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Doubt is not a pleasant condition,
but certainty is absurd.
- Voltaire
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Main Points

» Determining important sources of uncertainty for
your project.

« Understanding uncertainty through ensemble
modeling.

» Concept of relevant and useful uncertainty.
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Taming the Uncertainty Monster

(Van der Sluijs, 2005; Curry and Webster, 2011)

Monster Hiding

Monster Exorcism

Monster Simplification

Monster Detection

Monster Integration
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What uncertainty monster
do you deal with?




Sketch your uncertainty concept map
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Future Weather Extremes are Unknown

We don’t know what the future extreme weather will be,
but we know the range of possibilities and their likelihoods.
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Future Weather Extremes are Unknown and Uncertain

If future extreme weather is a roll of the die:
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Then our projections of future extreme weather are rolls of
what we think that die looks like:
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Many Uncertainty Sources

_ < > Boundary Forcing
Uncertainty Uncertainty

Weather Extremes ‘ 1

Initial Condition
Uncertainty

J
Which uncertainty source affects your project?

NCAR | Climate and Weather Extremes Tutorial

UCAR | July 26, 2019




Determine your sufficient resolution
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Model Uncertainty: Physics
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Can your model generate the extreme phenomena?
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Model Uncertainty: Sample Size

Tropical cyclogenesis locations from 1950 to 2003

Hall and
Determine your sufficient sample size Jewson (2007)
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Boundary Forcing Uncertainty

Radiative Forcing (anthropogenic & natural)
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Perhaps choose the strongest forcing to get a signal
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A Initial Condition Uncertainty

60N 100% agree

30N

10
0% agree

150W 120W 90W 60W 30W

Need a large domain to sample Initial condition uncertainty
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Fraction of total variance [%)]

The Dominant Uncertainty Varies with Scale

Global Regional

Global, decadal mean surface air temperature British Isles, decadal mean surface air temperature
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Hawkins and Sutton (2009)

On regional scales, sample IC and model uncertainty
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Initial Condition vs.
Physics Uncertainty
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Multi-model approach samples greater uncertainty.
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Can you use temperature instead?



Laboratory Task 1

What are the relative contributions to uncertainty in seasonal
tropical cyclone (TC) numbers and intensity from internal
variability and model physics?

TC track data:
« Single year (1998) 16-member initial condition ensemble.
* Single year (1998) 14-member model physics ensemble.

Done, J. M., C. L. Bruyere, M. Ge, and A. Jaye (2014), Internal variability of North Atlantic
tropical cyclones, J. Geophys. Res. Atmos., 119, 65606-6519, doi:10.1002/2014JD021542.
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Lab Task 1: Suggested Approach

Using R, compare box plots of seasonal TC number and
seasonal TC intensity to quantify and visualize the spread due to
iInternal variability and model physics.

Download data and follow instructions under the ‘Uncertainty’
link under ‘Lab Projects’ tab on our website.

TC track data zip files:

* Initial_condition_ensemble.zip
* physics_ensemble.zip
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Lab Task 1: Results

Distributions of TC Counts Distributions of TC Intensity
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Ensemble Climate Simulation
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Ensembles provide a lower uncertainty bound (Stainforth 2007)
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Impact of Model Bias

Slingo and Palmer (2011)
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Computational Limitations

A balance between competing multiplicative demands:

C ~ L2*N,"T*N./(Dx3)
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Computational Limitations

Complexity/resolution

Y
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Computational Limitations

Complexity/resolution

W
N

On
Sufficient complexity to capture the extremes.
Run ensemble and one member at high-resolution.

O N |
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Ensemble Considerations

 Which uncertainty to sample?
« How many ensemble members ...37...30?7 ...30007?
« Weight the members, even discard some?

When uncertainty poorly understood, use less quantitative measures: range
or sign of a change (Kandlikar et al, 2005).

All ensembles are useful, the key is the interpretation.
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More Uncertainty Sources!
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Analysis Uncertainty
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Be consistent across datasets

Asuka Suzuki-Parker
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Observational Uncertainty

What we observe is not nature itself, but nature exposed
to our method of questioning. — Heisenberg

 DEAD&ALIVE
, SCHRODINGER'S CAT
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Differences among observational datasets
can have similar magnitude to model error

b)

RCM-Min Obs DJ i
\ -

c) RCM-Max Obs D

Prein and Gobiet (2016)

Use multiple observational datasets for model evaluation
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Computational Uncertainty

Experimental Design:

IBM
y . —
(ANL’s Intrepid)

CRAY :
(NCAR’s Lynx)
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Computational Uncertainty
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A Goal For Ensemble Simulation

The goal is not to reproduce the observed weather extremes,
but rather to produce a range of possible scenarios consistent
with known large-scale conditions.

Historical weather extremes are just one of many possibilities.
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Relevant Uncertainty

Threshold sensitive decisions:

Damage
Damage

Wind Speed Flood Depth

Focus uncertainty assessment
on the scales and variables of interest
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Useful Uncertainty: Example

days exceeded confidence
Threshold
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<>
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© OpenStreetMap contributors © OpenStreetMap contributors

Provide useful uncertainty
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Prioritize your Uncertainty Sources
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Lab Task 2: Suggested Approach

Using R, calculate and visualize the exceedance probability of 9
TCs, by fitting a distribution function to the seasonal TC
numbers from the ensemble simulations.

Download data and follow instructions under the ‘Uncertainty’
link under the ‘Lab Projects’ tab on our website.

TC track data zip files

e initial_condition_ensemble.zip
e physics_ensemble.zip
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Lab Task 2: Results

Histogram of ic_members.count
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Main Points

« Determining important sources of uncertainty for your
project.

» Understanding uncertainty through ensemble modeling.

« Concept of relevant and useful uncertainty.
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