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To grasp the need for Bayesian statistics in climate research

To become familiar with Bayesian thinking

To understand Bayesian data analysis methods applied to 
climate studies

Objectives
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Lecture and lab sessions

July 26, 2013

Lecture: Introduction to Bayesian Methods

Online lab sessions

Module name: “Bayesian Data Analysis for Climate 
Model Evaluation”

www.m2lab.org
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What you need to get started:
Software: R (www.r-project.org)

Books: 

Bolstad, W.M. (2007) Introduction to Bayesian Statistics, 2nd ed., Hoboken, Wiley.

Kruschke, J.M. (2010) Doing Bayesian Data Analysis: A Tutorial with R and BUGS, Waltham, 
Elsevier.

Papers:

Knutti et al. (2010) Challenges in combining projections from multiple climate models. Journal of 
Climate, 23, pp. 2739-2758.

Lopez et al. (2006) Two Approaches to Quantifying Uncertainty in Global Temperature Changes. 
Journal of Climate, 19, pp. 4785-4796.

Smith et al. (2009) Bayesian modeling of uncertainty in ensembles of climate models. Journal of 
the American Statistical Association, 104, pp. 97-116.

Stephenson et al. (2011) Statistical problems in the probabilistic prediction of climate change. 
Environmetrics, 23, pp. 364-372.

Tebaldi et al. (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian 
approach to analysis of multimodel ensembles. Journal of Climate, 18, pp. 1524-1540.
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Why Bayesian statistics?
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Lopez et al. (2006)

“The Bayesian approach is motivated by observing 
that the earth’s climate is a nonrepeatable 
experiment, and probabilities cannot be determined 
through a frequentist approach, as that would require 
a sample from a large number of planets earth and 
their corresponding climates”

Stephenson et al. (2011)

“Because we only have one realisation of real 
climate, the relationship of real climate to the MME 
requires a subjective Bayesian interpretation of 
probability”
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Background
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Wikipedia www.sherlockholmesonline.org/
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"Good-morning, madam," said Holmes cheerily. "My name is 
Sherlock Holmes. This is my intimate friend and associate, Dr. 
Watson, before whom you can speak as freely as before myself.
... 
Her features and figure were those of a woman of thirty, but her 
hair was shot with premature grey, and her expression was 
weary and haggard. Sherlock Holmes ran her over with one of 
his quick, all-comprehensive glances.
"You must not fear," said he soothingly, bending forward and 
patting her forearm. "We shall soon set matters right, I have no 
doubt. You have come in by train this morning, I see."
"You know me, then?"

http://www.image.ucar.edu/~nychka/Temp/TenLectures/Paleoclimate/speckled.txt
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"No, but I observe the second half of a return ticket in the palm 
of your left glove. You must have started early, and yet you had 
a good drive in a dog-cart, along heavy roads, before you 
reached the station."
The lady gave a violent start and stared in bewilderment at my 
companion.

"There is no mystery, my dear madam," said he, smiling. "The 
left arm of your jacket is spattered with mud in no less 
than seven places. The marks are perfectly fresh. There 
is no vehicle save a dog-cart which throws up mud in that 
way, and then only when you sit on the left-hand side of 
the driver."

"Whatever your reasons may be, you are perfectly correct," 
http://www.image.ucar.edu/~nychka/Temp/TenLectures/Paleoclimate/speckled.txt
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http://www.youtube.com/watch?v=kmlwZ49ibQA
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History
James Bernoulli (1713)

Reverend Thomas Bayes - posthumous paper (1763)

Laplace (1812)

Laplace/Bayes: probability represented by a degree-of-
belief or plausability - how much they thought 
something was true, based on the evidence at 
hand

19th century: probability redefined - relative frequency, 
given infinitely many repeated (experimental) trials

Sivia and Skilling (2006)
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Laplace: mass of saturn

Estimate the mass of Saturn given orbital data that 
were available from various astronomical observatories.

Computed the posterior probability (PDF) for the mass 
M, given the data and all relevant background 
information I (such as knowledge of the laws of 
classical mechanics): prob(M|{data},I)

Shaded area: how much Laplace believed that the 
mass of Saturn lay in the range between m1 and m2: 
‘...it is a bet of 11,000 to 1 that the error of this result is 
not 1/100th of its value.’  
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Mass of Saturn
Laplace solved this problem successfully since 150 years of data has 
changed his estimate by only 0.63%

Frequentist approach - not allowed to use probability theory to solve 
the problem. The mass of Saturn is a constant and not a random 
variable; therefore, it has no frequency distribution and so probability 
theory cannot be used!

