### **PHYSICS AND PHYSICS CONFIGURATIONS**

Laura D. Fowler

Mesoscale and Microscale Meteorological Laboratory National Center for Atmospheric Research, Boulder, Colorado. USA.



NSE

MPAS TUTORIAL (1th-3rd May 2023).

## OUTLINE

- Physics parameterizations and interactions between physics processes.
  - o Radiation.
  - $\circ$  Convection.
  - Clouds and cloud microphysics.
  - Land surface and Planetary Boundary Layer (PBL) processes.
- Physics in MPAS.







## PHYSICS - INTERACTIONS BETWEEN PHYSICS PROCESSES





- Radiation is the ultimate driver of atmospheric circulations, because of its uneven global distribution at the Earth's surface and in the atmosphere (impact of solar insolation, land versus oceans).
- Radiation parameterizations aim to provide a fast and accurate way to determine
  - the total radiative flux at the ground surface which is needed to compute the surface energy budget, and
  - the vertical radiative flux divergence which is used to compute the radiative heating and cooling rates in a given atmospheric column.

$$\frac{\partial T}{\partial t} = \frac{1}{\rho C_p} \frac{\partial}{\partial z} (F_D - F_U)$$

 $F_D$ : downward radiation flux  $F_U$ : upward radiation flux



## LONG- AND SHORT-WAVE RADIATION PARAMETERIZATIONS



#### SIMPLIFICATIONS

- The long- and short-wave portions of the radiation spectrum are distinct and can therefore be treated separately.
- Many of the gases (H2O, CO2, O2, O3) are active in specific wavelength bands, allowing to compute their absorption, emission, scattering separately.

#### METHODS

- Long- and short-wave radiation fluxes are computed in two steps: 1) for clear-sky fluxes; and 2) for allsky fluxes to account for aerosols and clouds.
- Clouds and aerosols impact long- and short-wave radiation fluxes (cooling at cloud-tops, warming at cloud-base, aerosol scattering).



# MOIST CONVECTION AND CONVECTION PROCESSES

• Moist convection is a difficult process to parameterize because it occurs in many shapes and sizes: for convenience, moist convection is often categorized as *deep* or *shallow* convection.



The chaotic complexity of convection is evident in this picture taken during field observations in the western tropical Pacific. Credit: Dave Raymond

#### DEEP CONVECTION

- Characterized by strong precipitating updrafts that can span much of the troposphere.
- Characterized by extended anvils developing at the top of the narrow updrafts.
- Acts to warm and dry the environment through latent heat release.

#### SHALLOW CONVECTION

- Characterized by weak non-precipitating updrafts that can span a small portion of the troposphere.
- Detrainment and evaporation of cloud water at the top of the updrafts. Condensation at cloud base.
- Has a strong impact on surface radiation budget.





Schematic of a bulk convection scheme with a shallow and deep entraining/detraining cloudy ascending plume, and downdraught region. Further represented features are trigger of convection, environmental subsidence, microphysics and precipitation, and detrainment of cloud mass in anvils (Bechtold, 2017).

#### CONVECTIVE PARAMETERIZATIONS MASS FLUX SCHEMES

- Triggering function that determines which atmospheric column is convectively unstable.
- Cloud model that describes moist processes in the updrafts (condensation and precipitation) and downdrafts (evaporation).
- Closure that determines the cloud base mass flux.
- Large-scale feedbacks.



### MOIST CONVECTION AND CONVECTION PROCESSES

Energy



Scale-aware parameterizations



- Recent years have seen the development of *faster* supercomputers, and global NWP models to run on increasingly higher (convection-permitting) horizontal resolutions.
- MPAS variable-resolution meshes present a challenge for convective parameterizations tasked to represent the effects of subgrid-scale convective processes on the mesh, and developed for low-resolution horizontal meshes.

Example of a variable-resolution (50-3 km) mesh centered over the western Pacific Ocean





#### MOIST CONVECTION AND CONVECTION PROCESSES Scale-aware convective parameterizations

CONVECTIVE PRECIPITATION RATE (mm day<sup>-1</sup>)



As horizontal resolution increases, the contribution of convective precipitation to the total precipitation decreases.



