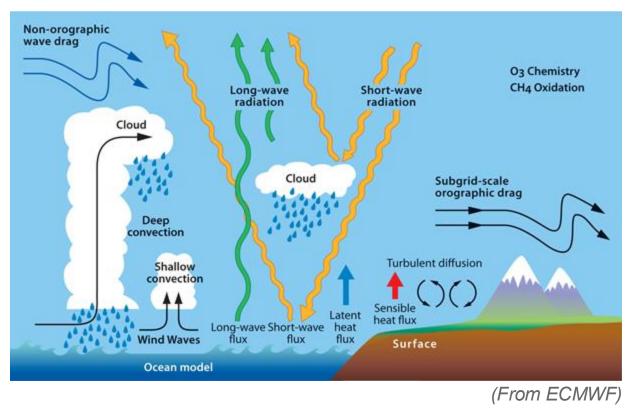
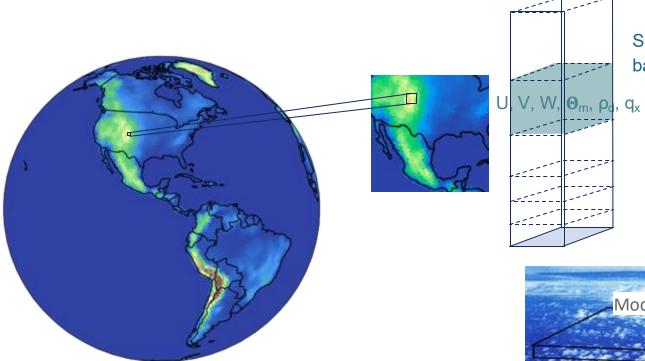


Physics and Physics Configuration in MPAS

May Wong, Laura Fowler, Wei Wang and Jimy Dudhia


NSF NCAR Microscale and Mesoscale Meteorology Laboratory

MPAS-A Tutorial 2025

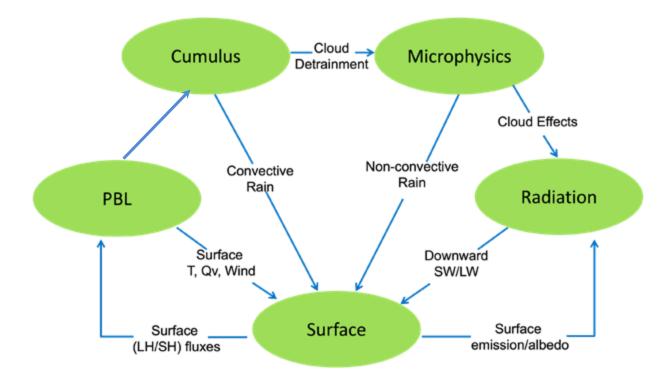


Atmospheric Physical Processes

How are these physical processes represented?

Subgrid-scale representations are based on typical prognostic variables:

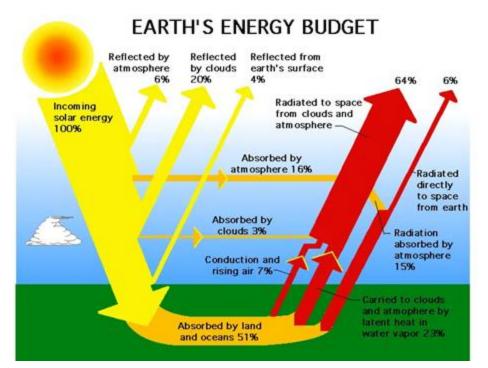
- Horizontal winds
- Vertical wind
- Temperature
- Density
- Water species


Example: subgrid clouds

MPAS Model for Prediction A

Prediction Across Scales

Direct Interactions among Model Physics



MPAS

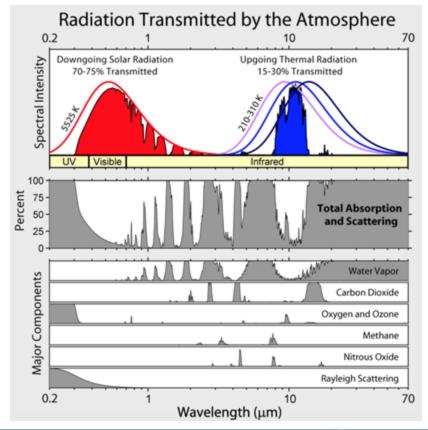
for Prediction Across Scales

Radiative Processes

(From UCAR/SCIED, adapted from an illustration by J.T. Kiehl and K.E. Trensberth)

Important heat exchange mechanisms in the atmosphere: absorption, scattering and reflection of both short- and longwave radiation by atmospheric constituents like trace gases, clouds, and aerosols.

