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Considerations for Model Design

* |nput data « Choice of physics
— Format ; Bias ; SST  « Surface (Coupling)
« Domain size « Namelist options
— Area of interest « Resolution
— Inflow areas :
* Nudging
* Model runs
— Long runs vs time
slices
* One-way vs Two-
way nesting

Regional Climate Tutorial 3



Global vs Regional Models
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WREF System

Set up model domain

\ Combine met

. ' : data with Vertically
’ Static Data | eogrid domain interpolate and
information check data
metgrid real
Grid Data
WRF
Model
Simulation

Extract and reformat met data
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Domain Size / Boundary

CGM driving data
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Domain Size - Influence of Lateral Boundaries
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Figure. Twelve-hour simulations of 250-hPa winds (m s-1) from the 40-km grid
increment Eta Model initialized at 1200 UTC 3 August 1992, based on experiments that
used a large (a) and small (b) computational domain. The isotach interval is 5 m s-1.

Warner, 2011
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Effect of TRUELAT

dx =100000, dx =100000,
dy =100000, dy =100000,
map_proj = 'mercator’, map_proj = 'mercator’,
ref lat =12.0, ref lat =12.0,
ref_lon =107.0, ref_lon =107.0,
truelat1 =12.0, truelat1 = 22.0,
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Effect of TRUELAT

45°N

40°N
dx = 50000,
dy = 50000, 5N
map_proj ='lambert’,
ref_lat = 40.0, o
ref_lon =-100.0,
truelat1 = 30.0,
truelat2 = 45.0, o
stand_lon =-100.0, 120°W T10°W 100°W 90°W 80°w

TRUE GRID DISTANCE IN KM

97 876 982 988 994 100 100.6
Aprox. time to keep model stable {sec)

582 5856 5882 5928 5964 600 603.6
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Boundary Considerations
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Model Runs (Long vs Time Slices)
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Multiple nests

NRCM 12km
NRCM 36km

wrfinput_d02 wrfinput_do1 wrfout_do1_* AR
‘ wribdy. 02 wribdy_d01 @ (may be multple iles) ek
wrfout_do1_*
v:vr::z;'j%‘? | wr.exe (may be multiple files)
f

* Only interested in running nest for short period
 Don’t want upscaling effects

« Want to do analysis on domain 1 before deciding when/where to
run domain 2
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Physical Parameterizations
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Different Schemes, Different Results
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Figure 4. Average rainfall rate, for a spring-season convective event (a), based on
observations (OBS) and for five simulations that used different treatments for the
convection - four different parameterizations, and no parameterization (EX). Also
depicted is the rainfall rate bias score averaged for three warm-season convective
events (b), again for each of the four parameterizations and for the use of no
parameterization. The four convective parameterizations were the Grell (GR), Kain-
Fritsch (KF), Betts-Miller (BM), and Anthes-Kuo (AK) schemes.

Warner, 2011
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Physics Considerations

60N
40N — -
20N — -
N = ~ Oct1-12
Oct 15-18 Oct 14-20
0 I I I
90E 120E 150E 180
Regional Climate Tutorial

15



40N
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Physics Considerations
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Physics Considerations

British Isles Mediterranean
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Beware of Verification Metrics
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Microphysics

cloud

effects non

convective rain

Radiation

surface
emission/
albedo

downward

SW, LW Surface

cloud detrainment

convective rain
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Atmosphere — Surface Interaction

[Hlustration of Surface Processes

LW/SW LW
SH LH
water ‘ ‘

constant temperature

Need good
SST’s for entire

model run
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COAWST Modeling System

C  coupled MCT

© Ocean ROMS
A  Atmosphere WRF
W wave SWAN
ST Sediment Transport CSTMS
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http://woodshole.er.usgs.gov/operations/modeling/COAWST/

John Warner
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Model Setup

ROMS and
SWAN Grid(s)
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Resolution (Horizontal & Vertical)

Regional Climate Tutorial 24



Resolution

Current observations
36 km base climate
12 km base climate
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Concept of Nudging
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Nudging - Motivation

 Climatologist often use nudging when
downscaling global climate data to keep
the model “on-track” and provide better

climate statistics.
— “One-to-one hurricane climate statistics”

i/«-‘é

* This could potentially impair results
— Global data does not correctly represent waves
— Model not able to spin up own climate
— Model not able to spin up small scale features
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Nudging — An Example

Atlantic 1998 Storms Storrr: Cz:rtengry 60N -
30N s
| | | L
60N = 60N —
30N N 30N L
T l T
90W 60W 30W 90W 60W 30W
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WRF: namelist.input

&time control
auxinput4 inname
auxinput4 interval

"wrflowinp d<domain>"
360, 360, 360,

io form auxinputd4d = 2

&physics
sst update =1,

&time control output_diagnostics : outputs
output diagnostics = 1, | max/min/mean/std of surface

