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Abstract

A nonhydrostatic compressible model supports vertically propagating acoustic modes in addi-
tion to the modes of meteorological significance, such as the quasi-geostrophically balanced, and
gravity modes. The acoustic modes are stimulated inadvertently, either by initial conditions
incompatibly balanced for the model discretization, or by physical processes injecting abrupt
impulses of heat or motion into the model during the integration. A standard method for re-
moving unwanted acoustic energy is through the inclusion in the model of three-dimensional
divergence damping. However, an alternative approach is to employ an upper boundary con-
dition designed to radiate acoustic waves, at least partially, as they impinge on the model top.
This note explores this latter option through the use of an upper boundary condition that
incorporates a time filter facilitate the selective absorption of both gravity and acoustic waves
at the top.

1. INTRODUCTION

For a numerical weather prediction model with a finite top, the upper boundary becomes
a potential source of spurious reflected gravity waves if precautions are not taken to dissipate
them or let them pass through. In a nonhydrostatic model the problem is exacerbated by
the additional presence of acoustic modes. The gravity waves are generated at significant
amplitude by realistic meteorological processes, such as orographic or convective forcing. The
acoustic modes are only produced accidently by poor initialization or noisy parameterizations,
but unless measures are taken to control them, the reverberating acoustic modes can build up
and overwhelm the numerics of the model over the course of an extended integration. Even a
weak absorption of the acoustic modes is sufficient to control them and prevent the potential
instability that they might otherwise cause. Three-dimensional divergence damping is often
adopted, although this cure can inadvertently affect the slower gravity modes too. While a
‘sponge layer’ (e.g., Klemp and Lilly 1978) occupying the top portion of the model is effective
in absorbing both kinds of modes, it can be a wasteful solution because it contaminates that
portion of the model grid with dynamical effects that are not faithful to the intended governing
equations. A more satisfactory solution would be to leave the interior equations unaltered and
to specify what is usually referred to as a ‘radiative boundary condition’ at the top. This
is a set of constraints on the model variables, affecting directly only quantities stored in the
top one or two levels, that causes the impinging waves to behave as if the model atmosphere
continued, without interruption by the actual boundary, up into the space beyond *. For
any model it is desirable that the radiative upper boundary condition be highly efficient for
gravity waves, that is, producing little or no reflection, since the alternative measures by which
the amplitudes of such reflected waves can be controlled (such as the sponge layer) invariable
affect their physically realistic upward-propagating counterparts adversely. However, In the
case of a nonhydrostatic model, it is also desirable that the condition be at least partially

* Given that no actual ‘radiation’ occurs, the more accurately descriptive ‘non-reflecting boundary condition’ is
probably a better phrase to use.



effective at suppressing the reflections of the acoustic modes that reach the top, although,
being meteorologically unimportant, alternative suppression techniques like divergence damping
and time filtering for these modes have no need to discriminate the upward and downward
propagating waves. Engquist and Majda (1977) provide approximate boundary conditions for
the classical wave equation, which could in principle apply to the high-frequency acoustic waves.
The problem of applying radiative boundary conditions to dispersive gravity and Rossby waves
is examined by Bennett (1976) and by Beland and Warn (1975), who employ Laplace and
Fourier transforms to show that exact conditions require a nonlocal treatment in both space
and time. On this basis, it is doubtful that any practical (finite memory) boundary conditions
of even a linear model can prevent the reflection of gravity or Rossby waves entirely. For
Hydrostatic internal gravity waves a solution that is local in time, but nonlocal in space, is
available in the form of the conditions independently proposed by Bougeault (1983) and by
Klemp and Durran (1983). These methods have been generalized by Garner (1986) to include
a Coriolis effect and by Rasch (1986) to treat large scale Rossby waves. A review of these and
other methods is given by Givoli (1991).

We seek to obtain inexpensive upper boundary conditions that are not only efficient at radi-
ating nonhydrostatic gravity waves but which simultaneously radiate (if only inefficiently) any
vertically or obliquely propagating acoustic modes supported by a nonhydrostatic compressible
model. We suggest that radiative boundary conditions employing recursive time filters of at
least second order should be able to reduce the degree of spurious reflection of gravity waves to
a level that is sufficient for most practical purposes while simultaneously causing the amplitude
of acoustic noise to diminish well within the time scales typical of numerical predictions. The
suggested method, which can be thought of as generalizing the boundary condition of Bougeault
(1983) and Klemp and Durran (1983) to the nonhydrostatic compressible domain, is described.
Further generalizations to incorporate the effects of rotation and varying stratification would
seem to be possible but are not developed in the present paper.