Radiation schemes predict atmospheric warming (e.g. by absorption) or cooling in a vertical column, and also compute the surface radiative fluxes.


Shortwave Radiation

Clear-sky and cloudy fluxes

Annual and diurnal solar cycles

Important term in the surface energy balance

Radiative Processes

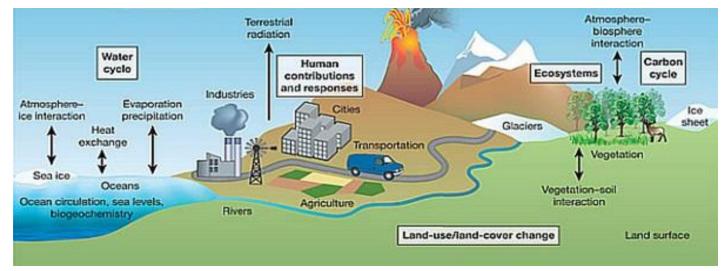
Longwave Radiation

Clear-sky and cloudy fluxes

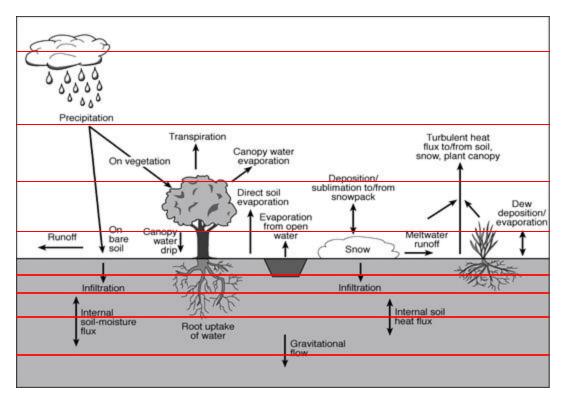
IR emission from layers

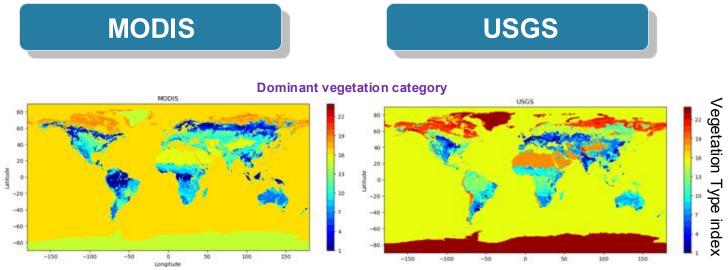
Surface emissivity based on land-type

Downward surface flux for land energy budget

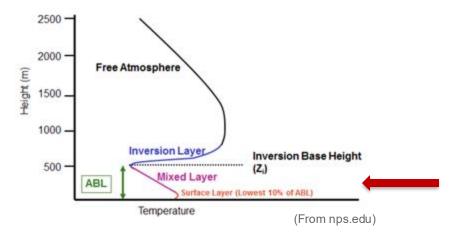

IR cooling at cloud tops and warming at cloud base

Land Surface Processes

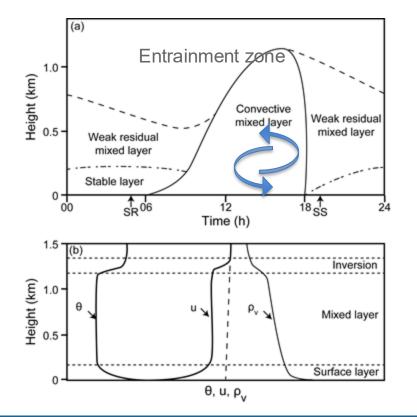

- Land surface physics are driven by radiative forcing and precipitation.
- A land surface model (LSM) considers processes like heat and moisture transfer in the soil layers, vegetation effect, surface runoff and snow.
- Predicts surface fluxes over land, urban areas, glacier and sea ice.
- It diagnoses surface temperature and water vapor mixing ratio.


