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Abstract

The formulation of compact schemes in a parallel environment is described in detail for the case
of differencing. Compact numerical schemes are spatially implicit methods for obtaining spatial
derivatives and partial integrations, interpolating from one grid to its staggered counterpart,
and so on, where the target results occupy a regular grid as dense as the regular grid of source
data. Among the numerical schemes to perform such operations at a given formal order of
accuracy, the compact forms usually yield the smallest principal truncation error coefficients
and, when properly coded for a shared-memory machine, require essentially minimal extra
computational cost. However, the inherently recursive nature of the application of compact
schemes poses a problem for their efficient implementation on distributed-memory machines,
which we set out to address in this note.

Generally, a compact scheme is expressed for an entire line of data simultaneously by a linear
system characterized by banded matrices on both sides of the equation. The solution involves a
preliminary “L-D-U” decomposition of the system matrix on the left-hand side of the equation,
where L and U are lower and upper triangular banded matrices with unit main diagonals, D
is a diagonal matrix. For the common case in which the original system matrix is symmetric,
factors L and U are the transposes of each other and the decomposition is a modified Cholesky
factorization. The components of the resulting factors provide the coefficients for a pair of
one-sided recursions required by the subsequent application of the scheme to lines of data. For
unbounded (effectively infinite or cyclic) lines of data on a uniform grid, the recursions simplify
to the extent of having constant coefficients and it is convenient to retain this simplicity, by
appropriate manipulations of the scheme’s end conditions, even when finite boundaries intrude.
We show, using three different implementation strategies, that each such constant-coefficient
recursion can then be carried out in a reasonably efficient manner across several processors
of a distributed-memory computer although the cost now becomes significantly greater than
the cost of applying the conventional difference scheme of the corresponding order of accuracy.
Nevertheless, the compact schemes remain viable within a massively parallel atmospheric model
where high-order numerics are desired. Spatial filters with recursive components, such as the
various Butterworth filters, involve similar numerical considerations and, as we show, may be
handled in a parallel computing environment in the same way.

1. INTRODUCTION

Numerical differencing is one of the most important aspects of atmospheric simulation mod-
els, for its truncation errors have a significant influence on the fidelity of the solution. The
spectral method (Bourke 1972) gives a good solution in global models and in some limited area
models in which the grid geometry is amenable to efficient spectral decomposition, but for the
massively parallel computers recently developed and becoming more popular, finite differenc-
ing on grid coordinate systems, by eliminating the need to carry out spectral decompositions,
might be a better choice for efficiency. In that case, preserving the quality of numerical differ-
encing makes the adoption of high-order schemes very attractive, provided such schemes, with



their additional boundary conditions, can be accommodated efficiently within parallel computer
architectures.

A compact scheme (Lele 1992) would be a possible choice in this situation. While in the
conventionally used differencing schemes one approximates a derivative value by referring only
to source values centered around the target point, in the compact schemes one uses a spatially
“implicit’ stencil to equate linear combinations of both the derivatives and the source data
(Purser 1998). As we show below, the truncation errors of compact schemes are considerably
smaller than those of the conventional schemes of the same order. But, just as implicit schemes
for time integration each result in a system of equations for the horizontally-distributed variables
of a dynamical model, a compact differencing scheme similarly yields a system of equations for
the target derivatives distributed along a grid line. When this line spans several processors,
then, for the compact scheme to remain competitive compared to its conventional counterpart,
a sufficiently efficient solution of the implied recursions generally requires special algorithmic
techniques. Having established such techniques, they can be applied in other kinds of recursive
numerical processes. These include integration, interpolation to a staggered grid and selective
low-pass spatial filtering.

Compact methods have a special role to play in the construction of high-order accurate,
fully conservative, semi-Lagrangian interpolation schemes. The lack of automatic conservation
of first-order quantities (such as mass) in traditional formulations of semi-Lagrangian time-
integration schemes (see Staniforth and Coté 1991) has frequently been held up as one of
the major inherent defects of the semi-Lagrangian method as traditionally formulated. The
problem occurs even in one dimensional interpolation between a pair of grids, identical except
for a smooth but inhomogeneous distribution of stretching and compression of one grid relative
to the other, such as will occur to a Lagrangian coordinate grid relative to the fixed Eulerian
grid over the course of one time step. The direct interpolation of a density from one grid
(the source grid) to the other (the target grid) by using, for example, Lagrange polynomial
interpolation, does not generally conserve any objective measure of the total mass, regardless
of the order of accuracy employed. Moreover, the discrepancies are typically amplified further
in two or three dimensions.

Compact schemes come to the rescue in the following way. Assume we have expressed the
original data distribution as a density per unit source grid coordinate. As the first step, we
apply a compact integration scheme to evaluate the partial integrals, in effect, constructing the
‘cumulative’ distribution of the same data. At any given point, the cumulative represents the
total mass on one side of this point. It is this cumulative distribution that we interpolate to
the target grid and, in order to recover a coordinate-relative density, we complete the process
by applying a compact differentiation to the interpolated cumulative. Provided the grid for
the density and for the associated cumulative are mutually staggered, then at any order of
accuracy, the compact differencing method has an exact numerical inverse expressible in terms
of the correspondingly accurate compact integration scheme (without the mutual staggering,
the two-grid wave constitutes a null-space of the differencing operator, preventing its stable
inversion). The density distribution is conserved not just globally, but in a quasi-local way,
when the integration and differencing steps in the modified interpolation process are such a pair
of associated compact schemes. As shown by Purser and Leslie (1991), the multi-dimensional
grid-to-grid interpolations of a semi-Lagrangian model can be profitably decomposed into a



sequence of separate stages, each treating one dimension of the problem at a time in the so-
called ‘Cascade interpolation’ technique. The conservative form of interpolation incorporating
mutually inverse compact integration and differencing schemes in the manner we have defined
was successfully exhibited in the semi-Lagrangian model described by Leslie and Purser (1995)
and seems to offer one of the easiest ways to achieve exact conservation in a semi-Lagrangian
model of arbitrary formal order of accuracy.

In this note, we describe ways by which compact schemes can be realized in a parallel envi-
ronment, specifically, on a computing platform adopting the Message Passing Interface (MPI).
We begin with an assumed unbounded extension of the grid space, which simplifies the coeffi-
cients of the algorithm for parallel processing. We first focus on numerical differencing by the
compact schemes in order to exemplify the main techniques involved, but we also discuss the
other numerical operations of integration, midpoint interpolation and implicit low-pass filtering,
which likewise benefit from the application of similar recursive procedures. Section 2 reviews
the derivation of the coefficients of various numerical differencing and interpolation stencils us-
ing modified Vandermonde matrix systems and compares the accuracy of both conventional and
compact formulations of these numerical operations, tabulating the coefficients of the various
schemes for the first few orders of accuracy in each case in order to demonstrate the superior
accuracy achieved by the compact versions. We also provide some discussion here of the related
implicit technique of recursive Butterworth filtering, using the ‘sine-Butterworth’ filter as an
example. Section 3 discusses the steps involved in implementing compact schemes and recursive
filters on a serial processing (shared-memory) architecture. Then, in Section 4 we show how
calculations proceed in the three distinct approaches to parallelization that we are comparing.
The first approach makes no assumption concerning the scale of influence of the recursive oper-
ations involved. The second approach, which seems especially attractive for compact schemes
with relatively small effective scales of influence, uses information about the rate at which the
exponential ‘tails’ of the various recursive processes decay in order to economize on the amount
of computation. The third approach simplifies the coding aspects of dealing with recursive
processes by performing a global rearrangement (‘transpose’) of the data to ensure all mutually
dependent data reside in the same processor for each operation. In Section 5 we present some
results of timing experiments that provide some insight into the way in which such things as
domain and subdomain dimensions, data quantity and the specific compact schemes themselves
affect the performance of these schemes in the three approaches to parallelization. Finally, we
discuss the implications of these experiments for numerical models of the atmosphere.



