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Introduction
The Delta-Eddington Approximation is used extensively in the NCAR 
Community Atmosphere Model (CAM) for calculating the effects of solar 
radiation on the atmosphere.  The routine studied here, RADDEDMX, was 
taken from NCAR's CAM 3.0.  It is a computationally expensive portion of the 
CAM model, and the embarrassingly parallel nature of the computation makes 
it a good candidate for acceleration on a GPU.

Problem Description
For the test case considered here the atmosphere is divided into 2000 blocks, 
with each block containing 16 columns, and each column having 27 vertical 
layers.  The RADDEDMX routine is called independently on each layer of each 
column.  Every subroutine call requires 19 floating point values as input, 
calculates 10 floating point values as output, and performs 419 floating point 
operations on average.

NVIDIA GPU Hardware
The graphics card used for this experiment was an NVIDIA GeForce 9800 GX2.  
The 9800 GX2 contains two G92 graphics processors, each with 128 individual 
scalar processor (SP) cores and 512 MB of fast DDR3 memory.  The SPs are  

Figure 1.   The NVIDIA G92 GPU.  The G92 is a massively 
parallel processor with 128 scalar processor cores, 32 
special function units, and multiple levels of global and local 
memory.
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Implementation
The original subroutine was a Fortran module from CAM.  The module was 
ported to C and a driver routine was created to call it using data from a sample 
run.  The CPU version stores data in 2D arrays by vertical level and by column 
index, with 27 levels and 32000 columns (2000 blocks) in the test case.  It 
iterates over levels, and at each level calls RADDEDMX to compute values in 
that level for each column.  The CUDA version uses 1D arrays with data from 
adjacent columns contiguous in memory on each vertical level.  The arrays are 
DMAed to the GPU, the CUDA kernel is called once, and results are DMAed 
back to the CPU.  The arrays are discretized using CUDA threads, with one 
thread assigned to each level of each column (i.e. 27 x 32000 threads total).  
The threads are dispatched in 1D blocks, the number of threads per block is a 
tunable parameter and the total number of blocks is automatically adjusted to 
fit the problem size.  This data arrangement causes neighboring threads to 
access contiguous memory locations, which allows coalesced memory accesses 
to maximize GPU memory efficiency.  In addition local and temporary variables 
use registers to reduce traffic to and from global device memory.  The CUDA

Figure 2.   Layout of variables in GPU memory for the CUDA version.  All data arrays are 1D 
and contain data for adjacent columns in contiguous memory locations for each vertical level.  
In the present case N=32000.  This arrangement guarantees memory coalescing on the GPU.

Performance
To evaluate performance the test case was run on the NVIDIA GeForce 9800 
GX2 as well as some common microprocessor platforms.  Results are shown in 
figure 3.  The RADDEDMX code on the GPU is able to process columns 14x 
faster then the fastest microprocessor, achieving 967,000 columns/sec, vs 
69,000 columns/sec for the Intel Core2.  Although this may seem like great

Conclusions
Bandwidth limitations turned out to be the major performance bottleneck for 
this code, although, given its relatively low computational intensity, such a 
result was not unexpected.  The upside to being bandwidth limited is that we 
can achieve a large increase in overall application performance simply by 
increasing the bandwidth between the GPU and the host system, without 
having to make any changes to the code.  In particular, since PCIe 2.0 is 
supported on the NVIDIA GeForce 9800 GX2, we should be able to plug the 
card into a machine with PCIe 2.0 support and get nearly a factor of two 
improvement in overall performance, provided that the system has a fast 
enough memory system to saturate a PCIe 2.0 bus.
  Another interesting consequence of implementing a routine with low 
computational intensity for the 9800 GX2 card is that the best performing 
implementation turned out to only use one of the two G92 chips available on 
the card.  The reason for this is that using both G92s could halve the 
computation time from roughly 2 msec, to roughly 1 msec, but the lower DMA 
bandwidth resulting from performing two DMAs of half the size (one to each 
chip), as well as the additional control overhead of scheduling computations on 
both chips, added significantly more than 1 msec to the run time.  One of the 
biggest lessons of this exercise is: when looking at using GPUs and other 
accelerators to speed up an application, it is critical to consider the system as 
a whole, including data transfer overhead, in order understand what sort of 
performance is possible for a given application.
    In the end we were able to demonstrate an efficient CUDA implementation 
of the RADDEDMX routine which, despite bandwidth constraints, still achieved 
speedups in excess of 10x over current generation microprocessors.
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Figure 3.  Performance results for the RADDEDMX routine on three current generation microprocessors and the NVIDIA GeForce 
9800 GX2.  The NVIDIA card is able to achieve a processing throughput of 967,000 columns/sec, vs. 69,000 columns/sec for its 
closest competitor, the Intel Core2.  This represents a speedup of 14x - 20x for the subroutine, which includes time taken to 
transfer data between the CPU and GPU main memories.