Land Surface Processes

Input Data

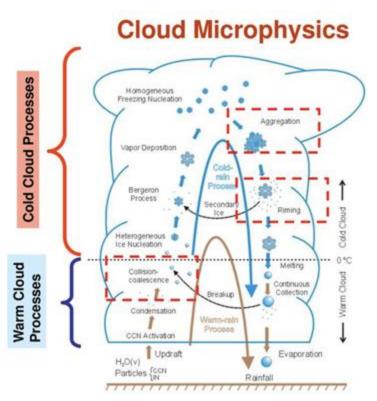

- Land use datasets: USGS (30 s), MODIS (30 s) and MODIS (15 s)
- Soil category databases: STATSGO or BNU (Beijing Normal University; 30 s)
- Types of topography datasets: GTOPO30 (30 s) or GMTED2010
- Climatological monthly vegetation fraction, surface albedo, and snow albedo datasets from MODIS or NCEP

Surface Layer Processes


The Atmospheric Surface Layer

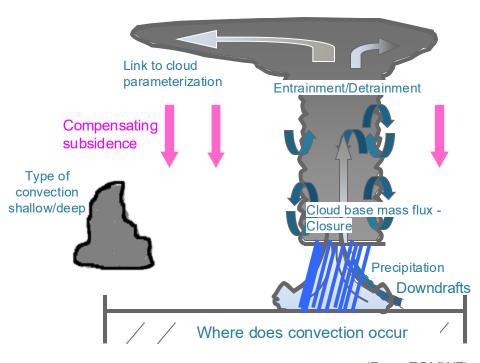
- Lowest 10% of the PBL, where turbulence generated by shear and convective heat transfer dominates.
- Approximated as a constant flux layer, where Monin-Obukhov similarity theory applies.
- The surface layer scheme calculates the exchange coefficients of heat, moisture and momentum between land and atmosphere, which are needed by the land surface model.

Planetary Boundary Layer (PBL) Processes


tion Across Scales

- A PBL scheme parameterizes the vertical transport of momentum, heat and water vapor fluxes due to turbulent eddy diffusion.
- It distributes surface fluxes with boundary layer eddies, and grows PBL by entrainment.
- Daytime boundary layer: unstable, convective, well mixed in 1-3 km
- Nighttime boundary layer: usually stable, shallow, and mixing may be driven by shear.
- Types: local (e.g., MYNN), non-local (e.g. YSU and mass-flux schemes, such as MYNN-EDMF)

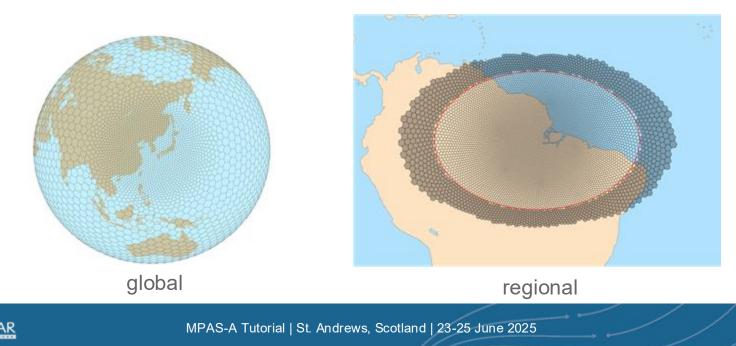
Microphysics

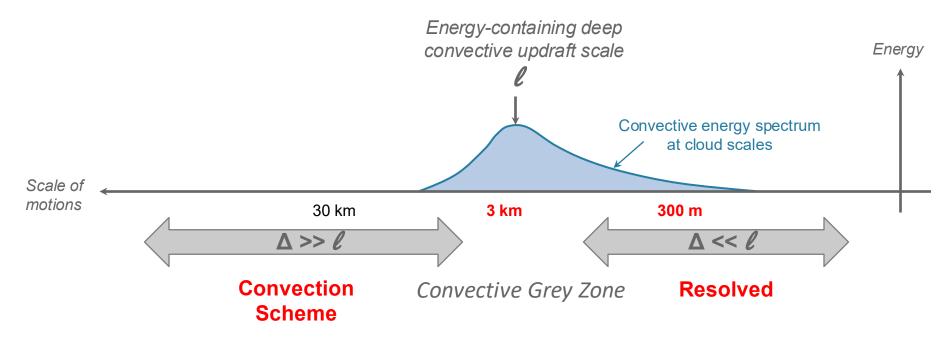


- Model detailed cloud physics. Considers latent heating processes like condensation, deposition, evaporation, collection, melting and freezing
- Typical types of hydrometeors: cloud water, cloud ice, rain, snow, graupel (and hail).
- Also considers sedimentation
- Scheme complexity: single moment (like WSM6); partial double moment (like Thompson scheme).
- Clouds interact with radiation.
- Contributes to mass loading in dynamics

