
MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

Unique Aspects of MPAS Code:
Registry, Pools, and Logging

1

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

2

Introduction

This talk is very software-oriented, but the ideas will be
important for upcoming talks about adding new

diagnostics and passive tracers in MPAS!

When one actually looks inside the MPAS-Atmosphere model,
there are several features that can be confusing without proper
background:
1. The MPAS “Registry”
2. Pools
3. Logging mechanism

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

3

The MPAS Registry File

A central component of all MPAS “cores” is the Registry file.
• An idea borrowed from the Weather Research and Forecasting

(WRF) model

Motivation:
We wanted to avoid manually
writing copy-and-paste code every
time we added a new variable or
namelist option in MPAS
• Allocation/deallocation
• Addition of fields to data structures
• I/O
The Registry mechanism parses
the Registry.xml file and writes
this code for us!

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

4

The MPAS Registry File

One could argue that through appropriately designed data structures
and functions, we shouldn’t have needed to write copy-and-paste
code in the first place (and that’s true!), but…

By having all namelist options and fields defined in a single XML file,
we can automatically generate ~120 pages of documentation!

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

5

The MPAS Registry File

There are four primary constructs that can are defined in the
Registry.xml file for an MPAS “core”

1) Namelist options
&damping

config_zd = 22000.0
/

<nml_record name="damping" in_defaults="true">
<nml_option name="config_zd" type="real"

default_value="22000.0"
units="m"
description="Height MSL to begin w-damping profile"
possible_values="Positive real values"/>

</nml_record>

This namelist option is defined by this entry in the Registry.xml file

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

6

The MPAS Registry File

There are four primary constructs that can are defined in the
Registry.xml file for an MPAS “core”

2) Dimensions
<dims>

<dim name="nCells"
description="The number of Voronoi cells in the primal mesh"/>

<dim name="nVertLevels"
description="The number of atmospheric layers"/>

</dims>

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

7

The MPAS Registry File

There are four primary constructs that can are defined in the
Registry.xml file for an MPAS “core”

3) Variables

<var_struct name="mesh" time_levs="1">

<!-- horizontal grid information -->
<var name="latCell" type="real" dimensions="nCells"

units="rad"
description="Latitude of cells"/>

<var name="lonCell" type="real" dimensions="nCells"
units="rad"
description="Longitude of cells"/>

</var_struct>

NB: the dimensions of variables must themselves be defined in the
Registry.xml file as in the previous slide

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

8

The MPAS Registry File

There are four primary constructs that can are defined in the
Registry.xml file for an MPAS “core”

4) Default I/O streams

<streams>
<stream name="input"

type="input"
filename_template="x1.40962.init.nc"
input_interval="initial_only"
immutable="true">

<var name="latCell"/>
<var name="lonCell"/>
...

</stream>
</streams>

NB: as described in an earlier talk, additional streams can always be
defined at run-time in the “streams” file

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

9

The MPAS Registry File

How and when does the Registry impact MPAS?

During compilation, there is a build
step that parses the Registry.xml
file and generates Fortran code that
is included by an MPAS “core”
• Changing the Registry.xml file

requires recompilation of MPAS!

MPAS-Model/
src/

core_atmosphere/
diagnostics/
dynamics/
inc/
physics/
Registry.xml
utils/

Automatically generated Fortran
code goes in the inc/ directory
• About 18,600 lines of code

for MPAS-Atmosphere v7.0

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

10

MPAS Pools

Closely related to the Registry in MPAS are “pools”
• These are best explained with a little historical perspective…

Right: A picture of a pool from
Wikipedia. About the only thing

that MPAS pools have in
common with this one is that

one can add items to a pool and
take items from the pool.

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

11

MPAS Pools: some history

When we started to develop MPAS, we wanted a way to write
more abstract and more maintainable code.

Consider a function, below, for computing dynamics
tendencies:
subroutine compute_dyn_tend(theta_m, rho_zz, u, w, zgrid, &

areaCell, dcEdge, tend_u, tend_rho, &
tend_w)

real, dimension(:,:), intent(in) :: theta_m
real, dimension(:,:), intent(in) :: rho_zz
real, dimension(:,:), intent(in) :: u
real, dimension(:,:), intent(in) :: w
real, dimension(:,:), intent(in) :: zgrid
real, dimension(:,:), intent(in) :: areaCell
real, dimension(:,:), intent(in) :: dcEdge
real, dimension(:,:), intent(out) :: tend_u

... And so on ...

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

12

MPAS Pools: some history

With some code comments, it’s not hard to figure out what this
routine does
• But if any new inputs or outputs are needed, those need to be

individually declared and added to the argument list

subroutine compute_dyn_tend(stateFields, meshInfo, tendencyFields)

type(state_t), intent(in) :: stateFields
type(mesh_t), intent(in) :: meshInfo
type(tend_t), intent(out) :: tendencyFields

We wanted to be able to write code like this:

Where, e.g., state_t could be defined as:
type state_t

real, dimension(nVertLevels, nCells) :: theta_m
real, dimension(nVertLevels, nCells) :: rho_zz
real, dimension(nVertLevels, nEdges) :: u
! ... And so on ...

end type state_t

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

13

MPAS Pools: some history

The problem comes when we have two different MPAS cores
(e.g., MPAS-Atmosphere and MPAS-Ocean) that need to define
the state_t type differently

MPAS-Atmosphere needs this:

While MPAS-Ocean needs this:
type state_t

real, dimension(nVertLevels, nCells) :: salinity
real, dimension(nCells) :: SSH
real, dimension(nVertLevels, nCells) :: layerThickness
! ... And so on ...

end type state_t

type state_t
real, dimension(nVertLevels, nCells) :: theta_m
real, dimension(nVertLevels, nCells) :: rho_zz
real, dimension(nVertLevels, nEdges) :: u
! ... And so on ...

