
IN23C-1098

Computing the Delta-Eddington Approximation for Solar Radiation
Performance and Programmability on GPUs, FPGAs, and Microprocessors

Rory Kelly (rory@ucar.edu) and Jose Garcia (jgarcia@ucar.edu)
Computational & Information Systems Laboratory, National Center for Atmospheric Research

Introduction
The Delta-Eddington Approximation is used extensively in the NCAR
Community Atmosphere Model (CAM) for calculating the effects of solar
radiation on the atmosphere. The routine studied here, RADDEDMX, was
taken from NCAR's CAM 3.0. It is a computationally expensive portion of the
CAM model, and the embarrassingly parallel nature of the computation makes
it a good candidate for acceleration on a GPU.

Problem Description
For the test case considered here the atmosphere is divided into 2000 blocks,
with each block containing 16 columns, and each column having 27 vertical
layers. The RADDEDMX routine is called independently on each layer of each
column. Every subroutine call requires 19 floating point values as input,
calculates 10 floating point values as output, and performs 419 floating point
operations on average.

NVIDIA GPU Hardware
The graphics card used for this experiment was an NVIDIA GeForce 9800 GX2.
The 9800 GX2 contains two G92 graphics processors, each with 128 individual
scalar processor (SP) cores and 512 MB of fast DDR3 memory. The SPs are

Figure 1. The NVIDIA G92 GPU. The G92 is a massively
parallel processor with 128 scalar processor cores, 32
special function units, and multiple levels of global and local
memory.

For Further Information
Please Contact:
Rory Kelly (rory@ucar.edu)
Jose Garcia (jgarcia@ucar.edu)

More information about this project and related projects can be found at:
http://www.cisl.ucar.edu/css/

Implementation
The original subroutine was a Fortran module from CAM. The module was
ported to C and a driver routine was created to call it using data from a sample
run. The CPU version stores data in 2D arrays by vertical level and by column
index, with 27 levels and 32000 columns (2000 blocks) in the test case. It
iterates over levels, and at each level calls RADDEDMX to compute values in
that level for each column. The CUDA version uses 1D arrays with data from
adjacent columns contiguous in memory on each vertical level. The arrays are
DMAed to the GPU, the CUDA kernel is called once, and results are DMAed
back to the CPU. The arrays are discretized using CUDA threads, with one
thread assigned to each level of each column (i.e. 27 x 32000 threads total).
The threads are dispatched in 1D blocks, the number of threads per block is a
tunable parameter and the total number of blocks is automatically adjusted to
fit the problem size. This data arrangement causes neighboring threads to
access contiguous memory locations, which allows coalesced memory accesses
to maximize GPU memory efficiency. In addition local and temporary variables
use registers to reduce traffic to and from global device memory. The CUDA

Figure 2. Layout of variables in GPU memory for the CUDA version. All data arrays are 1D
and contain data for adjacent columns in contiguous memory locations for each vertical level.
In the present case N=32000. This arrangement guarantees memory coalescing on the GPU.

Performance
To evaluate performance the test case was run on the NVIDIA GeForce 9800
GX2 as well as some common microprocessor platforms. Results are shown in
figure 3. The RADDEDMX code on the GPU is able to process columns 14x
faster then the fastest microprocessor, achieving 967,000 columns/sec, vs
69,000 columns/sec for the Intel Core2. Although this may seem like great

Conclusions
Bandwidth limitations turned out to be the major performance bottleneck for
this code, although, given its relatively low computational intensity, such a
result was not unexpected. The upside to being bandwidth limited is that we
can achieve a large increase in overall application performance simply by
increasing the bandwidth between the GPU and the host system, without
having to make any changes to the code. In particular, since PCIe 2.0 is
supported on the NVIDIA GeForce 9800 GX2, we should be able to plug the
card into a machine with PCIe 2.0 support and get nearly a factor of two
improvement in overall performance, provided that the system has a fast
enough memory system to saturate a PCIe 2.0 bus.
 Another interesting consequence of implementing a routine with low
computational intensity for the 9800 GX2 card is that the best performing
implementation turned out to only use one of the two G92 chips available on
the card. The reason for this is that using both G92s could halve the
computation time from roughly 2 msec, to roughly 1 msec, but the lower DMA
bandwidth resulting from performing two DMAs of half the size (one to each
chip), as well as the additional control overhead of scheduling computations on
both chips, added significantly more than 1 msec to the run time. One of the
biggest lessons of this exercise is: when looking at using GPUs and other
accelerators to speed up an application, it is critical to consider the system as
a whole, including data transfer overhead, in order understand what sort of
performance is possible for a given application.
 In the end we were able to demonstrate an efficient CUDA implementation
of the RADDEDMX routine which, despite bandwidth constraints, still achieved
speedups in excess of 10x over current generation microprocessors.