Cumulus Convection Processes

- A convection or cumulus scheme parameterizes the convective transport of heat and moisture at the subgrid-scale and its warming/drying effect on the grid scale
- Includes both deep and shallow convection
- A scheme needs to determine where and when convection occurs and how strong it is.
- Cloud species can be detrained to grid scale.
- All cumulus schemes currently in MPAS are mass-flux type. Some schemes consider momentum transport. Some are scale-aware.

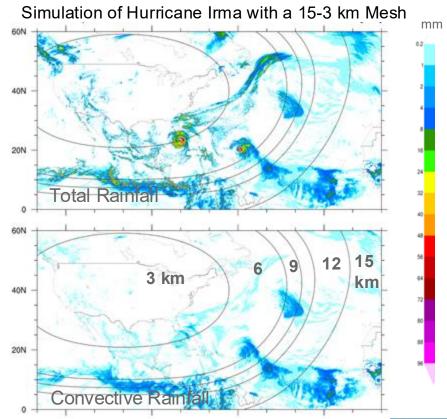



Special Note on Scale-Aware Convection Schemes

For variable-resolution applications with mesh spacings ranging from mesoscale to cloud-permitting scale, we need to consider using physics that are 'scale-aware'.

M

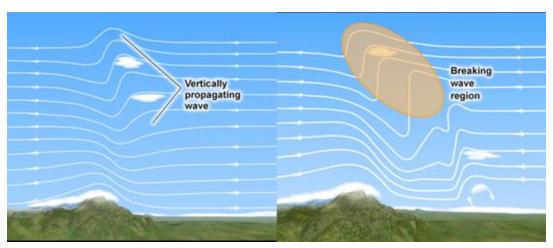
Special Note on Scale-Aware Convection Schemes



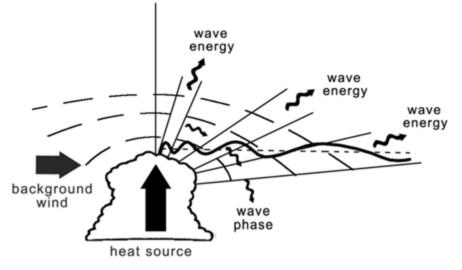
A schematic showing the energy spectrum in the horizontal plane.

Special Note on Scale-Aware Convection Schemes

- For most variable-resolution applications with finest mesh spacing > 1 km
- 'Scale-awareness' is noticeable starting from ~15 km mesh spacing
- One way to determine how active the scaleaware scheme is by examining the rainfall produced by the convection scheme.

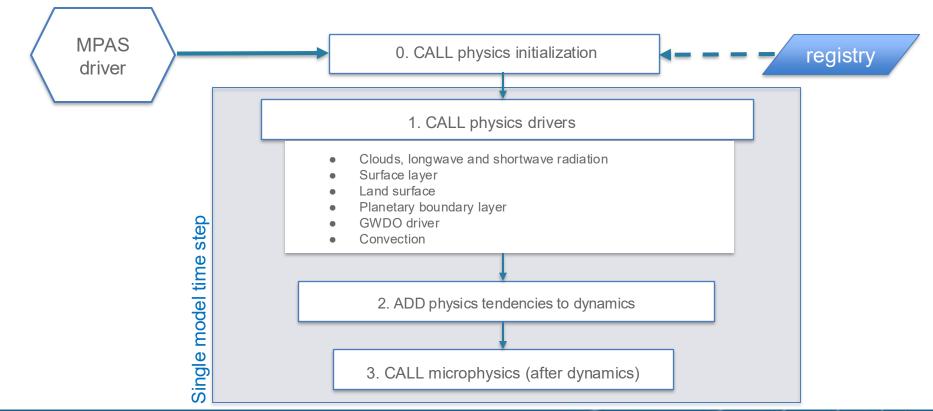


MPAS


Orographic Gravity Wave Drag

- Vertically propagating waves excited by the topography may break under certain atmospheric conditions and exert a drag on the atmospheric flow. This needs to be represented in the model, especially when grid sizes are larger than 5 km.
- Low-level flow blocking effects are also parameterized.

