

Regional-MPAS Prepare mesh, Create initial and boundary conditions

Michael Duda Ming Chen

Weather Modeling and Research Section Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

Regional-MPAS: prepare mesh, create initial and boundary conditions

- A limited-area domain must be defined, and a mesh must be created
- The mesh must be partitioned for parallel execution
- Initial and boundary conditions must be generated for the domain

(see Sections 4.3 and 8.2 in the User's Guide)

60-3km mesh centered over CONUS

Regional-MPAS: preparing mesh using MPAS_limited_area tool

MPAS Limited-Area: a python tool to produces a regional area grid

- Download and Installing
 - git clone https://github.com/MPAS-Dev/MPAS-Limited-Area.git
 - setenv PATH \${PATH}:/path/to/MPAS-Limited-Area
- Run the create_region command-line script

(Sample points.txt files can be found in docs/points-examples)

- MPAS supports various types of region: Circles, ellipses, channels, and polygons
- Required inputs: a parent mesh and a region definition file
- It is easy to add new region types using python

(https://github.com/MPAS-Dev/MPAS-Limited-Area.git)

Points.txt

Name: CONUS Type: circle Point: 37.5, -95.0 radius: 4000

Command usage line:

Create_region points.txt x1.10242.static.nc

Output:

CONUS.static.nc and CONUS.graph.info

The ellipse method

Points.txt

Name: CONUS Type: ellipse Point: 37.5, -95.0 Semi-major-axis: 4500000. Semi-minor-axis: 3200000. Orientation-angle: 90.0

Points.txt

Name: Japan Type: ellipse Point: 38.0, 138.0 Semi-major-axis: 2000000 Semi-minor-axis: 1000000 **Orientation-angle: 45**

Points.txt

Name: Tropics Type: channel ulat: 20.4 llat: -20.4

The equatorial channel

Creating limited-area meshes from variable-resolution "parent" meshes works equally well Available MPAS global meshes (<u>http://mpas-dev.github.io</u>).

46-12km mesh

Step I: run grid-rotate to relocate the refinement to the area of interests

Step II: run mpas_limited_area tool to produce limited-area mesh

Regional-MPAS: Lateral Boundary

In MPAS, the lateral boundary includes

- Five layers of relaxation-zone cells (bdyMaskCell = 1, 2, 3, 4, 5)
- Two layers of specified-zone cells (bdyMaskCell = 6, 7)

The integer variable, bdyMaskCell, identifies boundary cell types in the regional mesh file

Regional-MPAS: mesh partitioning for parallel run

For newly created limited-area meshes, one must partition the mesh for parallel execution

MPAS-Limited-Area writes not only the netCDF mesh file, but also a *graph.info* file

Above: An illustration of the mesh connectivity information contained in a graph.info file

Above: Cells in a regional mesh colored according to their partition

See Section 4.1 in the User's Guide

Regional MPAS: generating static fields and initial condition

- Static fields : If we rotate the refinement to the region of our interests, we need to generate static data for that region. (See Section 7.2.1 in User's Guide)
- Initial condition: Generating initial condition for regional MPAS simulation is basically the same as that for global MPAS run.
 - (a) Edit namelist.init_atmosphere
 - (b) Edit streams.init_atmosphere
 - (c) Run init_atmosphere
 - (d) Check tail of

log.init_atmosphere.0000.out

MPAS: regional domain static fields

Regional MPAS: generating initial condition

Edit namelist.init_atmosphere

&vertical_grid
 config_init_case = 7
 config_ztop = 30000.0
 config_nsmterrain = 1
 config_smooth_surfaces = true
 config_dzmin = 0.3
 config_nsm = 30
 config_tc_vertical_grid = true
 config_blend_bdy_terrain = true

Note: Important to set the above option!

