge(8, iEdge)

edgesOnEdge(9, iEdge)

edgesOnEdge(10, iEdge)

Figure 5.2: Ordering of edges relative to edges.

• Edges must lead cells as they move around a vertex.
i.e. The vector defined by
(cellsOnV ertex(n, iV ertex)− iV ertex)× (edgesOnV ertex(n, iV ertex)− iV ertex)

must be surface normal, for all values of n.

• kiteAreasOnVertex(n, iVertex) is the intersection area of areaTriangle(iVertex) with area-
Cell(cellsOnVertex(n,iVertex)) for all values of n.

cellsOnVertex(1,iVertex)

iVertex

cellsOnVertex(2,iVertex) cellsOnVertex(3,iVertex)

edgesOnVertex(2,iVertex)

edgesOnVertex(3,iVertex)

edgesOnVertex(1,iVertex)

kiteAreasOnVertex(1, iVertex)

kiteAreasOnVertex(2, iVertex)

kiteAreasOnVertex(3, iVertex)

Figure 5.3: Ordering of elements relative to vertices.

16

5.4 Requirements relative to cells

• Cells, Edges, and Vertices all run counter-clockwise around a cell.

• The edge defined at edgesOnCell(n, iCell) must be on the edge between iCell and cellsOn-
Cell(n, iCell) for all values of n.

• verticesOnCell(n, iCell) leads both edgesOnCell(n, iCell) and cellsOnCell(n, iCell) for all
values of n.
i.e. The vector defined by
(edgesOnCell(n, iCell)− iCell)× (verticesOnCell(n, iCell)− iCell)
must be surface normal for all values of n, or the substitution of cellsOnCell for edgesOnCell.

iCell

CC(n) = cellsOnCell(n, iCell)
VC(n) = verticesOnCell(n, iCell)
EC(n) = edgesOnCell(n, iCell)

CC(1)

CC(2)

CC(3)

CC(4)

CC(5)

CC(6)
EC(1)

EC(2)

EC(3)

EC(4)

EC(5)

EC(6)

VC(1)

VC(2)

VC(3)

VC(4)

VC(5)

VC(6)

Figure 5.4: Ordering of elements relative to cells.

5.5 Description of boundaries

Some meshes require the ability to describe boundaries. These could describe the interface between
two different meshes, or active and inactive cells. For example, the boundary between ocean and
land, or a nested grid and it’s global counterpart.

The easiest way to describe boundaries is through the edges presently. If an edge is intended
to track a boundary, i.e. lies between active and inactive cells, this can be specified through
cellsOnEdge. If the second cell in cellsOnEdge is given a value of zero, it is assumed that the edge
falls on a boundary.

17

Chapter 6

Validation of meshes

Meshes can be validated by performing a simulation in the shallow water core. Preferably test
cases 2 and 5. If there are problems with areas, connectivity, or weights these would create obvious
errors in the output of the shallow water core.

18