&physics
sst_skin
tmn update

fields
1,  sst_skin: adds a diurnal cycle
1,  to the sea-surface

temperature
tmn_update: updates deep
soil temperature
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bucket mm
bucket J
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WRF: namelist.input — bdy_control

spec_zone: MUST be 1

relax_zone: Default is 4. Climate

spec_zone =1, runs often larger (9)

relax zone = 9,

spec_bdy_width = 10, | gpec bdy width: Sum of top two

spec_exp = 0.33
spec_exp: Typically only used for
wide (10) boundaries. Exponential
weight in boundary

NQ h

\\\\ \\
\~\ \\\
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WRF: namelist.input — adaptive time stepping

use adaptive time step = .true.,

step to output time = .true.,

target cfl =1.2, 1.2, dx = 36
target hcfl = .84, .84, dt: 288 - 144
max step increase pct = 5, 51,

starting time step = -1, -1,

max time step = 200, 120, (~8*dx)
min time step = 90, 30, (~4*dx)
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Useful References

 Done, J.M., Holland, G.J., Bruyere, C.L., Leung, L.R,,
and Suzuki-Parker, A., 2012: Modeling high-impact
weather and climate: Lessons from a tropical cyclone
perspective. NCAR/TN-490+STR, 28pp.
http://nidr.library.ucar.edu/repository/collections/

TECH-NOTE-000-000-000-854

« Warner, Thomas T., 2011: Quality Assurance in
Atmospheric Modeling. Bull. Amer. Meteor. Soc., 92,
1601-1610.doi:
http://dx.doi.orq/10.1175/BAMS-D-11-00054. 1
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Publications

 Bruyére C.L., J.M. Done, G.J. Holland, and S. Fredrick, 2013: Bias Corrections of Global
Models for Regional Climate Simulations of High-Impact Weather, In Review.

« Bruyere C.L., G.J Holland, E. Towler, 2012: Investigating the use of a Genesis Potential
Index for Tropical Cyclones in the North Atlantic Basin, J. Climate, 25, 8611-8626.

* Done, J.M., G.J. Holland, C.L. Bruyére, L.R. Leung, and A. Suzuki-Parker, 2012: Modeling
high-impact weather and climate: Lessons from a tropical cyclone perspective. NCAR
Technical Note NCAR/TN-490+STR, DOI: 10.5065/D61834F M.

« Done. J.M., G.J. Holland, and P. Webster, 2011: The role of wave energy accumulation in
tropical cyclogenesis over the tropical North Atlantic, Clim. Dyn., 36, 753-767.

 Done, J., G.J., Holland, C.L. Bruyére, and A. Suzuki-Parker, 2011: Effects of Climate
Variability and Change on Golf of Mexico Tropical Cyclone Activity. Paper OTC 22190
presented at the Offshore Technology Conference, Houston, Texas, 2-5 May.

« Done J.M., G.J. Holland, C.L. Bruyere, L.R. Leung, and A. Suzuki-Parker, 2013: Modeling
High-Impact Weather and Climate: Lessons from a Tropical Cyclone Perspective, Accepted
in Climatic Change.

 Galarneau, T. J., Jr., 2013: Synoptic-Scale Influences on Subseasonal and Interannual
Variability in African Easterly Wave Activity. In preparation for Journal of Climate.

« Holland G.J., and C.L. Bruyére, 2013: Recent intense hurricane response to global climate
change, Climate Dynamics, 10.1007/s00382-013-1713-0.
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Publications

Holland, G.J., J.M. Done, C.L. Bruyére, C. Cooper and A. Suzuki, 2010: Model Investigations
of the Effects of Climate Variability and Change on Future Gulf of Mexico Tropical Cyclone
Activity. Paper OTC 20690 presented at the Offshore Technology Conference, Houston,
Texas, 3-6 May.

Hsu, H-M., J.J. Tribbia, M.W. Moncrieff, and C.L. Bruyére, 2013: Multiscale Spectral
Structure of Maritime Continent Rainfall Simulated by a Nested Regional Climate Model and
Observed by Satellites. Climate Dynamics, Accepted.

Ray P, C Zhang, M Moncrieff, J Dudhia, JM Caron, LYR Leung, and C Bruyére. 2011: Role
of the Atmospheric Mean State on the Initiation of the Madden-Julian Oscillation in a Tropical
Channel Model. Climate Dynamics 36(1-2):161-184. doi:10.1007/s00382-010-0859-2.
Rasmussen, R., K. [keda, C. Liu, D. Gochis, M. Clark, A. Dai, E. Gutmann, J. Dudhia, F.
Chen, M. Barlage, C.L. Bruyére, and D. Yates, 2013: The Impact of Climate Change on the
Water Balance of the Colorado Headwaters: High Resolution Regional Climate Model
Simulations. Submitted to J. of Hydrometeology.

Suzuki-Parker, A., 2012: An assessment of uncertainties and limitations in simulating tropical
cyclones. Springer Thesis. XIlll, 78 pp.

Towler E., V. Saab, R. Sojda, K. Dickinson, C.L. Bruyére, and K. Newlon, 2012: A risk-based
approach to evaluating wildlife demographics for adaptation: A case study of the Lewis’s
Woodpecker, Environmental Management, 50, 1152-1163.
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