2. CONVENTIONAL AND COMPACT NUMERICAL FORMULATIONS

(a) Differentiation

We first assume the source data and target derivative values are deployed on the same
simple (unstaggered) uniform grid. In a conventional differencing scheme the derivative values
collected along the active direction to form a vector d are expressed in terms of the source data,
similarly collected into a vector ¢, through a set of equations that we can combine through the

appropriate banded matrix B:
d =Bec. (2.1)

The corresponding compact schemes simply generalize this explicit formulation to an implicit
one through the introduction of another banded matrix A on the left side of the equation
(together with a different B on the right, of course):

Ad =Be. (2.2)

Rows of A and B are constructed from the stencil coefficients that characterize each scheme.
For example, a stencil for a popular fourth-order compact scheme on an unstaggered grid (e.g.,
Navon and Riphagen 1979, Lele 1992) is written:

Sy + Ay + dn2) = o (—en 1 + ns), (2.3)
where d,, is the derivative estimate of source value ¢, at grid point n, and h is the distance
between each grid point, here assumed to be constant. For this particular example, A is a
symmetric tridiagonal matrix with the generic entries of (%, %, %) and B is a tridiagonal matrix
with (—%,0, ﬁ) (first and last rows involve the boundaries and generally warrant special
treatment, as we discuss in the next section). The sum of the bandwidths of A and B is what
determines the attainable order of accuracy of such a scheme. It is convenient to index each
possible centered scheme using the notation (p, ¢) to denote the scheme with p components of A
and ¢ components of B on each side of the points of symmetry of their respective rows, excluding
the symmetry point itself. The order of accuracy in each case is 2(p + q). For example, by this
notation, the compact scheme of (2.3) is indexed (1,1) and attains an order of accuracy of
4=2 x (1+1). Conventional explicit centered schemes are then just those of the form (0, ¢),
in which we can take the now redundant matrix A to be simply the identity. For example,
the conventional fourth-order scheme, (0, 2), for differencing on a simple grid has the following

stencil:
1
dn = m(Cn—Q —8cp—1 + 80n+1 Cn-I—Q)a (24)
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Figure 1. Log-log plot of the relative truncation error of unstaggered centered stencil differencing schemes as a
function of the wavenumber of the sine-wave to which they are applied.

Figs. 1 and 2, which are similar to Figs. 1 and 2 of Purser (1998), show the relative
truncation errors of a few conventional and compact unstaggered and staggered differencing
schemes, each identified by its (p, ¢) indices.
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Figure 2. Same as Figure 1 but for centered schemes staggered with respect to the original data.

Concise analytic formulae for the coefficients of conventional centered differencing and mid-
point interpolation schemes are given in Purser and Leslie (1988), but the coefficients of the
more general partially-compact schemes do not appear to emerge from any simple algebraic
formulae. Instead, we adopt the defining criterion that each scheme acts upon as many possible
powers of (x — zy)/h without error, for z, at or near the center of the stencil. The result
is a modified form of Vandermonde linear system for the A- and B-coefficients. That is, we
set d and c¢ to exact values of the test functions in order to have a set of equations for the



row-coefficients of A and B:
Za-i (w_x”)m =3n (x"_x”)m m=0,1,2,- (2.5)
i de h e Z 7 h 7 7 7 - -

For the fourth-order case above, letting n = 0 without a loss of generality, we find the following
equation

111 0 0 0 a_y 1
000[-1 -1 —1 ag 0
1111 0 -1 a1 1o
-2 0 2|-1 0 -1 boaxh [~ o0 | (26)
303/ 1 0 —1 bo X h 0
—4 0 4|-1 0 -1 by X h 0

where, in row 1, we set an additional constraint on the sum of a; being unity and use the test
functions up to the fourth power to close the system of equations. For an unbounded domain
the banded matrix A is generally symmetric about its principal diagonal and is positive-definite.
In the case of unstaggered differencing, the symmetry point for a generic row of B is a matrix
element but, in the cases of staggered differencing and for midpoint interpolation, the symmetry
point is midway between two elements. About this symmetry point, B is symmetric if the
operation is midpoint interpolation (or higher derivatives of even degree) but it is antisymmetric
for first derivatives (or higher derivatives of odd degree). A characterization of the principal
coefficient, €, of truncation error is given for arbitrary smooth data, ¢(z), by the defining identity
for the scheme to be formally nth-order accurate:

d= % + ehncz:—n (%) + O(h™, (2.7)
in the case of estimates of the first derivative, dc/dz. Analogous expressions are found for
midpoint interpolation and for derivatives of higher degree.

Appending an additional row of higher degree to (2.6) and evaluating the magnitude of the
associated residual quantity from the left side of this extra row of the matrix equation is, apart
from a factorial term, the coefficient, €, for this scheme. For some numerical operations, this
error coeflicient obeys a simple algebraic expression. For example, the error coefficient €(, ) for
the unstaggered derivative of formal order of accuracy n = 2p + 2q obeys:

(n+1) <n72> @)] : (2.8)

with equality in the case, ¢ > p, which makes the most accurate scheme of given order, n, the
one for whichp=¢g=n/4 or, if n/2 is odd, p =g — 1 = (n — 2)/4. The combined stencil is then
indeed as ‘compact’ as it can be made subject to attaining the required order of accuracy. If
we pose the question, how great a resolution increase is required at a given order of accuracy
to make the conventional differencing formula asymptotically as accurate as the corresponding
compact scheme, then the answers for n =4, 6, 8, 10, 12 are factors of resolution increase of
approximately, 1.57,1.57,1.70, 1.71, 1.77, respectively. By an application of Stirling’s formula

D,q)

(_)Hnﬂe(p,q) 2




(e.g., Abramowitz and Stegun 1965) and using the ‘equality’ case of the formula (2.8) for the
asymptotic error, the required resolution increase can be shown ultimately to approach two in
the limit of arbitrarily high-order accuracy. These observations help to justify the adoption
of compact differencing when a high order of accuracy is sought, provided the computational
cost remains comparable with the cost incurred to implement the corresponding conventional
schemes.

Tables 1 and 2 provide a comparison of the stencil coefficients and principal errors of the
conventional, and best compact schemes respectively for centered differencing up to twelfth-
order.

TABLE 1. Coefficients of centered conventional differencing on a uniform unstaggered grid.

Order B b12hB  ba4hB  bs6hB  ba8RB  bs10KB  bel2hp €
2 ;
4 3 4 -1 3
6 10 15 -6 =
8 35 56 -28 8 -1 =
10 126 210  -120 45 -10 1 s
12 462 792 -495 220 -66 12 -1 -

Coeflicients for negative indices are b_,=—bx.

TABLE 2. Coefficients of centered compact differencing on a uniform unstaggered grid.

Order B af a1 a2p azf v bi2hy  badhy  b3bhy €
6 4 1 1 1 o
6 5 3 1 15 14 1 350
8 70 36 16 1 21 16 5 "y
10 42 20 10 1 630 425 202 3 ST
12 924 400 225 36 1 220 125 88 7 5

11099088

Coefficients for negative indices are a_,=a, and b_,=—b..

(b) Compact integration as the inverse of staggered differentiation

Some of the stencil and error coefficients for staggered derivatives are given in Table 3 for
conventional schemes and in Table 4 for the best compact schemes. In the staggered case, there
does not appear to be a simple generic algebraic expression for the error coefficients of the
compact schemes but, from those that are tabulated, we find that the asymptotic errors, while
consistently smaller than those of the unstaggered compact schemes, are not dramatically so. If
now we ask how much of an increase in resolution would be required to match the magnitudes



of asymptotic error of each corresponding compact scheme, then at orders 4, 6, 8 and 10 the
unstaggered grid resolution would only need to be increased by factors of approximately 1.17,
1.19, 1.09 and 1.10, respectively. In other words, when we adopt the most accurate methods
for a given order of accuracy, the advantage of a staggered arrangement of variables, which
amounts to an effective doubling of resolution for conventional second-order schemes (see the
errors for n =2 in tables 1 and 3), rapidly diminishes to insignificance as we pass to higher
orders of accuracy.