end type state_t

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

14

MPAS Pools: some history

Our solution to this problem in MPAS was to develop a generic,
dynamic data type called a “pool”, which:
• Can be instantiated multiple times
• Can have different fields added to each instance

Now, we can do something like this:
type(mpas_pool_type), pointer :: AtmStatePool
type(mpas_field_2d_real_type), pointer :: theta_m_ptr

allocate(AtmStatePool)

call mpas_pool_add_field(AtmStatePool, ‘theta_m’, theta_m_ptr)

Note: the exact type names above don’t match the actual
MPAS code… I just used names that are closer to what we

probably should have chosen in the first place…

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

15

MPAS Pools

Whereas before we could access members of types like this:
type(state_t) :: State

write(0,*) maxval(State % theta_m)

We now have to access members of pools like this:
type(mpas_pool_type) :: State

real, dimension(:,:), pointer :: theta_m_ptr

call mpas_pool_get_array(State, ‘theta_m’, theta_m_ptr)

write(0,*) maxval(theta_m_ptr)

Pools are a little more cumbersome to use, but they allow us to write
rich infrastructure to perform operations on entire groups of fields!

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

16

MPAS Pools

The dimensions, fields, and namelist options that we define in a
Registry.xml file can all be accessed through pools:

• Dimensions:
call mpas_pool_get_dimension(AtmState, ‘nCells’, nCells)

• Fields:
call mpas_pool_get_array(AtmState, ‘theta_m’, theta_m)

• Namelist options:
call mpas_pool_get_config(Configs, ‘config_dt’, dt)

There are a few more details, but
these are the essential ideas…

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

17

The MPAS Logging Mechanism

Naturally, we’d like to write out messages as the model runs
• An informal survey revealed that many of us use print

statements as our primary means of debugging!

What happens if we do something like the following in
parallel code (both MPI and OpenMP)?

subroutine RHS(arg1, arg2, arg3)

integer, intent(in) :: arg1, arg2

integer, intent(out) :: arg3

write(0,*) arg1, arg2, arg3

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

18

The MPAS Logging Mechanism

In MPAS v5.3 and earlier, our solution was to cleverly redirect
stdout and stderr to log files named log.XXXX.out and
log.XXXX.err

However, this is less than ideal when several different MPAS
components (e.g., ocean, land ice, sea ice) are running together
in the same coupled Earth-system model!

MPAS v6.0 introduced a completely new mechanism for
logging messages during model execution

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

19

The MPAS Logging Mechanism

The standard way for logging a message in MPAS uses the
mpas_log module’s mpas_log_write(…) routine
• Each MPAS core writes log messages to a file named

log.<CORE>.0000.out

• mpas_log_write(…) handles tagging of messages with
threadID for messages logged from threaded code regions

subroutine RHS(arg1, arg2, arg3)

use mpas_log, only : mpas_log_write

integer, intent(in) :: arg1, arg2

integer, intent(out) :: arg3

call mpas_log_write(‘Hello from the RHS routine’)

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

20

The MPAS Logging Mechanism: printing variables

Variables can be included in messages with placeholders
$i, $r, or $l for integers, reals, or logicals
• The variables to substitute for these placeholders are

specified with optional arguments intArgs, realArgs, and
logicArgs

subroutine RHS(arg1, arg2, arg3)

use mpas_log, only : mpas_log_write

integer, intent(in) :: arg1, arg2

integer, intent(out) :: arg3

call mpas_log_write(‘Inputs are $i and $i’, &
intArgs=(/arg1, arg2/))

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

21

The MPAS Logging Mechanism: message types

There are four types of messages that can be written:
1. Regular messages
2. Warnings
3. Error messages
4. Critical error messages – writing one of these will halt the model!

The type of a log message is specified with the optional argument
messageType, which can be:
• MPAS_LOG_OUT – the default, which doesn’t need to be specified
• MPAS_LOG_WARN
• MPAS_LOG_ERR
• MPAS_LOG_CRIT

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

22

The MPAS Logging Mechanism: printing variables

An example of messageType:

subroutine RHS(arg1, arg2, arg3)

use mpas_log, only : mpas_log_write, MPAS_LOG_ERR

integer, intent(in) :: arg1, arg2

integer, intent(out) :: arg3

if (arg1 < 0) .or. arg2 < 0) then

call mpas_log_write(‘Both input args must be >0’,&

messageType=MPAS_LOG_ERR)

end if

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

23

The MPAS Logging Mechanism: message types

The counts of each message type are summarized at the end of
model execution (whether that’s a successful run or a failed run)

Total log messages printed:

Output messages = 213
Warning messages = 3
Error messages = 4
Critical error messages = 1

Logging of errors and critical errors will trigger the creation of a
log.<core>.<processorID>.err file with the message, e.g.,
-rw-r--r-- 1 duda mmm 10260 Jul 28 12:32 log.atmosphere.0000.out
-rw-r--r-- 1 duda mmm 628 Jul 28 12:32 log.atmosphere.0001.err
-rw-r--r-- 1 duda mmm 628 Jul 28 12:32 log.atmosphere.0003.err

Above: MPI tasks 1 and 3 both encountered errors, which can be found in the
log.atmosphere.0001.err and log.atmosphere.0003.err files.

MPAS-Atmosphere Tutorial
9 – 11 September 2019, Boulder

24

Summary

The MPAS code is fairly plain Fortran 2003, and the key unique
features are:
• The Registry, where all fields, dimensions, and run-time options

are defined
• Dynamic data structures called “pools”
• A logging mechanism to deal with the complexities of writing

messages from parallel executables that may contain more
than one MPAS core

Having an understanding of these is essential to successfully
making changes or additions to the MPAS code!