2. PERTURBATION EQUATIONS FOR AN ISOTHERMAL BASIC STATE AT REST

(a) Basic variables

We shall assume the basic state consists of air at a constant temperature Ty at rest and in
hydrostatic equilibrium with a constant gravitational acceleration g. We assume no rotation.
As usual, we take the specific heats at constant pressure and at constant volume and the gas
constant to be in the ratio:

(Cp:Cy:R)=(7:5:2),

and define numerical constants, v = C,/C, =7/5 and k= (y—1)/y=2/7. Other important
constants for the given basic state are: ¢ =+/yRTy, the speed of sound; H = RTy/g, the at-
mospheric scale height; N = \/k/yc/H, the Brunt-Viisili frequency. In this study, we shall
choose, in SI units: R = 287; Ty = 273; g = 9.81. Then,
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In a two-dimensional vertical slice, we let u and w be the horizontal and vertical wind compo-
nents. 7' is the temperature, P is the pressure, p = P/RT is the density. For convenience, we
use a constant reference pressure, Py, to define the Exner function and potential temperature:

m = Cyp(P/Poo)",
0=CyT/7.
Then the basic state’s Brunt-Vaisila frequency can be expressed equivalently:

N = {g(860/82)/00}'/%.

(b) The basic state

We use a zero suffix to denote the basic state variables. The hydrostatic balance for the

basic state is:
Omy

Op— = —g.
0752 g
Combining this with the identity,
90 = CpT()/Tro,
we find the exponential forms of the vertical profiles of the principal basic state variables:
o = Chexp | —= | =C, [ex (_—z>]'C (2.1)
0 = V4 1Y CpTO — vp p H ) .
_ POO —Zz
pPo = RT, exp (F) ) (2.2)
Py = Pyexp (%) , (2.3)

6 = To [exp (%)r (2.4)

(¢) Perturbation equations

About this basic state, the equations for perturbations are:
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But if we adopt the rescaling:
u p(l)/ *u,

w — pyw,

1/2
T <—p° 00) .,
C
a0y’
0
0 <+ <00N>9’

then the perturbation equations become more symmetrical:

% - _cg_g, (2.5)
63_:: — e (%+%)W+N¢9, (2.6)
= —Nw (2.8)

where L = 14H /3 = 14RT;/(3g) can be denoted the Lamb-height since it is the e-folding distance
for the Lamb wave perturbation, in units for which the energy density scales as the square of
the perturbation. The energy density becomes half the integrated sum of squares of these new
perturbation variables.

3. DESIGNING BOUNDARY CONDITIONS

(a) Dispersion relations and wave impedance

Assume % = 1k for a horizontal Fourier harmonic. Then assume all the dependent variables

scale like: .
P = e, (3.1)

for some nonvanishing complex s with positive real part, R(s) > 0. Our original equations then
become:

su = —ick,

sw = —cD7+ N6,
st = —icku— cD*w,
s = —Nu.

where,



Applying substitutions,

. —ick _
U= ;
s
~ —N
0=—w,
s
we obtain:
N2
(— —i—s) w = —cDr, (3.2)
s
2k2
(C— n s) 7 o= —cD*, (3.3)
s
or the single equation for 7:
7= K?D*Dr, (3.4)
where 5 5
K?= o C (3.5)

(N2 + s2)(c2k? + s2)
For the case of a definite exponential growth of the solution in time, $(s) > 0, any charac-
teristic solution corresponding to forcing only from below has state variables exhibiting vertical

profiles like:
7 =ate M

where p, which is complex in general, has R(u) > 0. This corresponds to the exponential decay
in height that must accompany exponential growth in time for the assumption of forcing from
below to make physical sense in homogeneous, passive medium with finite propagation speeds
for wave disturbances. For solutions of pure oscillatory form in time, R(s) = 0, the more familiar
constant-amplitude wave solutions of the dispersion relation, with ®(u) = 0 can also exist. Note

that,
(& 1

so the dispersion relation can be expressed,

9 1 1
a L2 K2)°
For later algebraic convenience, we note that,
1
22 2 22,2 22 (2 4
=N + +—=)+s"
s°c c’k* 4 s“c (k 1 H2) s

