

MPAS V7.0 release

MPAS-Atmosphere Version 5.0: 7 January 2017 Version 5.1: 12 May 2017; Version 5.2: 1 August 2017; Version 5.3: 22 March 2018

MPAS-Atmosphere Version 6.0: 17 April 2018 Version 6.1: 11 May 2018; Version 6.2: 14 March 2019 Version 6.3: 11 May 2019

MPAS-Atmosphere Version 7.0: 8 June 2019

In contrast to WRF, MPAS does not follow a yearly release schedule. Releases in new functionality increments the integer version number. Bugfixes increments the integer to the right of the decimal point.

MPAS Version 7.0: Limited-area capabilities for the atmosphere. Physics updates and some "usability" enhancements.

- MPAS and WRF physics unification.
- MPAS-Atmosphere in CESM/CAM.
- Any GPU/accelerator capabilities in MPAS-Atmosphere.
- Mesh generation.
- Deep atmosphere capability

MPAS and WRF physics unification

- There are distinct versions of the "same" WRF physics in the WRF and MPAS repositories (i.e. not a single source).
- We are going to have a single repository from which we will pull this shared physics for both WRF and MPAS builds.
- We may evolve to sharing a single NCAR repository for WRF/MPAS/CAM physics.
- We are developing a Common Physics Framework (CPF) that will replace the physics drivers in NCAR atmospheric models. We expect it will be compatible with NOAA's CCPP (and likely share code).

MPAS-Atmosphere in CESM/CAM

Community Earth System Model (CESM)

- MPAS-A Version 4 is an atmospheric dynamical core in CAM
- NWP and climate testing is ongoing
- Coupled model simulations are being performed (w/ocean, ice)
- Physics evaluation for NWP is major focus of early testing

A clean, supportable implementation of MPAS-A into CESM is being engineered. MPAS-A will be a CESM external (like the new CESM ocean core MOM). Builds of MPAS-A in CESM/CAM will pull MPAS-A directly from the MPAS development/release github repository.

The new MPAS-Atmosphere port to CESM is part of the *SIMA (System for Integrated Modeling of the Atmosphere)* development project to unify atmospheric modeling at NCAR (weather, climate, chemistry and geospace).

MPAS-Atmosphere will adopt and use the Community Physics Framework (CPF) being developed to access both WRF and CESM/CAM physics.

Regional MPAS-A capabilities should be available in CESM/CAM.

GPU/accelerator capabilities in MPAS-Atmosphere

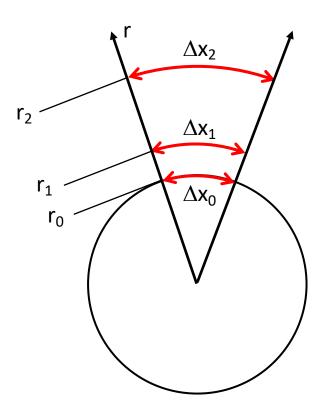
A version of MPAS-A using GPUs through OpenACC directives is being developed. Participating organizations: The Weather Company, IBM, NCAR, Univ. Wyoming, KISTI, NVIDIA

Questions being addressed in this development:

- Can we achieve significant performance enhancement on GPUs using OpenACC?
- Can we maintain and evolve a single-source code (CPU/GPU) in our development and for release and support to the community?

We are expecting to have an initial implementation of this capability soon.

MPAS mesh generation


Mesh generation utilities are not in the MPAS V7 release.

Mesh generation is expensive (expensive algorithms, parallelization issues, etc). Variable high-resolution meshes can take months to generate with existing utilities.

Recent development efforts suggest we may be able to speed-up our existing algorithms by an order of magnitude or more.

Mesh generation tools will appear in the public MPAS-Tools repository: https://github.com/MPAS-Dev/MPAS-Tools

Deep atmosphere capability in MPAS will likely appear in the next release.

MPAS: Deep-Atmosphere

Shallow atmosphere (WRF, MPAS, most models)

 $\Delta \mathbf{x}_0 = \Delta \mathbf{x}_1 = \Delta \mathbf{x}_2$

Deep atmosphere

 $\Delta \mathbf{x}_1 = (\mathbf{r}_1/\mathbf{r}_0) \Delta \mathbf{x}_0; \ \Delta \mathbf{x}_2 = (\mathbf{r}_2/\mathbf{r}_0) \ \Delta \mathbf{x}_0; \ \Delta \mathbf{x}_k = (\mathbf{r}_k/\mathbf{r}_0) \ \Delta \mathbf{x}_0$

$$\begin{split} \frac{\partial \mathbf{V}_{H}}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \bigg[\nabla_{\zeta} \Big(\frac{p}{\zeta_{z}} \Big) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \bigg] - \eta \, \mathbf{k} \times \mathbf{V}_{H} \\ &- \mathbf{v}_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \mathbf{v}_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K - \beta_{d} \left(eW \cos \alpha_{r} + \frac{uW}{r} \right) + \mathbf{F}_{V_{H}} \\ \frac{\partial W}{\partial t} &= -\frac{\rho_{d}}{\rho_{m}} \bigg[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \bigg] - \big(\nabla \cdot \mathbf{v} \, W \big)_{\zeta} \\ &+ \beta_{d} \left[\frac{uU + vV}{r} + e \left(U \cos \alpha_{r} - V \sin \alpha_{r} \right) \right] + F_{W} \end{split}$$

 $\beta_d = 0$, r = r_{earth} for shallow atmosphere $\beta_d = 1$, r = radius for deep atmosphere g = g₀ (r²/r₀²)