However, the staggered grid schemes do possess one crucially important property that is ex-
ploited in the conservative cascade algorithm for semi-Lagrangian advection (Leslie and Purser
1995): their invertibility in the form of compact quadrature schemes. A consequence of this
property is that the transformation of a conserved density d into its corresponding partial
integral ¢ which, in this context, might be descriptively referred to as the ‘cumulative’ repre-
sentation, entails no ambiguity or loss of information. As we shall show shortly, the mutually
inverse operations of integration and differentiation by compact formulae when the source and
target grids are staggered can be performed efficiently and conveniently ‘in place’ without the
need to supply distinct arrays for the input and output fields.

TABLE 3. Coefficients of conventional centered differencing on a uniform staggered grid.

Order B8 b%hﬂ b%?)h,@ b%5hﬂ bé?hﬂ bggh,@ €
2 1 1 o
4 8 9 -1 =
6 128 150 -25 3 g
8 1024 1225  -245 49 -5 o
10 32768 39690 -8820 2268 -405 35 63

2883584

Coefficients for negative indices are b_,=—bx.

TABLE 4. Coefficients of centered mutually-inverse compact differencing and quadrature on a uniform staggered

grid.
Order B ao a1 as b% hg b% 3hs3 b% 5h0 €
4 24 22 1 24 =L
6 80 62 9 63 17 T
8 76160 51338 12228 183 46800 29360 FiTress
10 2951424 1731174 581100 29025 1366850 1515525 69049 STy
Coefficients for negative indices are a_,=as and b_,=—bs.
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Figure 3. Same as Figure 1 but for the midpoint interpolation stencil.

(¢) Midpoint interpolation

The compact formulation of interpolation superficially resembles that for staggered differ-
encing (and some implementations may share a large proportion of the same code). Writing the
vector of targets, t, staggered with respect to the vector of source values, s, then the centered
formulae involve an odd number of A-coefficients and an even number of B coefficients in each
row of the matrix-vector expression,

At =Bs. (2.9)

10



As before, a Vandermonde matrix system establishes the coefficients for each scheme of type
(p, q), the order of accuracy again being n = 2p + 2¢, and with a coefficient of error, €(p,q)>
defined:

t=s+ eh”%(s) + O(h™ ). (2.10)

The coefficient €, ,y now satisfies the relatively simple algebraic formula:

-1
€(pg) = (=)' /7 (;;2) [4"<n2_p1>] : (2.11)

TABLE 5. Coefficients of conventional centered midpoint interpolation.

Order 8 b%ﬂ b%ﬁ b%ﬂ b%ﬁ b%ﬂ b%,@ €
2 2 1 3
4 16 9 -1 o
6 256 150 -25 3 Ty
8 2048 1225 -245 49 -5 T
10 65536 39690  -8820 2268  -405 35 T
12 524288 320166 -76230 22869 -5445 847  -63 o

Coefficients for negative indices are b_, =bx.

As in the case with differencing, the smallest coefficient €(, ) at any given order n results
from the choice of the most compact combined stencil. The stencil coefficients and principal
errors for conventional midpoint interpolation and for the best compact schemes at up to
twelfth-order can be compared in Tables 5 and 6. The stencil coefficients of the optimum
compact schemes in this case are actually expressible simply as binomial coefficients:

1 n ap : 2j even
— = . ’ 2.12
on—1 (n/2 + 2j> { b, : 2j odd. (2.12)
A graphical comparison of the truncation errors for conventional and compact midpoint
interpolation schemes is given in Fig. 3.

(d) Implicit filtering

In naively formulated meteorological simulations the energy cascade from larger to smaller
scales frequently causes the shortest waves to accumulate too much energy, which can cause
a nonlinear numerical instability. For low-order methods, the formulation of Arakawa-type
advection schemes (for example, see Mesinger and Arakawa 1976) solves the problem, but this
approach is generally not practical for high-order methods. Although numerical diffusion is one
possible remedy, another solution that offers greater control over the spectral response is the
application of carefully designed low-pass filters.

11



TABLE 6. Coefficients of compact midpoint interpolation.

Order f3 aof a1 a2p asf3 bif b3B b3 ¢
4 8 6 1 4 28
6 32 20 6 15 1 088
8 128 70 28 1 56 8 T3
10 512 252 120 10 210 45 1 Eprvr)
12 2048 924 495 66 1 792 220 12 T558608

Coefficients for negative indices are a _,=a, and b_,=b..

There are simple types of low-pass filters available, such as explicit (nonrecursive) and
implicit (recursive) filters. However, for a given expenditure of computation, it is often the
symmetric implicit filters that seem best fitted to the cases of concern because of their relatively
sharp discrimination between the spectral region that is ‘passed’ and the unwanted spectral
region that is substantially damped (Raymond and Garder 1991). Also, implicit filters have
advantages in easily changing the degree of selectivity and by providing a continuous parameter
to control the intended cut-off wavenumber, both being important parameters in practical use.
As to the specific use in models with a terrain following vertical coordinate, a highly selective
implicit filter can be profitably used to avoid spurious vertical transport caused by unintentional
excessive smoothing in the vertical direction near orography (Raymond and Garder 1991).

Symmetric implicit filtering is carried out in practice by executing two one-sided recursive
filters from opposite directions along each grid dimension separately. As Raymond (1988) shows,
a multidimensional filter is possible and has been tested in numerical models. However, here
we concentrate only on one-dimensional filtering.

We consider filters expressed in a matrix-vector notation analogous to (2.9) except that the
target (filter output), t, and the source (filter input), s, now share the same grid. Both A
and B are banded symmetric matrices containing the coefficients of the filter. For parameters

(p, ¢, kc) we set:

CcP S
SN CATREATS 219
B — (((Jj‘cz;p’ (2.14)

where (—S) is h?/4 times the ordinary centered second-derivative operator for a grid of uniform
spacing, h,

1 1 1
(SY)m = = J¥m-1+ SYm = JYmi1, (2.15)
while C is the basic ‘1-2—-1’ smoother, C=1—S:
1 1 1
(CY)m = Zymfl + Eym + Zym—kl; (2.16)

12



and where the numbers S; and C, are the evaluations of the transfer functions of operators S
and C at a ‘critical wavenumber’, the continuous parameter, k., chosen by the user. At this
critical wavenumber, the transfer function of the complete filter has a value of one half. Suppose
we apply operators (2.15) and (2.16) to a Fourier wave:

Yym = G(k)e™", (2.17)

where k is the wavenumber in grid units (that is, h times the absolute wavenumber). Clearly,
the responses are:

Sym = sin® (g) i(k)e™*, (2.18)
Cym = cos? (g) ij(k)e™k, (2.19)

Hence, for input and output functions of the forms

(k)el™F, (2.20)
(k)e™m*, (2.21)

Sm, s
tm = 1

the transfer function of this general form of discrete ‘Butterworth filter’ is

ik
Hp g (k) = §Ek; (2.22)
= ; (2.23)
- sin(k/2) \24 ( cos(k./2) \ 2P’ )
1+ (sin(kc/Z)) (cos(k/2))

where k. denotes the critical wavenumber in grid units.

Of the parameters, indices p and g prescribe the selectivity of the filter, ¢ determining the
degree of ‘roll-off’ from a transfer function response of unity at £ =0, and p determining the
analogous rate of departure from zero exhibited by the transfer function at the ‘Nyquist’ 2h-
wave limit. The continuous parameter k. fixes the wavenumber at which the amplitude of a
sinusoidal wave is diminished by a half. The special class with p =0 and B =1 is traditionally
referred to as the ‘sine-Butterworth’, while the class with p = ¢ is referred to as the ‘tangent-
Butterworth’, owing to the special algebraic forms taken by the transfer function (2.23) in these
cases.