Nonstationary Gravity Wave Drag


(From Young-Joon Kim et al. 2003; Hooke, 1986)

Other non-orographic gravity waves dynamically induced by convection, frontogenesis and shear zones can also propagate vertically. Similar to orographic gravity waves, when wave breaking occurs, the impacts of the wave breaking and dissipation (drag) on the large-scale flow needs to be parameterized.

diction Across Scales

Coupling of physics with dynamics in MPAS-A

MPAS Model for Prediction Across Scales

Physics Schemes in MPAS-A V8.3.1

Physics	Options
Radiation	RRTMG, CAM
Surface Layer	MM5, <u>Revised MM5</u> , <u>MYNN</u>
Land Surface	Noah, <u>NoahMP</u>
PBL	<u>YSU</u> (non-local), <u>MYNN</u> (TKE, EDMF)
Microphysics	Kessler (warm rain), <u>WSM6</u> (single moment), Thompson, Thompson+aerosol (partially double moment)
Convection	New Tiedtke, Grell-Freitas, Kain-Fritsch, Tiedtke
Ocean	1-D Ocean mixed layer
Gravity Wave Drag	<u>GWDO</u> (Choi & Hong), Unified Gravity Wave Drag (includes option for non-stationary gravity wave drag)

underlined: identical to those in the latest WRF release

Corresponding Physics Options in MPAS-A v8.3.1

Physics	Options
config_radt_lw_scheme config_radt_sw_scheme	'RRTMG', 'CAM' 'RRTMG', 'CAM'
config_sfclayer_scheme	'sf_monin_obukhov', 'sf_monin_obukhov_rev', 'sf_mynn'
config_lsm_scheme	'sf_noah', 'sf_noahmp'
config_pbl_scheme	ʻbl_ysu', ʻbl_mynn'
config_microp_scheme	'mp_kessler', 'mp_wsm6', 'mp_thompson', 'mp_thompson_aerosols'
config_convection_scheme	'cu_ntiedtke', 'cu_grell_freitas', 'cu_kain_fritcsh', 'cu_tiedtke'
config_oml1d	true or false
config_gwdo_scheme	ʻbl_ysu_gwdo', ʻbl_ugwp_gwdo'

Physics Specification using Suites

Physics Suites	Options
'mesoscale_reference'	RRTMG, Xu-Randall cloud fraction, Noah LSM, YSU PBL, Revised MM5 sfc layer, new Tiedtke, WSM6, GWDO
'convection_permitting'	RRTMG, Xu-Randall cloud fraction, Noah LSM, MYNN PBL, MYNN sfc layer, Grell-Freitas, Thompson, GWDO

Physics is configured by using namelist record &physics. It can be defined as a suite, or individual options, or combination of both. Example shown below is the 'mesoscale_reference' suite:

```
&physics
    config physics suite = 'mesoscale reference'
&physics
   config convection scheme = 'cu ntiedtke'
   config_microp_scheme = 'mp_wsm6'
   config_pbl_scheme = 'bl_ysu'
   config_sfclayer_scheme
config_lsm_scheme
                            = 'sf monin obukhov rev'
                            = 'sf noah'
   config radt lw scheme
                            = 'rrtmg lw'
   config radt sw scheme
                            = 'rrtmg sw'
   config radt cld scheme
                            = 'cld fraction'
   config gwdo scheme
                            = 'bl ysu gwdo'
```

See Chapter 6 and Appendix B.11 in the User's Guide

Example shown below is the 'convection_permitting' suite.

```
&physics
   config physics suite = 'convection permitting'
&physics
   config convection scheme = 'cu grell freitas'
   config microp scheme = 'mp thompson'
   config_pbl_scheme = 'bl_mynn'
   config_sfclayer scheme = 'sf mynn'
   config 1sm scheme
                           = 'sf noah'
   config radt lw scheme
                           = 'rrtmg lw'
   config radt sw scheme
                         = 'rrtmg sw'
                           = 'cld fraction'
   config radt cld scheme
   config gwdo scheme
                           = 'bl ysu gwdo'
```