From (3.2) and (3.3), )
7= Zb, (3.6)

where,

. sc 1 1 1 12 se
Z(s) — 1) = N2212 22(2 ) 4] sc .
()= (W 1) = ([ R+ (B + o)+t + ), (3)
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is sometimes referred to, in the terminology of general wave propagation theory (e.g., Morse
and Feshbach 1953, p. 128), as the characteristic ‘impedance’ at this s and k.

(b) Upper boundary impedance conditions

Suppose the condition at the upper boundary, which we shall conveniently locate at z =0,
is written:

() = /0 " 2wt — £)de. (3.8)

That is, a lagged superposition of ‘effects’ m depending on only preceding ‘causes’ w through a
convolution with the impedance kernel Z(t'), with Z(¢') =0 for ¢’ < 0. Use Laplace transforms
to express:

o0
w(t) = / westds,
0
w(t) = / weslds,
0
so that,
0 !
#(s) = / Z(#)e*" dt’ i (s). (3.9)
0

Hence, inverting the relation,
A 0 /
Z(s) = /0 Z(t"e *tdt, (3.10)

provides the ‘perfect’ radiative boundary condition for these linearized waves. Unfortunately,
since the kernel, Z(t) is highly structured in the ¢ domain (despite the deceptively simple
appearance of its Laplace transform) any computationally feasible approximations to Z(t), ex-
pressible using only modest memory resources, inevitably incur significant errors for at least
some physically relevant values of the complex parameter s. Good radiative boundary condi-
tions seek to keep this error small in the portion of s that corresponds to the frequencies of the
waves for which a significant amount of reflection would be most detrimental, while maintaining
overall numerical stability.

In the absence of any special boundary condition, for example, when the vertical velocity
is set to zero at the model top (corresponding to infinite impedance) all incident acoustic and
gravity waves are fully reflected. A vast improvement is obtained by the choice of an impedance
set equal to the asymptotic low-frequency limit:

Zo(s) = lim Z(s) = Z,, (3.11)
v Zo(t) = Z,5(07), (3.12)

where the notation in (3.12) signifies that the delta function is fully included within the range
of a one-sided integral like (3.8). This closely matches the impedance of the lowest-frequency
gravity waves for which the nonhydrostatic effects are less significant. This impedance is a
function of horizontal wavenumber simply through:

N

= 1
g C|k| (3 3)
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Moreover, as a boundary condition, it acts instantaneously instead of involving any finite lag,
S0 it is reasonably simple to apply in any model whose horizontal domain is of a shape that
facilitates double Fourier transformation, provided the neglect of horizontal variations of N at
the top can be tolerated. It is, in fact, the boundary condition proposed by Klemp and Durran
(1983) and by Bougeault (1983).

We can insert s =40 and use (3.7) to express the complez impedance Z as a function of
frequency o. The two branches of complex u, which we may denote u™ and yu—, correspond
to upward and downward propagating waves of the common frequency, ¢. In general, both
branches contribute to the solution satisfying a given boundary impedance condition. Thus, if

w=w+a,
and
7 = at+a,
= Ztot+Z 7w,

then the upper boundary (z =0) impedance, Zp, at a particular frequency o establishes the

ratio between %™ and W~ through:
Zt -7
Zb -7

The magnitude of this ratio between the amplitudes of downward and upward waves will be
referred to as the reflection coeflicient:

Zt -7,

Ry(0) = el (3.15)

(Note that the square of R? represents the proportion of wave energy that is reflected.) For
the case, Zo(a) = Z,, and for a wave of horizontal wavelength, A = 27/k = 2000 m we obtain
the reflection profiles for the gravity and acoustic modes shown in Fig. 1 by the solid curves.
While this method is reasonably good for gravity waves, especially in the hydrostatic and high
vertical wavenumber limit, s — 0, where the reflection coefficient tends to zero, it is clear that
this boundary condition does very little to absorb the acoustic modes (for which it was never
originally designed). The reason is that the limiting impedance in (3.7) for purely vertically
propagating acoustic waves is, in our particular choice of scaling units,
Jim Z(s)=Z4 =1,

which is many times larger than the magnitudes of impedances typical of atmospheric gravity
waves, and the impedance of obliquely-propagating acoustic waves is even greater.