Fig. 4 illustrates the theoretical amplitude responses of sine-Butterworth filters with ¢ from
1 to 6 plotted against the discrete wavenumbers of a cyclic grid of 100 points and shows how
the index ¢ affects the steepness of the response near the selected critical wavenumber. Fig. 5
shows similar plots but with ¢ = 4 and with values of k. corresponding to the indicated discrete
wavenumbers ranging between 4 and 24. For this form of filter we see that the shortest waves
are not completely removed. In numerical modeling applications where the filter is applied
repeatedly, this is not a serious imperfection; for applications where the complete removal of
the shortest wave is important a better choice of filter might be one with p # 0, such as the
‘tangent-Butterworth’. Otnes and Enochson (1972) discuss these filters in detail and describe

13



some of the numerical ill-conditioning problems that may occur when both the index g and the
cut-off wavelength are relatively large. To a lesser extent, these difficulties of ill-conditioning
apply also to the other compact numerical schemes we have discussed when their order index,
n, becomes excessively large. Fortunately, since a sufficient accuracy is usually attained with a
more modest 7, such difficulties do not normally cause problems.

Wavelength

1.0 2.0 10.. — F,) 4 3 21.0

0.5 0.5

Amplitude Response

X

F——— 0

0 10 20 30 40 50
Wavenumber

Figure 4. The amplitude responses of sine-Butterworth filters with different orders but the same critical
wavenumber of 16.

3. SERIAL IMPLEMENTATION OF COMPACT SCHEMES

(a) Recursive solution of implicit operators
Since A is positive symmetric, it can be decomposed as below (modified Cholesky decom-

position)
A =LDL”, (3.1)

where L is a lower triangular matrix with unitary diagonal, LT is its transpose, and D is a
diagonal matrix. Because A is a banded matrix, the triangular factors L and LT are also, and
with the same band width defined by the order of accuracy of the differencing scheme. In an
unbounded domain these factors act as commuting convolution operators, allowing us to recast
(2.2) in the form,

LLYTd = (D 'B)c. (3.2)

Having done this preliminary decomposition, the entire procedure for applying one of the
compact operations can be reduced in general to the three steps summarized algebraically by
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Figure 5. The amplitude responses of the ¢ = 4 sine-Butterworth filter with different critical wavenumbers from
4 to 24.
the equations, (3.3), (3.4) and (3.5):
X = (DB, (3.3)
Ly = x,
L'd = 4,

where vectors ¥ and x contain the results of intermediate calculations. Since the diagonal
elements of L are simply unity, it turns out that the number of computations required to apply
the compact scheme is essentially the same as for the corresponding conventional scheme in a
serial environment. The difficulties, which we shall address in the next section, relate to the
parallel implementation of the second and third steps, which are inherently recursive in nature.
In the case of fourth-order unstaggered compact differencing, the three steps above become:

xi = mlciy1—cio1) (3.6)
Vi = Xi— a1yl (3.7)
di = vi—aidiq, (3.8)

where, for this particular scheme, the constant coefficients are analytically defined:

o = 2-3, (3.9)
Moo= 3ai. (3.10)

In the general case, the invariant coefficients are obtained in practice through an iterative
calculation which mimics the Cholesky decomposition of a matrix A of indefinitely large size,
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the iterations proceeding until convergence of the factors’ coefficients is achieved. We note
that the recursive second step, (3.7), has to be performed by a sequence that progresses in the
forward direction while the final step, (3.8) must proceed in the backward direction.

(b) Staggered differencing and integration ‘in place’

The formalism we have just described applies also to the staggered differencing, midpoint
interpolation and filtering operations discussed in section 2. However, for the case of the
mutually inverse staggered differencing and partial integration operators, where the operations
can be reversed at any time to recover the original data, it is sometimes convenient to adopt a
numerical procedure that explicitly manifests this invertibility.

We begin by observing that, although the matrix B itself is not symmetric in the case of
differencing and, in the staggered case, it does not even have a unique principal diagonal, we
can recover both of these desirable properties by expressing it as the product:

B = TP, (3.11)

where P is the bidiagonal simple difference operator with square matrix representation:

P= 0 -1 1 0 . (3.12)

("'aOa_bk_%a"'a_béab%a"'abk 707"')’ (313)
we then find that T is a positive symmetric banded matrix with a representative row whose
elements, t;, for integer indices ¢ centered on the principal diagonal element 7 = 0 satisfy:

ti=>_ bj. (3.14)

Jj>i

We may now apply a modified Cholesky decomposition to matrix T, so that performing
a compact integration more directly resembles the other general compact operations we have
described. While the final step of inverting the simple difference operation associated with P
can use the accumulation operator, whose top-left corner defines the pattern:

L 0, 0, 0,
L 1, 0, 0,

pi=| 1L 1, L 0, : (3.15)
1, 1, 1, 1

bl

in practice, this accumulation would be solved recursively like any other forward-progressing
recursive filter.
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There is an advantage in performing the modified Cholesky reduction of T in reverse order,
so that the second recursive pass of the compact integration becomes a forward sweep that may
be combined with forward-progressing accumulation operator, P~!. Thus, with E diagonal and
K banded lower triangular, we may factorize T:

T =K'EK (3.16)

Then, in the alternative sequence of three steps, which exhibits a remarkable symmetry when
the sequence is reversed and the operations inverted, we have, for the staggered differencing
steps:

¢ = (KP)c, (3.17)
(LD)y = (K'E)¢, (3.18)
L’d = 4. (3.19)

Starting with ¢, we apply (3.17) sequentially, but in the backward direction, which allows us
to overwrite ¢ with ¢ as we go (we associate the relatively staggered grids here to make the
operator P behave as a lower bidiagonal). The second step (3.18) is performed sequentially
and progresses in the forward direction to allow @ to overwrite ¢. Note that the right-hand
side of (3.18) is then explicit, since it refers to higher-indexed elements while the left-hand side
is implicit, since it refers to the immediate target and lower-indexed values of the same target
vector. The third step (3.19) is fully recursive and solved sequentially for the final derivative
estimate, d, by progressing in the backward direction once more, overwriting ¢ in the process.
Clearly, by reversing the order of these equations, reversing the direction of progression of
the sequential steps in each, and transposing the designation of ‘target’ and ‘source’ vector
in each step, we immediately have the requisite ‘in place’ algorithm by which the cumulative
distribution ¢ may be derived from the density d. In cases where all the operators are of
the diagonally-invariant ‘convolution’ type, then the placement of the diagonals, D and E, is
not critically important and it is often more convenient to combine them with the operator
on the right-hand side of (3.17). For a bounded region with end conditions that preclude the
convolution form, however, such a rearrangement is not possible and equations (3.17)—(3.19)
must be solved as they stand.

(¢) End conditions

For the non-periodic cases, extrapolation is required at both ends, in order to have ¢ valid
for the calculation of all the right-hand side of (3.3) and to provide exterior starting values
of x and % to initiate the recursions implied by the left-hand sides of (3.4) and (3.5). As
one of the simplest methods, we choose polynomial extrapolation, since it enables both an
arbitrary ‘halo’ width of extrapolation and derivatives to be kept continuous to any desired
degree. In the modeling context, the invention of halo values in this manner is no substitute for
the provision of truly informative values that would normally be supplied from a larger scale
model. However, there are occasions when exact halo values are neither readily available, nor
strictly necessary for the production of satisfactory interior values from a compact numerical
process. On such occasions, it is still important not to stimulate noise at the boundaries that
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might later propagate into the interior to spoil the solution. Smooth extrapolation then proves
to be a useful numerical tool, but its validity needs to be checked on a case by case basis. In
preparation for the explicit steps, such as (3.3), the simple approach of polynomial extrapolation
will suffice to define the necessary extrapolation for c. But the preparation of corresponding
haloes of exterior values of ¥ and d requires a more sophisticated extrapolation in order to be
consistent with the recursive steps (3.4) and (3.5).