With above option, terrain height in boundary cells are blended with terrain height from the first-guess dataset

Edit streams.init_atmosphere

<streams> <immutable_stream name="input" type="input" **filename_template="CONUS.static.nc"** input_interval="initial_only" />

<immutable_stream name="output" type="output" filename_template="CONUS.init.nc" packages="initial_conds" output_interval="initial_only" />

We are providing as input: **CONUS.static.nc** We are creating as output: **CONUS.init.nc**

Regional MPAS: generating static fields and initial condition

MPAS

Regional ICs: blending boundary terrain

The config blend bdy terrain option only affects terrain in the boundary cells (where bdyMaskCell > 0)

Terrain field from 3-km static file, interpolated directly from GMTED2010

0.25-deg GFS terrain field interpolated to 3-km mesh

MPAS topography

coordinate surfaces GFS topography

Blended topography

Blended terrain field used in

the generation of vertical

Regional ICs: blending boundary terrain

The config blend bdy terrain option only affects terrain in the boundary cells (where bdyMaskCell > 0)

Regional MPAS: generating lateral boundary condition

Edit namelist.init_atmosphere

```
&nhyd model
  config_init_case = 9
                                           "9" indicates this is a lateral boundary processing case
 config_start_time = '2017-02-01_00:00:00'
config_stop_time = '2017-02-04_00:00:00'
                                                    time to begin and end processing LBC data
&data_sources
  config_met_prefix = 'GFS' — The prefix of the intermediate data files to be used for LBC
  config_sfc_prefix = 'SST'
                               Interval between intermediate files (in seconds)
  config_fg_interval = 10800
  config_use_spechumd = false
&vertical_grid
  config tc vertical grid = true
  config blend bdy terrain = false
```

Regional MPAS: generating lateral boundary condition

Edit streams.init_atmosphere

```
<streams>
<immutable_stream name="input"
         type="input"
         filename_template="CONUS.init.nc"
                                              Provide vertical grid information
         input interval="initial only"/>
<immutable_stream name="lbc"
         type="output"
         filename_template="lbc.$Y-$M-$D_$h.nc"
         filename_interval="output_interval"
         packages="lbcs"
                                               The output_interval must be the same as
         output interval="3:00:00" />
                                               config_fg_interval (=10800) in
                                               namelist.init_atmosphere
```

We are providing as input: **CONUS.init.nc** We are creating as output: **Ibc.yyyy-mm-dd_hh.nc**

Regional MPAS: variables in initial & lateral boundary conditions

Important variables in initial condition

- Horizontal and vertical coordinate information
- Mesh structure
- Static fields (terrain height, landuse type, landmask, vegetation fraction, etc.)
- Soil moisture and temperature, snow cover, snow depth, etc
- Atmospheric moisture fields (water vapor, rain water, cloud water, etc.)
- Potential temperature, dry air density, relative humidity, horizontal wind, vertical velocity

Lateral boundary condition includes:

- Potential temperature Dry density Normal components of horizontal winds on edges Vertical velocity on vertical cell interfaces Scalars (water vapor, cloud water, rain water, etc.)
- Valid time of fields

Regional MPAS: How to Run the Model

Edit "namelist.atmosphere" and "streams.atmosphere"

The most important option for running regional MPAS model (namelist.atmosphere)

```
&limited_area
    config_apply_lbcs = true
/
```

This is the only namelist option that activates regional MPAS simulation

If config_apply_lbcs is not set to true for a regional simulation, the model will stop with the following error:

ERROR: Boundary cells found in the bdyMaskCell field, but config_apply_lbcs = false. ERROR: Please ensure that config_apply_lbcs = true for limited-area simulations. ERROR: Please correct issues with the model input fields and/or namelist.

Regional MPAS: How to Run the Model

Need to include stream 'lbc_in' in the file "streams.atmosphere"

If the interval specified here is different to that between the LBC files, the model will crash with errors like:

```
ERROR: Could not read from 'lbc_in' stream after the current date to update lateral boundary tendencies ERROR: Failed to process LBC data at next time after 2019-08-31 00:00:00
```

Regional MPAS: Summary

Running regional MPAS simulation is slightly more difficult than running a global simulation. The basic steps are as follows:

- 1. Create a subset of an existing global MPAS mesh using the MPAS_limited _area tool
- 2. Generating initial conditions config_init_case = 7 config_blend_bdy_terrain = true
- 3. Generating LBC conditions config_init_case = 9
- 4. Run the model with the option config_apply_lbcs = true

Regional MPAS: How to Run

We are ready for regional MPAS run !

Any questions?