A partial solution to radiating both gravity and acoustic waves is to employ an exponentially-
lagged time filter to retain a ‘memory’ of recent vertical velocity at the top:

w(t) = /0 T e w(t — 1) dt! (3.16)

7



and then to use this for the upper boundary condition:
T(t) = Zaw(t) — (Za — Zg)w(2). (3.17)

An operator whose effect is the discretization of the smoothing integral (3.16) is obtained
by applying a first order recursive filter that solves the backward-difference analogue of the
differential equation:

dw

dt
(For a more detailed discussion of recursive filters and their connection with linear homogeneous
difference equations, see Hamming 1989, Chap. 12.) The impedance implied by this new
boundary condition is

r(w — w). (3.18)

(Za — Zg)'r

r+s
The choice of the smoothing rate, r, can be used to trade off the quality of the radiation
condition for gravity modes against the quality of treatment for the acoustic modes. For an
intermediate value, r = 2. s~! (a time scale of about half a second), the dotted curves of Fig. 1
show the reflection coefficient obtained with horizontal wave length A = 2000 m. For acoustic
waves propagating in the strictly vertical direction the new boundary condition is now efficiently
absorbing but, compared with the Klemp and Durran condition, the treatment of gravity waves
is now made rather worse. Evidently, the first-order filtering approach does not constitute a
completely satisfactory solution.

In a meteorological simulation, the acoustic waves are generated accidently either through
improper specification of initial conditions, or continuously through acoustically noisy param-
eterization of physical processes. There is no significant generation of acoustic waves by real
meteorological processes. Because of their rapid speed, the vertically and obliquely propagating
acoustic modes reverberate between upper and lower boundaries many times per hour, provid-
ing numerous opportunities for their absorption. Therefore, in selecting an upper boundary
condition, we should perhaps not devote too much effort to the efficient radiation of the acous-
tic modes when even an inefficient upper boundary condition can be enough to remove them
quickly from the model. A more cost-effective approach to refining the boundary conditions is
to conform the boundary impedance more closely to the profile (in s) of the impedance of the
upward propagating gravity wave in the vicinity of s = 0. To this end, we consider refining the
definition of w in (3.17) by the substitution of a second-order recursive filter. Since the slope,
dZ /ds, is very small at s =0 for most modes we may obtain a good local fit using a filter for
which the slope at s = 0 is exactly zero and the curvature component, d? Z /ds?, at s =0 implied
by the filter closely matches that implied by (3.7). The impedances implied by second-order
recursive filter formulations are second-degree rational functions. Our requirements are met by
the form,

7y =24 — (3.19)

Zo — Zy)(2bs + 1?)
s2 + 2bs + 12
(The neglected finite slope term can be accommodated by changing the numerator term, 2bs,
to something more appropriate, but the algebraic complexity involved in satisfying the addi-
tional condition is not trivial.) Such a filter is provided by recursively solving the numerical

Zo="Z4— ( (3.20)




representation of:

d’>w do dw 9, -
(G F) e (321

The impedance Zs retains the desirable asymptotic limits,

lim Zy, = Z,,

s—0

lim Zo = Z,,

§—00

but we can select coefficients b and 72 to obtain a better impedance match near s = 0. Since

d?Z, 2(Za — Zy)
2 —\"a 79 .22
— s (3.22)
s=0
and, for the actual upward-propagating gravity wave,
2zt 2[k? + 1/(4H?)] — 2N?
ds? N|ck|3
s=0
we need to choose,
2(Z, — Z,4)N|ck|?
2 ( g) ‘C ‘ (3'24)

" T @2+ 1/(4H?)] —2N?
The choice of coefficient b remains undetermined, although it must be nonnegative if the filter
is to remain stable. One possible choice is b = r//2, the consequence of which is shown in the
dashed curves of Fig. 1 for the same horizontal wave length selected for the other curves. It
is possible to choose b more intelligently, for example, by demanding a third-order fit of the
impedance profile near s =0, and accounting for the presently neglected linear term, but the
results of experiments in which b has been changed have not shown a great sensitivity to this
parameter.