Taking first the simple extrapolation of uniformly spaced data c;, 1=1,--- to indices
1 <0, we shall find that the first k£ extrapolated values, together with the first m of the original
data, will fit a polynomial of degree m — 1 provided that

Y micipi=0  j=0,-1,..,—k+1, (3.20)
=0

where

1

= (=) <m> (3.21)

We may solve (3.20) recursively for each j, starting adjacent to the boundary and progressing
outwards or, if we wish, we may expand the recursion and express the extrapolated values
directly in terms of the first m interior values:

Cl—; = Z Xz'(:;b)cja (3.22)
j=1

where each matrix element Xl-(gb) is defined:

(m) _ i+l i+7+2\(m+i—1
Xi; =) (j_l m—j | (3.23)

With trivial modification of the indexing, the same direct formula applies to the extrapolation
at the opposite end of the domain:

m
CN+4; = Z XZ-(’T;L)CN+1_J'. (3.24)
j=1

In the case of extrapolating the end values for initiating a recursive process, such as solving
(3.4), it is now the output of the process that we need to extrapolate. We seek a way of expressing
a sufficient number k of the extrapolated exterior values of ¢ in terms of the existing first m
interior values of the input, x, of the recursion. We achieve this by simultaneously requiring the
k extrapolated and the first m interior values of @ to satisfy the k linear constraints implied by
these values fitting the same polynomial of degree m — 1, together with the additional m linear
constraints implied by the first m interior values of ¥ obeying the recursion formula defined by
a generic row of (3.4). This gives us as many equations as unknowns. Setting m =3 and k = 2,
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for example, we have

1 -3 3 —1 0 b1 0

0 1 -3 3 -1 bo 0

as 1 0 0 1 = X1 , (3.25)
0 a ar 1 0 (2 X2

0 0 a o 1 3 X3

and, by inverting the matrix involved to extract the relevant elements, we may then express
the k-vector of extrapolated v in terms of the m-vector of first interior :x.

In the more general example of a mixed explicit-implicit equation, such as (3.18), then the
initial extrapolation requires the appropriate modification of the approach exemplified by (3.25)
(except the input vector must now incorporate the explicit part of the calculation contained
on the right-hand side of (3.18)). The boundary treatment at the opposite end of the domain,
where the recursive progression ends, is the extrapolation appropriate to the explicit part of
the calculation and is therefore of the form (3.20).

Extrapolation naturally deteriorates the accuracy of the scheme, but the influence does not
penetrate too deeply into the interior region for typical compact numerical operators unless
a very high formal order of accuracy is chosen. Figure 6 shows how far the boundary effect
reaches and how large it is for eighth-order differencing. Panel (a) shows the average precision
of the eighth-order differencing against analytic derivatives for a sinusoidal wave of various wave
lengths over a bounded region of 100 grid points on a staggered grid. The numbers in brackets
designate the base-10 logarithms of the absolute errors. From this panel we see that the errors
are becoming small for longer waves, but generally they are constant in the inner region for any
wave lengths. The effect of boundary extrapolation is almost confined to the vicinity of both
ends, while it penetrates somewhat more deeply into the interior region for longer waves. Panel
(b) shows the relative errors for the second order derivatives derived by

dp = Cnt1 — Cn- (3.26)

It shows the errors are sufficiently smaller than those of the second order scheme even in most
of the regions close to the ends. As the order of accuracy of the scheme becomes higher, more
of the interior region tends to be influenced (not shown). This deterioration also depends on
the extrapolating function.

Such boundary effects are inevitable if we truly have no direct knowledge of the profile
of the data beyond the domain given. In the case of Butterworth filtering, the effects can
propagate further in, and to an extend that must at least approximately scale as 1/k.. For the
periodic cases, no extrapolation is required and therefore no degradation of accuracy occurs. It
is also possible, and sometimes quite appropriate, to solve the extrapolation dilemma, through
the imposition of conditions of mirror-symmetry or antisymmetry at the boundaries. However,
with this approach, it is very difficult to preserve the convenient property of spatial invariance
of the coefficients of the recursive processes.
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Figure 6. Accuracy of eighth-order differencing on a staggered grid in a 100-grid bounded region. The top panel

shows the average errors of the scheme against the analytic solution in logarithm in the brackets with respect

to wavenumbers 1 to 50 The bottom panel shows the average improvements of the scheme to the second order

ordinary scheme. From these panels the substantial advantages of the compact scheme are clearly seen in the

interior region, while the deterioration near the boundaries remains comparable to that found for the second
order scheme.

4. STRATEGIES FOR PARALLEL IMPLEMENTATION

The distribution of gridded data in a parallel environment is illustrated schematically in
Figure 7. The entire region is usually divided into several subregions, and then, owing to
the recursions inherent in the process of solving compact schemes or spatially-implicit filters,
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Figure 7. Concept of a parallel environment and region partitioning.

values in one subregion cannot be finally obtained until values in their neighboring regions have
been set. Clearly, it is undesirable to have the efficiency of our most accurate finite differencing
methods severely degraded by scheduling a line of processors to work only singly and sequentially
on the recursive tasks of each numerical scheme, as the benefits of parallelization cannot then be
realized. Instead, we must develop strategies by which the best use is made of every processor,
if possible by having them simultaneously calculating useful values in each subregion in spite
of the recursive dependency that superficially suggests the need for serial calculation.

To attain our purpose, we retain our assumption of diagonal invariance of the operators B
and L that appear in the algorithm expressed by (3.3)-(3.5). The treatment of end conditions
for bounded domains carries over to the parallel case essentially unchanged, but the treatment of
the interior data must be planned with great care in order to extract the optimum computational
efficiency from a parallel distributed-memory computer. For the explicit portion, (3.3), which
may be written for a generic target x;:

k
Xi = Z YjCitjs (4.1)
j=—k

the communication of the necessary halo of k elements of ¢ at both ends of each segment
may be carried out essentially at the same time and independently. For conventional differ-
encing, this constitutes the only communication required, and the implementation is relatively
straight-forward. The harder problem concerns the communication associated with the recursive
portions,(3.4) and (3.5), of the algorithm. We shall devote most of this section to descriptions
of two possible strategies, which we refer to as “Method 1” and “Method 2”7, that address the
problem of parallel implementation of the twin processes of forward and backward recursions.
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(a) Method 1

The generic recursion (3.4) expressed for a particular target element, 1);, becomes
k
Yi=xi— Y i, (4.2)
j=1
and the adjoint of this recursion, (3.5), is similarly written:
k
di =i — Y ojdiy;. (4.3)
i=1

But instead of processing each calculation in a purely sequential way, we first partition the
data into segments assigned to different processors and attempt to perform the calculations in
parallel. Fig. 8 shows a schematic partitioning of the data into four segments containing Ny,
Ny, N3 and Ny points respectively. But appended to the front of each segment is a halo of
k additional points, the ‘head’ of each segment, comprising the additional data 1 required to
evaluate (4.2) for all of the targets interior to the segment in question. Ideally, the ‘head’ of one
segment should be an exact copy of the last k values, or ‘tail’, of the previous segment, except
in the case of the left boundary, where the extrapolatory procedure of Section 3¢ can come into
play instead. Likewise, in solving the backward recursion (3.4), the same partioning applies,
but the positions of the ‘head’ and ‘tail’ data of each segment is then as shown schematically
in Fig. 9.
It is convenient to refer to the N; data in segment j using the local indexing convention:

w) =@,y )T (4.4)
and to distinguish the ‘head’ data for the forward recursion:
i = @ )T i=1,2,3,4, (4.5)
and the ‘tail’ data by:
W = @) w0 i=1,2,3,4 (4.6)