- Cloud microphysics parameterizations are intended to simulate cloud processes describing the formation and lifecycle of a non-convective stratiform (grid-scale) cloud. Once the relative humidity exceed 100%, then cloud droplets (ice crystals) can form producing clouds.
- Cloud microphysics processes modify the atmosphere energy budget and hydrological cycle through:
  - latent heat release associated with condensation, evaporation, deposition, sublimation, freezing, and melting;
  - o grid-scale precipitation;
  - cloud optical properties, and;
  - mass loading of the different hydrometeors in the dynamics.
- Microphysics parameterizations are typically grouped into "bulk" and "bin" approaches.
  - bulk schemes use a specified functional form for the particle size distributions of hydrometeors; include single-moment and double-moment schemes.
  - bin schemes divide the particle size distribution into a number of finite size or mass categories (more expensive to run).



WRF Single-Moment 6-class Microphysics scheme (WSM6; Hong and Lim, 2006) *Single-Moment*: predict only mass mixing ratios.



**Fig. 1.** Flowchart of the microphysics processes in the WSM6 scheme. The terms with red (blue) colors are activated when the temperature is above (below)  $0^{\circ}$ C, whereas the terms with black color are in the entire regime of temperature.



WRF Double-Moment 6-class Microphysics scheme (Thompson; Thompson et al. 2004) *Double-Moment*: predict mass mixing ratios plus number concentrations of cloud species.

- Prognostic water vapor, cloud water, cloud ice, rain, snow, and graupel mass mixing ratios.
- Prognostic cloud ice and rain number concentrations.
- a two-moment scheme allows cloud-aerosols-radiation interactions through nucleation of aerosols to CCN and activation of aerosols to IN.



#### Aerosols-Cloud-Radiation interactions





## SURFACE, PBL, AND LAND MODEL PROCESSES





### LAND SURFACE, PBL, AND LAND MODEL PROCESSES





# LAND SURFACE, PBL, AND LAND MODEL PROCESSES



# LAND SURFACE MODELS

Interactions between the atmosphere and vegetation

- Impact of vegetation (evapotranspiration and photosynthesis by plants, plant roots in deep soil layers, ...)
- Momentum transfer (vegetation canopies are rough surfaces with large roughness lengths that produce larger surface forces and surface drag).
- Soil moisture availability (LSMs predict soil temperature and soil moisture) as a function of soil type (bare soil versus canopy).
- Impact of snow on ground (LSMs predict the snow water equivalent).
- Radiation (multiple reflections from leaves, absorption of radiation by chlorophyll,...)
- Insulation (type and density of vegetation).





**Illustration of PBL Processes** 

- The PBL includes atmospheric layers that are directly influenced by surface heat, moisture, and momentum fluxes.
- The PBL height is strongly influenced by the diurnal cycle, varying between a few tens of meters and several kms.
- Turbulence is the chief mechanism by which surface forcing is transmitted through the PBL.
- PBL schemes include "non-local" closure schemes (YSU) and "local" closure schemes (MYNN).
- Basic turbulence diffusion equation (u,v,T,q):

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left[ K_c \left( \frac{\partial C}{\partial z} - \gamma_c \right) \right]$$

 $K_c$ : diffusivity coefficient.  $\gamma_c$ : counter gradient



## 0. CALL TO PHYSICS INITIALIZATION

read input tables for land surface scheme, ozone, and LW and SW radiation

#### **1. CALL TO PHYSICS DRIVER**

compute physics tendencies and surface fluxes.

- Clouds, longwave and shortwave radiation schemes.
- Surface layer scheme.
- Land-surface scheme.
- Planetary Boundary Layer (PBL) schemes.
- Gravity wave drag over orography.
- Deep and shallow convection.

2. ADD PHYSICS TENDENCIES IN DYNAMICAL CORE

multiply the tendencies by mass, and add tendencies to state variables

#### **3. CLOUD MICROPHYSICS**

directly update state variables and restore RH to 100%.

back to 1.







### 1. CALL TO PHYSICS DRIVER call physics\_driver

- call driver\_cloudiness (...)
- call driver\_radiation\_sw / call driver\_radiation\_lw (...)
- call driver\_sfclayer (...) / call driver\_lsm (...)
- call driver\_pbl (...)
- call driver\_gwdo (...)
- call driver\_convection (...)