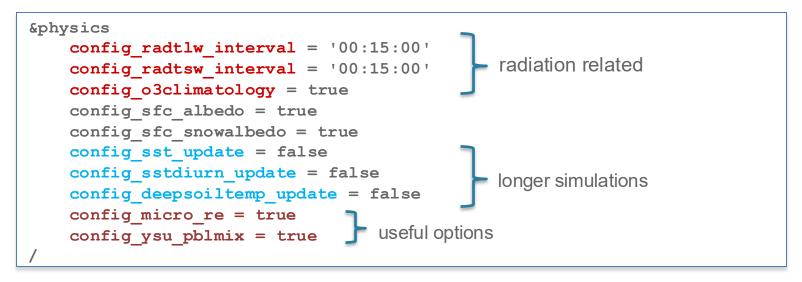
See Chapter 6 and Appendix B.11 in the User's Guide

Physics Suites	Options
'mesoscale_reference'	RRTMG, Xu-Randall cloud fraction, Noah LSM, YSU, Revised MM5 sfc layer, new Tiedtke, WSM6, GWDO
'convection_permitting'	RRTMG, Xu-Randall cloud fraction, Noah, MYNN, MYNN sfc layer, Grell-Freitas, Thompson, GWDO

Can replace one or more options in a suite:

config_physics_suite = `convection_permitting'
config_convection_scheme = 'cu_ntiedtke'

Physics Suites	Options
'mesoscale_reference'	RRTMG, Xu-Randall cloud fraction, Noah LSM, YSU, Revised MM5 sfc layer, new Tiedtke, WSM6, GWDO
'convection_permitting'	RRTMG, Xu-Randall cloud fraction, Noah, MYNN, MYNN sfc layer, Grell-Freitas, Thompson, GWDO


To turn any options off, set it to 'off': e.g.

config_convection_scheme = 'off'

Along with these physics options, also consider the following – all have corresponding options in WRF:

See Chapter 6 and Appendix B.11 in the User's Guide

MPAS Model for Prediction Across Scales

Physics Data Files in MPAS v8.3.1

File Name	Needed by
CAM_ABS_DATA.DBL CAM_AEROPT_DATA.DBL	CAM radiation
RRTMG_LW_DATA RRTMG_SW_DATA OZONE_DAT.TBL OZONE_LAT.TBL OZONE_PLEV.TBL	RRTMG radiation
CCN_ACTIVATE_DATA MP_THOMPSON_freezeH2O_DATA.DBL MP_THOMPSON_QIautQS_DATA.DBL MP_THOMPSON_QRacrQG_DATA.DBL MP_THOMPSON_QRacrQS_DATA.DBL	Thompson Microphysics created by <i>build_tables</i>
GENPARM.TBL LANDUSE.TBL SOILPARM.TBL VEGPARM.TBL	Noah LSM
NoahmpTable.TBL	NoahMP LSM

Physics Code Structure in V8.3.1

MPAS-Model/src/core_atmosphere/physics/

			_
	ccpp_kind_types.F	mpas_atmphys_initialize_real.F	initialization of different
access to	checkout_data_files.sh	mpas_atmphys_init_microphysics.F	physics schemes
data files	Makefile	mpas_atmphys_interface.F	
[mpas_atmphys_camrad_init.F	mpas_atmphys_landuse.F	_
	mpas_atmphys_constants.F	mpas_atmphys_lsm_noahinit.F]
	mpas_atmphys_control.F	mpas_atmphys_lsm_noahmpfinalize.F	_
	mpas_atmphys_date_time.F	mpas_atmphys_lsm_noahmpinit.F	
	mpas_atmphys_driver_cloudiness.F	mpas_atmphys_lsm_shared.F	•
	mpas_atmphys_driver_convection.F	mpas_atmphys_manager.F	
	mpas_atmphys_driver.F	mpas_atmphys_o3climatology.F	
	mpas_atmphys_driver_gwdo.F	mpas_atmphys_packages.F	
	mpas_atmphys_driver_lsm.F	<pre>mpas_atmphys_rrtmg_lwinit.F</pre>	
drivers for different physics schemes	mpas_atmphys_driver_lsm_noahmp.F	mpas_atmphys_rrtmg_swinit.F	
	mpas_atmphys_driver_microphysics.F	mpas_atmphys_sfc_diagnostics.F	-
	mpas_atmphys_driver_oml.F	mpas_atmphys_todynamics.F	
	mpas_atmphys_driver_pbl.F	mpas_atmphys_update.F	
	mpas_atmphys_driver_radiation_lw.F	mpas_atmphys_update_surface.F	
	mpas_atmphys_driver_radiation_sw.F	mpas_atmphys_utilities.F	
	mpas_atmphys_driver_seaice.F	mpas_atmphys_vars.F	
	mpas_atmphys_driver_sfclayer.F	physics_noahmp/	ing magduda a
	mpas_atmphys_finalize.F	physics_wrf/	ics modules
	mpas_atmphys_functions.F	Registry_noahmp.xml	
	mpas_atmphys_init.F	physics_mmm/ direc	tories appear
		physics noaa/UGWP after	compilation