Why should we have to think about many repetitions of an 
experiment that never happened? What we really want to do is 
to make the best inference of the mass given the (few) data that 
we actually have; this is precisely the Bayes and Laplace view 
of probability!
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Bayes’ theorem

prob(X|Y, I) =
prob(Y |X, I) × prob(X|I)

prob(Y |I)

prob(hypothesis|data, I) ∝ prob(data|hypothesis, I) × prob(hypothesis|I)

Prior probabilityLikelihood functionPosterior probability

Evidence (marginal likelihood)
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Is this a fair coin?

How can we measure that?

Binomial distribution:

prob({data}|H,I) ∝ HR (1-H)N-R

Let’s see some examples from Sivia & Skilling (2006)
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How can we use the Bayesian Approach 
in Climate Research?
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Extreme wind analysis

Hooper Bay, AK
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Generalized Extreme Value Distribution (GEV)

Trivariate Normal Distribution

Japanese Reanalysis

Prior: spatial

θ′ = (µ, log σ, ξ)
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GEV

F (z) = exp

{

− [1 + ξ(z − µ)/σ]
−

1

ξ

+

}

(µ, σ, ξ) location, scale and shape parameters
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GEV Parameters for September
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GEV in R
“evdbayes” package

http://cran.r-project.org/web/packages/evdbayes/
evdbayes.pdf

https://edit.ethz.ch/cces/projects/hazri/EXTREMES/talks/
colesDavisonDavosJan08.pdf

Practical example (Dr. Fawcett, Newcastle University):

http://www.mas.ncl.ac.uk/~nlf8/part6.pdf

“evd” package: http://cran.cnr.berkeley.edu/web/
packages/evd/evd.pdf
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Climate model uncertainty
The work by Claudia Tebaldi

http://www.image.ucar.edu/~tebaldi/papers.html

Tebaldi et al. (2005) Quantifying Uncertainty in Projections 
of Regional Climate Change: A Bayesian Approach to the 
Analysis of Multimodel Ensembles. Journal of Climate, 18, 
pp.1524-1540. 

R package: “REA”
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Framework

GCMs - different future climate projections

How can we combine them into a probability 
distribution of future climate change?

Univariate and Multivariate Models - Smith et al (2007)
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Smith et al (2007)
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Temp. change (DJF - A2)
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Sensitivity studies
Mesquita et al. (2012)

Mesquita, M.d.S., Ådlandsvik, B., Bruyère, C. and Sandvik, A. (2012) Bayesian 
assessment of horizontal resolution in a nested-domain WRF simulation. 13th 
Annual WRF Users' Workshop, 25-29 June 2012, Boulder, CO, USA.

https://www.regonline.com/AttendeeDocuments/
1077122/43357632/43357632_1045166.pdf

Mesquita, M.d.S. (2012) A Bayesian approach for evaluating regional climate 
models. Ten Lectures on Statistical Climatology, 6-10 August 2012, University of 
Washington, Seattle, USA.

Mesquita, M.d.S. (2012) An alternative approach for evaluating regional climate 
models using Bayesian Probability. ECRA: High Impact Events and Climate 
Change, Cambridge University, UK, on June 15.
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Motivation
Large number of parameterization scheme choices in sophisticated limited-
area models

The Weather Research and Forecasting (WRF) version 3.0:

mp_physics: 13 options

cu_physics: 6 options

(mp_physics, cu_physics) = C(13,1)*C(9,1) = 117 combinations!

There many other combinations to consider: radiation schemes, turbulence 
schemes, land schemes, boundary layer schemes, SST update, slab 
ocean, resolution and domain size

The choice of domain size and position can also affect the results

31



Challenges
It is computationally expensive to run several 
combinations of schemes, resolutions and domain 
characteristics

Even with a few combinations, one would need a large 
sample to make inferences and to obtain robust 
statistics

It would be more appealing to use a method that could:

Make use of small samples for statistical inference

Provide a “richer” picture of the estimated 
32



Data and setup
Model: WRF tropical-channel domain

Resolution: 36 and 50 km

Combinations of 2 Cumulus and 2 Microphysical parameterization schemes

mp_physics = 3 (Hong-Dudhia-Chan)

mp_physics = 6 (Hong-Lin)

cu_physics = 1 (Kain-Fritsch) 

cu_physics = 2 (Betts-Miller-Janjic)

