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What are convective extremes?




What are Convective Extremes?

Straight Line Winds Flash Flooding Lightning

Tornados




Why are they important?
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« Convective storms cost ~20 US$ bn per year in the US
* Losses are increasing over time
« Large interannual variability




How often do they happen?
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Large Hail Observations
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« Hail frequency is increasing with o R
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« Even the road network can be identified BN S
in the observations [Allen et al. 2015]
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Approaches to model
convective extremes




Approaches to simulate convective extremes
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Favorable Large-Scale Environments
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Helicity/Minimum Wind (m/s)

Cheap computation

low-resolution models

Neglects a-typical situation
Assumes stationarity

Environmental conditions that
are favorable for hazard
development are identified

E.g., tornado producing
supercells (left figure)

Environments could be produced by




Environmental Proxies

Derechos
Evans and Doswell Il (2001) - Weather and Forecasting
Coniglio et al. (2004) Weather and Forecasting

Flash Floods
Doswell Il et al. (1996) Weather and Forecasting
Schumacher and Johnson (2005) Monthly Weather Review

Lightning
Romps et al. (2014) Science
Price and Rind (1992) JGR-A

Tornadoes

Brooks et al. (1994) Weather and Forecasting
Brooks et al. (2003) Atmospheric Research
Large Hail

Billet et al. (1997) Weather and Forecasting
Allen et al. (2015) JAMES

Land Slides
Crozier (1999) Earth surface processes and landforms
Larsen and Simon (1993) Geografiska Annaler: Series A
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Deep convection in atmospheric models

626 times more grid cells

— GCM grid spacing (~100 x 100 km)

« Deep convection is sub-gridscale
process

* Needs cumulus parameterization

S—

When do we start to resolve

deep convection?

 ~4 km horizontal grid spacing
(Weisman et al. 1997)

100 km
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First demonstrations of real-time CAM forecasts

2004 Storm Prediction Center / National Severe Storms Laboratory Hazardous
Weather Testbed Spring Program

I 12 km bperational Eta

Kain et al. (2006): “Collectively, results & Timperesrer .
from the [2004] Spring Program provide } = e
compelling evidence that the tested
experimental models provided added
value for forecasters of severe weather.

Initiation: 3
Evolution: 4
Mode: 5
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...Increasing resolution to that afforded T
by 4-5-km grid spacing seems Inttion:
particularly attractive because it Mot 7
obviates the need for parameterization |}
of deep convection, which is viewed by
many as the Achilles’ heel of current

operational NWP models.”
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CPM approaches

limited-area modeling global CPM climate simulations

stretched-grid models

[Prein et al. 2015]
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Model Physics

Physics setup
adapted from

Difficult to test
setups on climate

weather forecasting time-scales

models

Clouds, Aerosols, and

Shallow convection
®
Droplet Soil-atmosphere coupling

Raindrop
@ Graupel & Hall
# Snow
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MCS in 3 atmospheric regimes
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~10 km Grid Spacing (Ax) ~250 m [Wyngaard 2004, JAS]
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Grid Spacing Dependence on Storm Precipitation
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Mesoscale Convective System (MCS)
In Texas during March 2007

STAGE IV
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MCS attributes - JJA Central U.S.

Realistic
representation of MCS
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Supercell Simulation

University of Wisconsin | SSEC
https://www.youtube.com/watch?v=uLkghfvEORk



https://www.youtube.com/watch?v=uLkghfvE0Rk

Approaches to simulate convective extremes
High Winds Flash Flooding Lightning

Favorable Large-
Scale
Environments

Statistical
Modeling

Severe Convective
Hazzard
Information

Hazzard is
modeled

Dynamical
Downscaling

Environment is

gqu;rnados Giant Hail aﬂnd Slides e




Convective Hazards under Climate Change

Frequency of March, April, and May CAPE times 0—6-km bulk wind difference
Current Climate End of century; A2 scenario

March-April-May CAPE x 0-6km BWD - 20,000 March-April-May CAPE x 0-6km BWD ~ 20,000

A
Gensiniand Mote 2015; Climatic Change
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Observational Datasets

Event based observations
— NOAA Storm Events

— BoM Severe Storms Archive

— ESSL's European Severe Weather

Hourly Precipitation records
— Stage-4 gidded precipitation for US

— INTENSE project — global hourly precipitation

Satellite products
— Lightning

— Overshooting tops
Meteosat Second Generation (access from Meteosat)

— 4 hourly precipitation from GPM
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https://www.ncdc.noaa.gov/stormevents/ftp.jsp
http://www.bom.gov.au/australia/stormarchive/
https://www.eswd.eu/
http://data.eol.ucar.edu/cgi-bin/codiac/fgr_form/id=21.093
https://research.ncl.ac.uk/intense/aboutintense/
https://lightning.nsstc.nasa.gov/data/data_lis.html
https://pmm.nasa.gov/data-access/downloads/gpm

Final Remarks




« Convective extremes have severe impacts on
the economy and society

 Traditionally studied in weather forecasting but
convective extremes & climate change is a
novel and fast-growing research area

* Many challenges that need to be addressed
observations, high-resolution modeling, process understanding

This material is based upon work supported by the National Center for Atmospheric Research, which is a
major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.