2. ADD PHYSICS TENDENCIES IN DYNAMICAL CORE call physics\_get\_tend





- At present, all the physics parameterizations available in the MPAS public release come from the *WRF phys* directory.
- MPAS includes only a small subset of the WRF physics.
- Physics parameterizations are not as *updated* as the WRF physics.



• All the physics options are available in *./src/core\_atmosphere/Registry.xml* in the namelist record "physics".

<nml\_record name="physics" in\_defaults="true">

• In *Registry.xml*, each physics option has a default value set for generic global-scale forecasts. For instance:

<nml\_option name="config\_sfc\_albedo" type="logical" default\_value="true" in\_defaults="false" units="-" description="logical for configuration of surface albedo" possible\_values=".true. for climatologically varying surface albedo; .false. for fixed input data"/>

- Physics options are modified and added in namelist.atmosphere in the "&physics" namelist record:
  - note that *atmosphere\_model* will run if you do not specify any physics options. It will simply use the default options set in Registry.xml.
  - o in terms of physics parameterizations, MPAS uses the concept of *physics suite*.



- A physics suite comprises a set of parameterizations, each parameterization describing an individual physics process (radiation, PBL, convection, ...)
- Each physics suite *targets* a certain application, driven by the complexity of the schemes it includes.
- In MPAS, there are two separate suites:
  - the *mesoscale\_reference* suite, better suited for mesoscale horizontal resolution (> 20 km), long-term simulations.
  - the *convection\_permitting* suite, better suited for high spatial resolution where convective motions are explicitly resolved, at least in a portion of the mesh.
  - the suites use different parameterizations of PBL processes, different parameterizations of deep convection, and different parameterizations of cloud microphysics.
  - the suites share the same parameterizations of land surface processes, radiation, and gravity wave drag over orography.
  - o in each suite, a parameterization can be easily substituted by another, if needed.



#### **A S PHYSICS SUITES: THE MESOSCALE\_REFERENCE SUITE** Prediction Across Scales config\_physics\_suite = "mesoscale\_reference"



- The nTIEDTKE deep convection scheme is insensitive to the horizontal grid-spacing.
- The WSM6 cloud microphysics scheme is a one-moment scheme, and assumes an infinite number concentrations for the 5 hydrometeor species.

### AS PHYSICS SUITES: THE CONVECTION\_PERMITTING SUITE ediction Across Scales config\_physics\_suite = "convection\_permitting"



- The GRELL-FREITAS (and the scale-aware nTIEDTKE) deep convection scheme takes into account variations in the horizontal grid-spacing.
- The THOMPSON cloud microphysics scheme is a two-moment scheme, and includes prognostic equations for cloud ice and rain.



## **PHYSICS OPTIONS**

• Once a physics suite is chosen, additional physics options can be added in the namelist record "physics":

<nml\_option name="config\_radtlw\_interval" type="character" default\_value="00:30:00" units="-"

description="time interval between calls to parameterization of long-wave radiation" possible\_values="`DD\_HH:MM:SS' or `none"/>

<nml\_option name="config\_radtsw\_interval" type="character" default\_value="00:30:00" units="-"

description="time interval between calls to parameterization of short-wave radiation" possible\_values="`DD\_HH:MM:SS' or `none'"/>

<nml\_option name="config\_microp\_re" type="logical" default\_value="false" units="-"

description="logical for calculation of the effective radii for cloud water, cloud ice, and snow" possible\_values=".true. for calculating effective radii; .false. for using defaults in RRTMG radiation"/>

### CONCLUSIONS

- MPAS physics includes the fundamental parameterizations to produce realistic forecasts.
- MPAS variable-resolution meshes offer the opportunity to investigate scale-aware parameterizations; in particular, deep convection.
- Despite the fact that high-resolution global forecasts have been successfully produced, the need for added and improved parameterizations remains:
  - improved parameterization of the cloud fraction.
  - formal parameterizations of aerosols and their interactions with clouds and radiation.
- Contributions from developers and scientists interested in contributing to the MPAS physics.