performance, in reality it is only a small fraction of the computing power 
available from the GPU.  Because the computational intensity of the problem is 
low (only 5.5 Flops/byte loaded), performance is dominated by the data 
transfer bandwidth over the PCIe bus.   The host system only supported PCIe 
1.0 speeds, and therefore data transfer was limited to 4.0 GB/s.  When PCIe 
protocol overhead and memory system effects are accounted for, in practice 

Figure 4.   The actual kernel execution takes only a 
small fraction of the total run time.  PCIe bandwidth 
is the major performance limiter for this application.

20.1 msec

11.1 msec
2.0 msec

3.0 GB.s - 3.5 GB/s is a more typical DMA 
transfer rate over the PCIe bus, depending on 
the transfer size.  For this problem we are 
making a relatively small transfer (~63 MB) 
which takes 20.1 msec, giving a bandwidth of 
~ 3.1 GB/s, showing that we are making good 
use of the limited bandwidth available.  To 
show how limited the overall problem is by 
the PCIe bus, we can calculate the maximum 
compute rate possible with this bandwidth.  In 
the limit of free computing, the data transfer 
alone takes 31.1 msec, giving a column 
processing rate of 1,029,000 columns / sec.
Our implementation achieved 967,000 columns / sec, or roughly 94% of the 
maximum possible performance given the bandwidth constraint. A comparison

clocked at 1.5 GHz, and each can perform a 
fused multiply-add every clock cycle, which 
gives the card a theoretical peak performance 
of 768 GFlop/s.  Data is moved to and from 
the host CPU memory by DMA transfers over 
a PCI Express bus.  Although PCIe 2.0 data 
rates are supported by the GeForce 9800 GX2 
card, the host machine only supported PCIe 
1.0, limiting data bandwidths to 4.0 GB/s 
peak between the host CPU and the GPU 
memory.  Internal bandwidth within the 9800 
GX2 is much higher, with 64 GB/s between 
main global device memory and the SP cores, 
making the PCIe bus the major bottleneck.

FPGA Footnote
Originally we had intended to include some promising results from a research 
project at Xilinx to create compilers that produced pipelined FPGA code from 
standard C and Fortran source.  Although in relatively early stages, the 
CHiMPS project was able to take our C code and produce an FPGA executable 
which, on a simulator, produced speedups of order 10x, with little change to 
the source code.  Unfortunately the project is no longer being actively pursued 
at Xilinx, although we hope it might be revived at some point in the future.

code for the kernel itself is 
very similar to the original C, 
with just a few function calls 
traded for faster GPU intrinsics.

Table 1.   Results comparison across the test systems.  Note that when looking only at 
compute time and ignoring DMA transfer time, the GPU achieves a large pecentage of 
its peak performance relative to the other platforms.

of results between the test 
systems is shown in table 1.  
Ignoring the cost of the DMA, 
the GPU is able to make better 
use of its floating point units 
than the microprocessors, due 
to a greater ability to hide 
latency by using large numbers 
of very light weight threads.