Method 1 requires us to start with all the ‘head’ data set to zero:
¥ =0, (4.7)

and to proceed with the recursions in all the segments simultaneously. Upon the completion
of these forward recursions, the ‘tail’ data of each segment is, in general, inconsistent with the
‘head’ data of the following segment, but the time taken to get to this stage is only the time
required to calculate the recursions on one segment, since the computations have proceeded
in parallel. The next step, which we refer to as the ‘reconciliation’ of end conditions, seeks
to adjust the ‘head’ data in response to the entire set of diagnosed inconsistencies so that a
repeat of the recursions in each segment terminates with the complete elimination of any such
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Figure 9. Region partitioning for the backward recursions

inconsistency. In other words, all the recursions are actually performed twice, doubling the
amount of calculation compared to the corresponding sequential code even without counting
the calculations associated with the reconciliation step. However, the benefits of parallel com-
putations over segments should still render the overall computation more efficient than a serial
code, provided the communications are sufficiently fast and there are enough segments into
which each line of data is divided.

The data inconsistency is measured by error vectors,

U1 = p{0) Ut (4.8)

For the first segment of a bounded domain, e is not defined with this equation, but assuming

that we can rationally define the head values ¢§Ll), through the application of an appropriate
extrapolation, as proposed in Section 3c, or via an interpolation from the data grid belonging
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to a model or analysis covering a more extensive domain, it is legitimate to assume the error
in the first segment vanishes: e =o.

We consider how the changes of v;, denoted as d);, affect values at other points ahead and,
finally, at the points in the tail of the segment. First of all, we find that the sensitivity of k&
consecutive grid points to another k£ consecutive grid points which are displaced by only a unit
distance can be described by,

dwz k—|—1 "p(])
=P ) 4.9
dwifl 1/)(3) ( )

where p denotes a sensitivity, or ‘Jacobian’ matrix of the vector on the left-hand side of the
equation with respect to the vector on the right-hand side, that is,

0 1 0 - 0
0 0 1 e 0
p=| : R (4.10)
0 0 0 e 1
—Qp —Qg-1 —Qg-2 - —Q

We can now make a sensitivity equation of values at the head part to values at the tail part by
repeatedly using (4.9)

dp) = Qidyp?, (4.11)
where
dwl) = (Y, dgt, )T (412)
= () s A v (4.13)
Q = pi. (4.14)
Note that
Q;—0 when Nj — o0, (4.15)

for stable recursions. In practice, we often find for the interesting compact schemes that the
Q, attain magnitudes comparable with round-off error after only a relatively small number of
displacements NN;. This is a feature that we exploit in the alternative method discussed in the
next subsection.

We may ask how the error vector (4.8) depends on the head values when the latter influence
the tail vectors through the identity (4.11). Clearly,

Ut = Qi) — dep™Y (4.16)

so, in order to nullify the actual error, the changes required to the 1), are such as to provoke
corresponding changes de that satisfy:

del) — _elh) (4.17)
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simultaneously for all the j. We obtain as many individual equations for the changes to the head
components as there are segments times k£ and, by concatenating the head and error vectors,
the reconciliation problem for a single complete line of data may be expressed in the single
lower-bidiagonal block-matrix equation:

I 0 0 0 dap\V e
—Q, I 0 0 dap? | | e® 118
0 -Q I 0 d’l/)g?’) ] e® ) ( . )
0 — I 4 (4)
Q3 d¢§z ) e

where I is the identity matrix of order k. Equation (4.18) can itself be solved as a simple
block-recursive procedure progressing in the forward direction.

For the case of a cyclic domain the system of equations would take a form a bit different
from that for the bounded case (4.18) and the solution generally requires some extra steps. The
cyclic counterpart to (4.18) is:

I 0 0 -Q, dipt)) e
—Q, I 0 0 dp? || e® 10
0 @ I 0 ||a® |T|e® | (419)
— I 4 4)
0 0 Q3 d,,/);l ) e

where the condition (4.8) for the first segment must now become:
e = it — ), (4.20)

Eq. (4.19) can be solved by successive elimination of the di;, until we finally obtain a system
of equations for the last head vector, in this case, dngf):

ap) = Qi) + e
= Qs <Q2d’l/)§12) + e(3)) +e®

= Q3Q2Q1Q4d¢§14) +e® 4+ Qs (e(?’) + Qe (9(2) + Qle(l))) ) (4.21)

or equivalently,
(1- Q) dp}) =e® + Qs (e® + Qs (e® + QreV)) (4.22)

where Q = Q3Q2Q1Q4 = p" and N is the sum of N, No, N3 and Ny, the total number of grid
points in the entire region. In typical practice it is very unusual for (I — Q) to be numerically
distinguishable from the identity (except for some of the Butterworth filters whose scales of
influence, if chosen sufficiently large, can ‘wrap around’ the entire domain). This system (4.22)
can be solved for di;,, and subsequently, the remaining head increments, dzple), dz,b,(f) and dzﬁf’)
are obtained by the forward recursion as in the bounded-domain case.
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Figure 10. 2-D partitioning (left) and sharing of reconciliation burden (right). Each task execute sweeps for
the subregion assigned, while it reconciles an entire region in x-direction.

The computational work associated with the reconciliation is not insignificant for a large
number of segments and therefore we should strive to parallelize this burden if possible. Al-
though our description of the algorithm of Method 1 has, until now, concerned only the one-
dimensional aspects, the typical applications we are interested in involve two-dimensional or
three-dimensional spatial grid arrays and, more often than not, several fields of data that require
treatment by the same differencing operator. Combining the other dimensions of the data into
the single transverse dimension, ‘y’, then a more complete schematic depiction of the typical
partitioning of data employed in practice is as shown in Fig. 10

Assuming we apply the algorithm to a 2-dimensional problem, we suppose the entire region
is divided horizontally into (Nsx x Nsy), where Nsx is the number of segments in z, and Nsy in
y. Fig. 10, left, shows the partitioning for 16 tasks with Nsx=Nsy=4.

Because the compact scheme operation is one-dimensional and requires communication
solely in this direction, we naturally split the two-dimensionally deployed tasks into Nsy subsets
of Nsx sequential tasks of the differencing direction and restrict our consideration in each set of
the tasks and their responsible subregions. As any calculation in each subregion is carried out
by the task responsible for the region, sweeps in each subregion can be done in parallel. On the
other hand, the reconciliation process handles an entire line at a time, so that the split region
must be combined and redivided in the differencing direction for each task to share the burden
(Fig. 10, right).

This presentation of Method 1 for the forward recursive processes is modified in the ob-
vious way for application to the backward recursions. Instead of the lower-bidiagonal block-
matrix equation of (4.18) (or its cyclic counterpart) the reconciliation involves the solution of an
upper-bidiagonal block-matrix system, and therefore a backward recursion in the reconciliation
process. The relevant pictorial representation of the process in this case is given by Fig. 9.

(b) Method 2

As suggested in the previous subsection, there is another way to parallelize the proce-
dure if Q; effectively vanishes (that is, when the magnitudes of its elements are comparable
with the machine precision). It is therefore important to investigate, for each of the principal
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compact numerical procedures, the characteristic rate of ‘decay’ of the exponential (or mixed
exponential-oscillatory) tails with grid displacement. The relevant statistics are listed in Table
7 for unstaggered and staggered differencing, staggered integration, midpoint interpolation and
implicit filtering. The ‘decay rate’ is the asymptotic factor, or geometric mean of the decay fac-
tor per grid unit, for the slowest decay mode of each scheme’s recursions. The columns headed
‘REAL(4)’ and ‘REAL(8)’ contain estimates of the number of grid spaces required for these
decay modes to render the amplitude indistinguishable from round-off at 4-byte and 8-byte
precision. (The ‘accumulation’ step of the compact integration schemes is not considered here;
it is clearly a recursive process without finite decay scale, but neglecting it only changes the
values of the ‘constant of integration’ in each data segment, for which allowances can be made in
most practical applications). The scales of influence are shortest for staggered differencing and
integration, longest for unstaggered differencing and midpoint interpolation, but in no case are
the effective scales of influence so large that they would extend over more than a small fraction
of the horizontal grid of a meteorological simulation model at today’s typical resolutions and
domain sizes.