Physics Code Structure in V8.3.1

MPAS-Model/src/core_atmosphere/physics/physics_wrf

bl_mynn_post.F bl mynn pre.F cu_ntiedtke_post.F cu_ntiedtke_pre.F libmassv.F LICENSE Makefile module_bep_bem_helper.F module_bl_gwdo.F module bl mynn.F module_bl_ugwp_gwdo.F module_bl_ysu.F module_cam_error_function.F module_cam_shr_kind_mod.F module_cam_support.F module_cu_qf.mpas.F

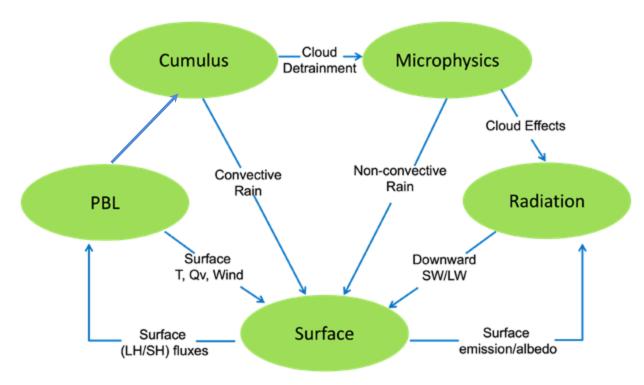
module_cu_kfeta.F module_cu_ntiedtke.F module_cu_tiedtke.F module_mp_kessler.F module_mp_radar.F module_mp_thompson_aerosols.F module_mp_thompson_cldfra3.F module_mp_thompson.F module_mp_wsm6.F module_ra_cam.F module_ra_cam_support.F module_ra_rrtmg_lw.F module_ra_rrtmg_sw_aerosols.F module_ra_rrtmg_sw.F module_ra_rrtmg_vinterp.F module_sf_bem.F

module_sf_bep_bem.F module_sf_bep.F module_sf_mynn.F module_sf_noahdrv.F module_sf_noahlsm.F module_sf_noah_seaice_drv.F module_sf_noah_seaice.F module_sf_oml.F module_sf_sfcdiags.F module_sf_sfclay.F module_sf_sfclay.F module_sf_sfclayrev.F module_sf_urban.F sf_mynn_pre.F sf_sfclayrev_pre.F

Physics Code Structure in V8.3.1

MPAS-Model/src/core_atmosphere/physics/physics_mmm

bl_gwdo.F90 bl_gwdo.mod bl_gwdo.o bl_mynn_common.mod bl_mynn.F90 bl_mynn.mod bl_mynn.o bl_mynn_subroutines.F90 bl_mynn_subroutines.mod bl_mynn_subroutines.o bl_ysu.F90 bl_ysu.mod bl_ysu.o cu_ntiedtke_common.mod cu_ntiedtke.F90 cu_ntiedtke.mod cu_ntiedtke.o LICENSE Makefile.mpas module_libmassv.F90 module_libmassv.mod module_libmassv.o


```
mp_radar.F90
mp_radar.mod
mp_radar.o
mp_wsm6_effectRad.F90
mp_wsm6_effectrad.mod
mp_wsm6.effectRad.o
mp_wsm6.F90
mp_wsm6.oo
mynn_shared.F90
mynn_shared.mod
```

mynn_shared.o
README.md
sf_mynn.F90
sf_mynn.mod
sf_mynn.o
sf_sfclayrev.F90
sf_sfclayrev.mod
sf_sfclayrev.o

MPAS-A Physics

Additional Resources

For references to various physics schemes and detailed physics talks:

1. https://www2.mmm.ucar.edu/wrf/users/physics/phys_references.html 2. https://www2.mmm.ucar.edu/wrf/users/tutorial/tutorial.html

See Chapter 6 and Appendix B.11 in the User's Guide

We expect more physics options to become available in MPAS-A along with new developments contributed from the community.