In a set of simple idealized experiments, we have numerically implemented the linearized
equations for a single horizontal wave length about an isothermal rest state for an atmosphere
extending to almost four kilometers. From an initial state at rest, the model is forced at the
chosen horizontal wavelength with a transient pulse of positive w at the ground. The pulse has
a bell-shaped time profile in piecewise polynomial segments,

4
wo(mT—I—t)ocZPm,k(t/'r)k, 0<t<, m=0,1,...,4 (3.25)
k=0

where 7 =10 s, so the overall width of the profile is 57 = 50 s. The fourth-degree polynomials
in each segment are those associated with a uniform grid B-spline (de Boor 1978):

Po s 0, 0, 0, 0, 1/24
P, 1/24, 1/6, 1/4, 1/6, —1/6
Py, = 11/24, 1/2, —1/4, —1/2, 1/4 (3.26)

Py 11/24, —1/2, —1/4, 1/2, —1/6
Py 1/24, —1/6, 1/4, -1/6, 1/24.
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This forcing stimulates bursts of both gravity and acoustic waves which are well resolved in
time and in the vertical by the model. The acoustic modes rapidly reach the model top and are
repeatedly reflected between the top and bottom. The more slowly propagating gravity waves
take around 2000 s to reach the top. Fig. 2 shows what happens when the upper boundary
impedance is tuned simply to radiate the vertically propagating acoustic waves only, Z(t) =
Z,6(0%). The upper panel shows plots of the vertical profile of the pressure perturbation every
18 s (except for the first few occurring during the period of bottom boundary forcing, which are
omitted owing to their excessive amplitudes) over the course of a 90-minute integration. The
lower panel plots the lowest-level pressure trace for the same period, again omitting the initial
forcing period. The apparent thickness of the latter trace at the start is a result of the rapid
acoustic oscillations which damp out fairly quickly in the subsequent integration (by about
3000 s the lowest-level pressure trace has become a thin line). A moderately coherent ‘beam’ of
gravity waves is seen to rise to the model top where, in this experiment, it is almost completely
reflected, then reflected again at the ground about an hour from the initial time. Note that the
gravity waves with relatively small vertical wave lengths propagate more slowly and therefore
form a pronounced interference pattern with the reflections of their faster, longer wave length
counterparts.

Fig. 3 shows the same set up as in Fig. 2, but now with the upper boundary impedance,
Z(t) = Zo = Z46(0"), given by the Klemp and Durran prescription. Clearly, the acoustic modes
are not significantly reduced in amplitude throughout the integration period. Their amplitude
in the pressure trace is comparable to the gravity wave contribution, giving the profiles in
the upper panel a rough ‘wood grain’ appearance. However, the gravity wave components are
quite well removed by this upper boundary condition. In Fig. 4 we use the first-order filter
construction for the upper boundary, in this case with filter parameter 7 = 2 s~1, to obtain the
boundary impedance Z; of (3.19). This condition with this parameter r is moderately successful
in radiating both the acoustic noise (although some persists beyond one hour) and gravity waves.
With a parameter » = 0.5 s~! (that is, implying a filter memory of longer duration) the same
form of upper boundary impedance Z; leads to the results shown in Fig. 5, in which the acoustic
noise is more efficiently radiated. However, this is clearly inferior to the choice Z = Z, of Fig.
3 when considering the gravity waves.

Replacing the first order filter by our second order filter, to obtain the boundary impedance
Zs of (3.20) leads to a marked improvement, as shown in Fig. 6. The acoustic noise is promptly
controlled and the gravity waves are very efficiently radiated, leaving only the faintest hint of
a reflected wave.

Waves with shorter horizontal wavelengths tend to be more affected by nonhydrostatic
effects. Our second-order filter condition applied to waves with A = 1000 m leads to the wave
evolution illustrated in Fig. 7. Note that, at this short wavelength, the acoustic modes are of
a sufficiently high frequency not to be strongly stimulated by the initial forcing. The radiation
condition for gravity waves is slightly less efficient than before. Conversely, choosing A = 5000 m
leads to a more prominent acoustic component initially but a more perfect radiation of the
gravity waves at the top, as shown in Fig. 8. The more rapid diminution of the acoustic noise
amplitude in this figure is thought to be a consequence of the fact that a greater proportion of
the acoustic waves present are now more vertically oriented.