The case of a periodic domain is the most convenient one to consider here. In the situations
where the decay to numerical insignificance occurs within the width of a single subdomain,
the correction vectors dip h) are defined instantly once the difference vectors e¥) are found.
The errors el) are then practically defined by the upstream sweeps. To exploit this situation
efficiently it is natural to divide each computational subregion transversally, assigning one of
them as an initiation area in a pattern that staggers the transverse locations of these initiation
areas from one subdomain to the next in line, as indicated schematically, again for the four-
segment domain-length decomposition, by Fig. 11. The calculations begin simultaneously in
the sub-regions (‘stripes’) marked ‘1,5’ initiated with ‘head’ values set (erroneously) to zero.
While the errors incurred propagate forward along with the recursions, the magnitude of the
errors, compared to the globally consistent ideal numerical solution, dwindle and effectively
vanish by the time the ‘tail’ values are being computed at the far end of each of these stripes.
Except for these essentially ‘correct’ tail values, the rest of the results for this preliminary step
are simply discarded. The tail values of one subdomain are communicated without alteration
to provide the matching ‘head’ values in the neighboring subdomain’s stripe marked ‘2’, which
involves the same subset of grid lines. Because of the pattern of staggering for these stripes,
this second period of calculation also keeps all processors busy. The pattern of computation is
likewise repeated to stripes marked ‘3’, then ‘4’ and, finally, in order to provide the consistent
output values in the original set of stripes (where the first outputs were thrown away), the
fifth period of computations returns to this set of stripes (marked ‘1, 5’). This time, the ‘head’
values are consistent, since they are supplied by the ‘tail’ values of the stripes marked ‘4’. The
same pattern of calculation, but with the appropriately qualified rules of communication at the
domain boundaries, applies to the parallelization of recursions over a bounded (nonperiodic)
domain, even though this appears to entail redundant calculations in the two subdomains
adjacent to the boundaries. Again, the application of these ideas to recursions proceeding in
the backward direction requires the obvious modifications to the staggered pattern of stripes.

Communications are simpler to configure in this case than in the distributed reconciliation
of Method 1 (clearly, Method 2 requires no extra reconciliation). In cases where the scale of
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Figure 11. Same as Fig.10 but for the forward sweep in the case of Method 2 when, effectively, Q =0. Each

task sweeps its own four-partitioned subregion once except for the repetition in each stripe where sweeping is

initiated (dotted region marked by ‘1,5’). For the corresponding backward sweep, the initiation stripes are also

staggered, but lie diagonally but in the opposite orientation to ensure proper alignment and ordering of the
sequence-numbered stripes.

decay of the recursive processes exceeds the width of a subdomain, the region of overlapping
or repeated calculations can be extended to cover more than one subdomain (at the cost of
the implied additional calculations and communications). But, typically, we might expect the
overall amount of calculation required by this Method 2 to be significantly less than the more
than two-fold redundancy that is intrinsically and inescapably a feature of Method 1. For very
large domains subdivided length-wise into numerous segments, the quantity of calculation in
Method 2 can theoretically reduce to only slightly more than the optimum attained by serial
processing. If there is a sufficient quantity of data in the transverse direction to ensure that
the stripes remain wide enough to keep the communications efficient, then this method seems
undoubtedly to offer the better of the two strategies proposed. However, it is possible that, with
insufficient lines of data in the transverse direction and a large number of segments longitudi-
nally, the lengths of the messages communicated become too small to avoid a severe ‘latency’
penalty associated with the initiation of each short message. (A similar hazard can befall the
reconciliation steps of Method 1). Should this pose a threat to the method’s overall efficiency it
might be worth considering reducing the number of stripes in the transverse direction and mak-
ing each one wider by selecting more than one location along each complete line of data where
the initiation of the recursions is allowed to occur. In this way, the communication overheads
are reduced (fewer, but longer messages) at the expense of slightly higher calculation costs (ad-
ditional overlap regions of the kind marked in Fig. 11 by ‘1,5’). We reiterate that the success
of Method 2 hinges on the assumption that the influences of the recursive processes involved
decay away relatively fast; Method 2 is probably not appropropriate for general filtering codes
where the possibility of arbitrarily large scales of influence must be allowed for.

(¢) Method 3

By Methods 1 and 2, we concentrate on diminishing the message lengths between tasks,
either by way of the rather complicated calculations for reconciliation steps (Method 1), or
by staggering the initiation location of each recursion from one processor to the next in line
(Method 2) to keep all processors busy. Instead, if we invest the effort initially to place all
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TABLE 7. The scales of influence of various functions and orders of accuracy. Decay rate depends on the type

of functions, the order of accuracy, the coordinate and the precision of variables used. The names of function

show compact differencing by Diff., integration by Integ., midpoint interpolation by Intplt. and sine-Butterworth
filter by S-B. For the S-B, only the waves of wavelengths 2h and 3h are considered.

Coord/
Function Order Decay Rate REAL(4) REAL(8)
Wavelength
4 0.268 12.1 27.4
Diff. Unstag.
8 0.493 22.5 50.9
4 0.046 5.2 11.7
6 0.148 8.4 18.9
Diff. Stag.
8 0.236 11.1 25.0
10 0.267 13.8 31.2
6 0.083 6.4 14.5
Integ. Stag. 8 0.178 9.3 20.9
10 0.267 12.1 27.3
4 0.172 9.0 20.4
6 0.333 14.5 32.8
Intplt. Stag.
8 0.446 19.8 44.7
10 0.528 25.0 56.4
1 0.209 10.2 23.0
2 0.268 12.1 27.4
3 0.338 14.7 33.2
S-B 3h
4 0.397 17.3 39.0
5 0.448 19.8 44.9
6 0.491 22.4 50.7
1 0.172 9.0 20.4
2 0.217 10.4 23.6
3 0.268 12.1 27.4
S-B 2h
4 0.311 13.6 30.8
5 0.346 15.0 34.0
6 0.376 16.3 36.9

communicating data of a line into the same processor, employing what is known as a global
transpose, the reconciliation steps can be dispensed with. Afterward, the inverse transpose of
the data puts them back into the processors to which they were assigned originally. This leads
to a rather simple way of implementing the compact schemes and is hereafter called ‘Method 3’.
When we can assume Q vanishes below round-off significance in the course of a full sweep of
the domain (generally the case in practice), then Method 3 will further simplify and become
more efficient even for a cyclic region. As in the previous methods, Method 3 is realized by
partitioning the subregions into stripes as shown in Fig 10, right. But now each stripe is
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assigned to a single processor. The reversal of the transpose of data is then necessary at the
end and, since each message is fairly large, communication costs are subsequently expected to
be relatively large per message. Computational costs, on the other hand, are expected to be
as small as in Method 2. Method 3 requires a large movement of data at the start and at the
end while Method 2 moves a significantly smaller amount of data, but fragmented into many
smaller messages, so it is not obvious which strategy will prove superior in a given situation.
This is the question we attempt to answer in the next section.

5. COMPUTATIONAL COSTS

In this section, the performances of parallel programs using compact schemes of Method 1,
2, 3 and conventional centered schemes on a parallel machine (IBM RS/6000 SP) are compared.
The sample programs, highly tuned for the machine, execute numerical differencing five times,
and the following results are the best ones of the repetitive trials. Since resulting times are only
moderately stable and possibly fluctuate, especially when longer times are required, the results
for the larger domain are measured for a single operation and simply multiplied by 5 for easy
comparison with other results.