LBC data: ERA Interim

Years: 2001-2002 (2001 spin-up)

Focus: Brazilian northeast region (3-13S; 35-45W)
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What is the tropical-channel domain?
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Bayesian Inference
Bayesian inference is the process of fitting a probability 
to a set of data and summarizing the result by a 
probability distribution on the parameters of the model 
and on unobserved quantities such as predictions for 
new observations

Three-step approach to Bayesian data analysis:

1. Setting up a full probability model

2. Conditioning on data

3. Evaluating the fit of the model 
Gelman et al. (2004)

35



+
Joint inference for the mean and 
variance 

!  Recall the Bayes’ rule: 

!  For any joint distribution p(�,�2), posterior inference 
proceeds using Bayes’ rule: 

 p(θ,σ 2 | y1,…, yn ) =
p(y1,…, yn |θ,σ

2 )p(θ,σ 2 )
p(y1,…, yn )

posterior = Likelihood _ fuction× prior
evidence

Hoff (2009) 
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+
Posterior distribution 

p(θ,σ 2 | y1,…, yn ) = p(θ |σ
2, y1,…, yn )p(σ

2 | y1,…, yn )

 

!  The posterior distribution can be decomposed: 

 

Hoff (2009) 
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+
p(θ,σ 2 | y1,…, yn ) = p(θ |σ

2, y1,…, yn )p(σ
2 | y1,…, yn )

θ | y1,…, yn,σ
2{ } ~ normal(µn,σ

2 /κn )

1/σ 2 | y1,…, yn{ } ~ gamma(υn / 2,υnσ n
2 / 2)

Hoff (2009) 
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+ θ | y1,…, yn,σ
2{ } ~ normal(µn,σ

2 /κn )

µn =
κoµo + ny

κn

σ 2
n =

1
υn

νoσ
2
o + (n−1)s

2 +
κon
κn

y −µo( )2
"

#
$

%

&
'

1/σ 2 | y1,…, yn{ } ~ gamma(υn / 2,υnσ n
2 / 2)

Hoff (2009) 
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+
Prior: �0 and �0

2 

!  JFM (cptec.inpe.br) 
!  Tmax = 28 C to 34 C 
!  Tmin = 22 C to 24 C 
!  Range " 22 C to 34 C 

Prior parameters: 

! �0 = 27 C 

! �0 = 4.58 C (�0
2 = 21) 

! �0 = �0 = 1  

κn =κo + n
υn =υo + n

µn =
κoµo + ny

κn

σ 2
n =

1
υn

νoσ
2
o + (n−1)s

2 +
κon
κn

y −µo( )2
"

#
$

%

&
'

Hoff (2009) 
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+
Monte Carlo sampling 

σ 2(1) ~ inverse_ gamma(υn / 2,υnσ n
2 / 2),

σ 2(S ) ~ inverse_ gamma(υn / 2,υnσ n
2 / 2),

. 

. 

. 

θ (1) ~ normal(µn,σ
2(1) /κn ),

θ (S ) ~ normal(µn,σ
2(1) /κn ),

. 

. 

. 

!  The sequence of pairs {(�2(1),�(1)), …, (�2(S),�(S))} are independent 
samples from the joint posterior distribution of p(�,�2|y1,…, yn) 

Hoff (2009) 
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+

CP1 CP2 

MP3 30, 50 km 30, 50 km 

MP6 30, 50 km 30, 50 km 

!  8 combinations (4 x 2 res.) 

!  Years: 2001-2002 (2001 spin-up) 

!  Season: January – February – March (JFM) 

!  Parameters to be estimated:  
!  2 m Temperature Mean and Variance 

!  Results will be shown with respect to samples drawn from the posterior 
distribution of the mean and variance using a Monte Carlo method 
!  Number of samples: 10 000 per combination 
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+
Posterior distribution (36 km) 
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Mesquita (2012) 
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+
Mean (36 km) 
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Conclusion
Bayesian probability has been used in climate research more 
and more, but:

Not many are familiar with the approach

The frequentist framework is still the rule

It can be very useful, e.g.: extreme data analysis, climate 
uncertainty, sensitivity studies

The Bayesian framework allows us to use smaller sample 
sizes, thus saving computational resources. It also provides 
a “full” view of the parameters – by looking at their 
probabilistic distributions
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Thank you!

Email: michel.mesquita@uni.no

Contact: https://sites.google.com/site/mmeclimate

Educational site: www.m2lab.org
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