These experiments have focused on more efficiently radiating the gravity wave but it is
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worth noting that one can alternatively devote the inherent memory of the recursive filter to
the time scales more relevant to the oblique acoustic modes. For example, a reasonably snug
fit to the impedance of vertically-propagating acoustic modes in the limit s — oo is obtained
with the same impedance model, (3.20), but with very small b and

r? = k% /2. (3.27)

For the wave with A = 2000 m stimulated in the same way as in our earlier experiments, the
result is shown in Fig 9. The removal of the acoustic noise is indeed noticeably more rapid and,
since the limit, Z = Z4 is preserved as s — 0, we still retain a moderate standard of efficiency in
the radiation of the gravity waves. However, to achieve efficient radiation for significant ranges
of both acoustic and gravity waves (that is, at both ends of the frequency spectrum) using a
recursive filtering technique, it would probably require a filter of not less than fourth-order to
be truly effective.

4. NUMERICAL IMPLEMENTATION

The radiative upper boundary condition has been implemented and tested in a two-dimen-
sional time-dependent model based on the prognostic equations given in section 2(c), that are
modified to include advection by an uniform current ug in z. The model domain can be noncyclic
in z, with appropriate open boundary conditions that are discussed later. The model grid shown
in Fig. 10 is semi-staggered, with a Charney-Phillips grid in the vertical. Second-order centered
differences are used for all terms, except advection for which a third-order upwind scheme is
used. An explicit, fourth-order, low-storage Runge-Kutta scheme (Gill 1951) has been used for
time differencing. Note that choice of the space and time difference schemes are not crucially
important for this ‘toy’ model, primarily set up to test the upper boundary condition.

Typically, after each Runge-Kutta time step, the radiation condition (3.17) is used to diag-
nostically update m; g 11 in terms of w; extrapolated to the same level. To discretize (3.18) in
time, a backward difference is used leading to the scheme:

¢ rAt

t | —t At
= —— 4-1
] 5 t(w + w ), (4.1)

where At is the time step. For the time discretization of the second-order recursive filter (3.21),
we introduce an auxiliary variable g and rewrite (3.21) as a system of two first-order ODEs:

dw

-— = 4.2
dq dw 9, _

7 b ( 7 ) r(w —w), (4.3)

and then employ, once again, backward differences in time leading to the scheme:

(14 2bAt)g" + r2Atat = (g — 2bw)' =2 + (20 + r2At)w’, (4.4)
—Atgt + 0t = oA (4.5)

11



Note that (4.4) and (4.5) ensure a non-singular system for (g, w)! as 1 + 2bAt + (rAt)2 >0 is
always satisfied.

(a) Linear hydrostatic mountain wave problem

Although no surface topography is included in this 2D model, one can prescribe a stationary
vertical velocity field at the lower boundary and carry out pseudo mountain wave simulations.
Fortunately, analytic solutions of 2D anelastic, non-rotational flow over topography for an
isothermal atmosphere with an uniform zonal flow are well established (Alaka 1960, or Smith
1979). For the bell-shaped mountain contour with the height ~A and the half-width a

ha?
zs(z) = 22+ a2’ (4.6)
the zonal and vertical velocity perturbations are given by
(N 0
= T8 4.7
) (4.7)
06
_ s 4.
w U0 (4.8)
where ¢ is the displacement streamline given by,
1
po\ 2, acosmz—xsinmz
- (PO 4.
do,z) = (£2) T patCRmI S, (4.9)

poo = po(z=0), (4.10)

and m is the Scorer parameter:

- ! ! (4.11)
M=INC, T T AR?TE ) '

These analytic solutions were obtained assuming a radiation upper boundary condition and
that the disturbances vanish as |z| — oco.