Table 8 shows the timings by Method 1, 2, 3 and the centered conventional differencing
schemes for various data sizes over the two dimensional domain, basically assuming a three di-
mentional domain with 250 x 250 grid points in the horizontal, extending in the non-processing
direction assuming multiple elements and vertical levels are folded into a two dimentional array
to process comprehensive data at a single call. The timings for ‘Total’ are the durations re-
quired for the five calls of the differencing subroutine, and they are broken down into ‘Comm.’
and ‘Calc.” which show the required time for communication and calculation excluding small
costs for the establishment and dismissal of communication groups. ‘Min.’ shows the minimum
timings of a single differencing.

In Table 8, ‘Total’ times appear to scale in proportion to the size of the entire domain by any
scheme for the large data (N, > 2500), while they do not for the smallest data (N, = 250). From
the comparisons, Method 2 is clearly better than Methods 1 and 3. Theoretically, the calculation
times for sweeping in Methods 2 and 3 are 5/8 of Method 1 with four processors in the operating
direction, and for the case of N, = 25000 they would be 0.355 x 5/8 = 0.222 sec, though they
are actually 0.256 sec and 0.300 sec for Methods 2 and 3. The inefficiency of Method 3 compared
with Method 2 and Method 2 against the theoretical estimation may result from the particular
way of implementating the schemes, which incurs its own handling costs for arrays. In the
meantime, the communication requires longer times in Method 3 than in Method 1, so that
the merit of the reduced calculation costs in total time appears only for Method 2, and not at
all for Method 3. From ‘Total’ times we can safely say that, for this computational platform,
at least, Method 2 is the best choice for computational performance and, for a single compact
operation in isolation, Method 3 would be recommended only in a limited situation. (When
a string of consecutive compact operations must be applied in the same direction, Method 3
obviously becomes more attractive, since the cost of the data transposions performed once at
the beginning and once at the end of such a sequence is effectively shared.) Method 1 would
only be a reasonable choice when the rapid decay to insignificance of the influence function
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of the recursive operators, as described in the previous sections, cannot be guaranteed for the
particular recursions under consideration.

TABLE 8. Timing of compact numerical differencing schemes of the three methods and conventional centered
differencing schemes for cyclic regions of different sizes. Timings are measured for five iterations of differencing.

Processors Order Nx Ny Total Comm. Calc. Min.

4 x4 8 250 25000 0.397 0.056 0.337 0.079

Method 1 4x4 8 250 2500 0.044 0.013 0.027 0.009
4x4 8 250 250 0.019 0.012 0.003 0.004

4x4 8 250 25000 0.259 0.033 0.222 0.052

Method 2 4x4 8 250 2500 0.030 0.007 0.018 0.006
4x4 8 250 250 0.014 0.006 0.002 0.002

4x4 8 250 25000 0.595 0.250 0.340 0.119

Method 3 4x4 8 250 2500 0.052 0.026 0.020 0.010
4x4 8 250 250 0.010 0.004 0.002 0.002

4x4 8 250 25000 0.160 0.025 0.130 0.032

Conventional 4x4 8 250 2500 0.018 0.003 0.011 0.004
4x4 8 250 250 0.006 0.001 0.001 0.001

Table 8 also shows comparison of conventional and compact numerical differencing schemes.
It is proved that conventional schemes are about two to six times more efficient in time than
compact schemes. Although the formal algebraic operation counts are not so much different
from each other, compact schemes require more frequent communications and data handling,
which significantly affects the performance.

Table 9 shows the performance of Method 2 with various orders of accuracy. When the order
of accuracy is raised from 4 to 6, and 8 to 10, the right-hand side of the compact schemes has
more coeflicients and thereby requires more calculation and the exchanging of larger messages.
The left-hand side has more coefficients when the order is raised from 6 to 8. In both cases,
computational costs increase moderately with order of accuracy.

TABLE 9. Same as Table 8 but only for Method 2 with various orders of accuracy.

Processors Order Nx Ny Total Comm. Calc. Min.
4x4 4 250 25000 0.275 0.050 0.220 0.055
4x4 6 250 25000 0.295 0.050 0.235 0.059
Method 2
4x4 8 250 25000 0.320 0.055 0.260 0.064
4x4 10 250 25000 0.350 0.070 0.280 0.070

Table 10 shows the results with different numbers and assignments of processors. While
the computational costs of Method 2 with a fixed number of processors diminish when mode
processors are assigned so as to divide the domain in the direction of processing, the timings
seemingly diminish with fewer processors in the operational direction.
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TABLE 10. Same as Table 8 but only for Method 2 with different numbers of processors.

Processors Order Nx Ny Total Comm. Calc. Min.
2x2 8 250 25000 1.220 0.050 1.165 0.244
4x2 8 250 25000 0.695 0.120 0.570 0.139
2x4 8 250 25000 0.575 0.030 0.540 0.115
Method 2
8x2 8 250 25000 0.415 0.090 0.320 0.083
4x4 8 250 25000 0.320 0.055 0.260 0.064
2x38 8 250 25000 0.260 0.015 0.240 0.052

6. DISCUSSION AND CONCLUDING REMARKS

Compact schemes are most easily expressed by assuming that the lines on which they are
to operate extend without bounds in both directions. Under this assumption, the matrix repre-
sentation of each scheme possesses diagonally invariant form, implying that the coefficients do
not depend upon the location within the grid. We have shown that boundary conditions can be
constructed to be consistent with this assumed invariance, in both bounded and cyclic domains.
One consequence of the simplifying assumption is that it allows the recursive processes to be
broken down, or ‘factored’, into pieces each associated with a subdomain corresponding to a
subdivision of the grid required by parallel processing. Our Methods 1 and 2 exploit this factor-
ing directly, but in different ways, as described in section 4. The results of timing experiments
show that Method 2 is uniformly superior to Method 1 in implementing the ‘standard’ compact
operations. It would therefore only be for very special circumstances, such as the implementa-
tion of recursive filtering codes in which the length-scale of the filters were unknown a priori,
where Method 2 might fail, that one would prefer Method 1.

In comparison with conventional numerical methods of corresponding orders of accuracy,
even the Method 2 timings were found to be somewhat disappointing, owing in part to the
slightly greater computation burden inherent in this method, but also owing to the signifi-
cantly greater costs associated with the communications between processors which, for com-
pact schemes, necessarily involve more messages. In an attempt to replace the transmission a
many short messages throughout the recursions by fewer but longer messages exchanged at the
beginning and end of the entire process, we also investigated the cost of this approach, ‘Method
3’. Unfortunately, in no cases was this method found to be competitive with Method 2 for
single compact operations, although it would clearly pay off in cases where several recursive,
or broad-stencil numerical operations, directed along the same lines of the grid are required to
be executed consecutively. This is actually the case in some algorithms for the conserving grid-
to-grid interpolations of a semi-Lagrangian model. Another advantage of the global transposes
effected by Method 3 is that they significantly eliminate much of the code complexity of the
other two methods.

The present study was conducted on a single parallel platform, the IBM SP at NOAA /NCEP.
However, preliminary indications suggest that the qualitative rankings do not differ significantly
when some similar timing experiments were conducted using a nine-node Compaq cluster at
NCAR, Boulder, and the Compaq XP1000 Linux cluster at FSL, Boulder. Since many of the
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rankings among the competing methods can depend upon hardware considerations, especially
concerning the latency time for message passing relative to the speed of performing floating-
point operations, same of our conclusions may require some qualification or amendment when
compact schemes are implemented on alternative computing platforms. We hope to be able
to extend the scope of this study at a future time to include detailed timing data for a wider
variety of other parallel machines.
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