Acknowledgements
This research was supported by the NSF and made possible by an equipment
grant from the NVIDIA corporation through the NVIDIA Professor Partnership
Program. Special thanks also to Jeff Mason from Xilinx for supplying data on
FPGA performance.

Figure 3. Performance results for the RADDEDMX routine on three current generation microprocessors and the NVIDIA GeForce
9800 GX2. The NVIDIA card is able to achieve a processing throughput of 967,000 columns/sec, vs. 69,000 columns/sec for its
closest competitor, the Intel Core2. This represents a speedup of 14x - 20x for the subroutine, which includes time taken to
transfer data between the CPU and GPU main memories.

performance, in reality it is only a small fraction of the computing power
available from the GPU. Because the computational intensity of the problem is
low (only 5.5 Flops/byte loaded), performance is dominated by the data
transfer bandwidth over the PCIe bus. The host system only supported PCIe
1.0 speeds, and therefore data transfer was limited to 4.0 GB/s. When PCIe
protocol overhead and memory system effects are accounted for, in practice

Figure 4. The actual kernel execution takes only a
small fraction of the total run time. PCIe bandwidth
is the major performance limiter for this application.

20.1 msec

11.1 msec
2.0 msec

3.0 GB.s - 3.5 GB/s is a more typical DMA
transfer rate over the PCIe bus, depending on
the transfer size. For this problem we are
making a relatively small transfer (~63 MB)
which takes 20.1 msec, giving a bandwidth of
~ 3.1 GB/s, showing that we are making good
use of the limited bandwidth available. To
show how limited the overall problem is by
the PCIe bus, we can calculate the maximum
compute rate possible with this bandwidth. In
the limit of free computing, the data transfer
alone takes 31.1 msec, giving a column
processing rate of 1,029,000 columns / sec.
Our implementation achieved 967,000 columns / sec, or roughly 94% of the
maximum possible performance given the bandwidth constraint. A comparison

clocked at 1.5 GHz, and each can perform a
fused multiply-add every clock cycle, which
gives the card a theoretical peak performance
of 768 GFlop/s. Data is moved to and from
the host CPU memory by DMA transfers over
a PCI Express bus. Although PCIe 2.0 data
rates are supported by the GeForce 9800 GX2
card, the host machine only supported PCIe
1.0, limiting data bandwidths to 4.0 GB/s
peak between the host CPU and the GPU
memory. Internal bandwidth within the 9800
GX2 is much higher, with 64 GB/s between
main global device memory and the SP cores,
making the PCIe bus the major bottleneck.

FPGA Footnote
Originally we had intended to include some promising results from a research
project at Xilinx to create compilers that produced pipelined FPGA code from
standard C and Fortran source. Although in relatively early stages, the
CHiMPS project was able to take our C code and produce an FPGA executable
which, on a simulator, produced speedups of order 10x, with little change to
the source code. Unfortunately the project is no longer being actively pursued
at Xilinx, although we hope it might be revived at some point in the future.

code for the kernel itself is
very similar to the original C,
with just a few function calls
traded for faster GPU intrinsics.

Table 1. Results comparison across the test systems. Note that when looking only at
compute time and ignoring DMA transfer time, the GPU achieves a large pecentage of
its peak performance relative to the other platforms.

of results between the test
systems is shown in table 1.
Ignoring the cost of the DMA,
the GPU is able to make better
use of its floating point units
than the microprocessors, due
to a greater ability to hide
latency by using large numbers
of very light weight threads.