To simulate such waves in our model, we prescribe the lower boundary condition as u =
up0zs/0z. To mimic the open lateral boundaries used in the analytic model, we have imple-
mented a variation of the Orlanski-type boundary condition in the model (Orlanski 1976). At
the outflow boundary, first-order upwind schemes are used for the advection terms. The model
domain expands over 128 x 25 grid points, with Az =2 km, Az = 250 m. The other relevant
parameters are Ty = 250 °K, ug =20 m s~ !, a =10 km, h = 1 m. The basic state is character-
ized by N =0.019 s, Hy="7.317 km, ¢ =317 m s~!. Note that Na/uo>> 1 and Nh/uy < 1,
so that only small-amplitude hydrostatic mountain waves are forced. The time step is 0.4 s.
The nearly steady-state numerical solution for v and w at ugt/a = 60 or t = 30, 000 s is shown
in Fig. 11. The corresponding analytic solutions are also shown in the same figure. The numer-
ical solution displayed in Fig. 11 employs the radiation condition with the second-order filter,
which is practically same as the numerical solutions (not shown) obtained using the first-order
filter. The numerical solutions are very close to the analytic solutions, except for the small dif-
ferences in magnitudes of the maximum and minimum values. Such results compare favorably
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to the similar numerical solutions shown by Durran and Klemp (1983) and others. This pseudo
mountain wave experiment shows that the radiation condition is numerically stable and able
to radiate out linear hydrostatic mountain waves with sufficient accuracy.

(b) Transient acoustic and gravity wave problem

In this test, transient acoustic and gravity waves are excited in the centre of the model
domain using a very localized, short-lived heating profile of the form

Q(z, z,t) = Qo exp l—% {(x ;,:CO)Q + (z ;ZZ(])Q + (t ;:OYH ; (4.12)

where (Sy, S;, S¢) denote the characteristic scales in (z, z,t) dimensions. The heating term
appears as Q/Cp in the prognostic equation for ¢. For this experiment, a cyclic domain with a
resting isothermal basic state is used. The parameters related to () are set as S, =1 km, S, =
0.5 km, S; = 50 s. The model domain expands over grid points, with Az =125 m, Az =100 m
with a time step of 0.2 s. While (xg, 9) correspond to the grid (64, 32), t( is (subjectively) set
to 185; so that the heating is not introduced as a shock. The time integration is carried out
for four hours using the radiation condition with the second-order filter. Fig. 12 shows the 3D
surface plots of the perturbation divergence, D = 0u/dz + dw/0z , at =z as a function of
height and time. After a noisy start up, we notice that vertically propagating gravity waves
superimposed with smaller period acoustic waves are being absorbed gradually by the radiative
upper boundary; in fact, beyond 3.5 hours, the divergence surface has become quite flat. This
experiment illustrates the effectiveness and the numerical stability of the radiation condition
for transient acoustic and gravity waves, as opposed to the stationary gravity wave simulations
shown earlier.

5. CONCLUSION

This preliminary study of radiation boundary conditions for a compressible nonhydrostatic
atmosphere suggests that it is indeed possible to extend the method of Bougeault (1983) and
Klemp and Durran (1983) to include partial absorption of acoustic modes while improving the
handling of those gravity modes significantly modified by nonhydrostatic effects. The method
involves the application of a temporal recursive filter at the model top. However, first-order
recursive filtering is found not to be sufficent — satisfactory results require the application of
a filter of at least second order. Like the conditions of Bougeault, Klemp and Durran, the new
method requires a horizontal spectral decomposition at the model top. This raises the question
whether the resulting boundary condition can then accommodate horizontal variations in the
Brunt-Viisila frequency (assumed uniform in this limited study). This question needs to be
addressed in a more complete model before we can give an authoritative answer. One possible
approach to treating horizontal inhomogeneities in static stability is to use overlapping local
approximations to the spectral decompositions, each patch using its own average value of N,
then merge the resulting conditions implied for 7 in some smooth way.
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Reflection coefficient

Figure 1.

Reflection coefficients for a wave of horizontal wavelength A = 2000m at a variety of frequencies that
correspond to gravity or acoustic modes. Solid curves are for the Klemp-Durran and Bougeault condition, Z = Zy;

dotted for Z = Z; with r = 2s5~"; dashed for Z = Z> with b=1//2.
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Figure 11. Steady state perturbation vertical and horizontal velocity ( m s~') from the linear hydrostatic so-

lution for a 1 m high mountain. Top two frames are for the analytic solution and the bottom two are for the

numerical solution at ugt/a = 60, the latter solution employs the radiation condition with second-order recursive
filter. The perturbations have been multiplied by 1000.
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