
Chemical Transport Models on
Accelerator Architectures
John C. Linford
Dr. Adrian Sandu

/ 17

Presentation Outline
•  Features of the Cell Broadband Engine Architecture
▫  Multiple layers of heterogeneous parallelism
▫  Cores operate on data in separate, distinct address spaces

•  FIXEDGRID: A prototypical air quality model
▫  Solves the upwind-biased advection/diffusion equations

•  Chemical transport modeling on the CBEA
▫  Two-dimensional
▫  Three-dimensional

12/14/08

2

AGU IN27C-07

/ 17

The Cell Broadband Engine Architecture
•  1 ⨉ Power Processing Elem.
▫  64-bit PowerPC + Vector/SIMD

•  8 ⨉ Synergistic Processing Elem.
▫  128-bit SIMD processor
▫  256KB local storage
▫  Cannot access main memory directly
▫  Uses DMA to copy data between

main memory and local storage
•  Memory Flow Controller
▫  Asynchronous DMA between main-

memory and local storage
•  Element Interconnect Bus
▫  Circuit-switched ring topology
▫  204.8GB/second peak bandwidth

•  PowerXCell 8i: 102.4 gigaFLOPS
▫  Double precision

12/14/08

3

AGU IN27C-07

/ 17

Presentation Outline
•  Features of the Cell Broadband Engine Architecture
▫  Multiple layers of heterogeneous parallelism
▫  Cores operate on data in separate, distinct address spaces

•  FIXEDGRID: A prototypical air quality model
▫  Solves the upwind-biased advection/diffusion equations

•  Chemical transport modeling on the CBEA
▫  Two-dimensional
▫  Three-dimensional

12/14/08

4

AGU IN27C-07

/ 17

FIXEDGRID: A prototypical atmospheric model
for emerging multi-core research
•  Experimental platform for modeling on multi-core
▫  Isolate model components for detailed profiling
▫  Test new concepts without rewriting a large production code
▫  100% standard C

•  Simple domains, realistic processes
▫  Properly-formatted real-world data can be used

•  Has been ported to many platforms
▫  Serial / SSE
▫  OpenMP
▫  CBEA
▫  Sequoia
▫  NVIDIA CUDA

12/14/08

5

AGU IN27C-07

/ 17

Fixedgrid uses finite differences to discretize
the upwind-biased transport-balance equations

12/14/08 AGU IN27C-07

6

Advection

Diffusion

Transport

Convection

A. Sandu, D.N. Daescu, G.R. Carmichael, and T. Chai.
Adjoint Sensitivity Analysis of Regional Air Quality
Models. J. Comp. Phys., Vol. 204, p. 222-252, 2005.

/ 17

O3 (top) and NO2 (bottom) from FIXEDGRID
t = 0 minutes t = 30 minutes t = 60 minutes

12/14/08

7

AGU IN27C-07

/ 17

Presentation Outline
•  Features of the Cell Broadband Engine Architecture
▫  Multiple layers of heterogeneous parallelism
▫  Cores operate on data in separate, distinct address spaces

•  FIXEDGRID: A prototypical air quality model
▫  Solves the upwind-biased advection/diffusion equations

•  Chemical transport modeling on the CBEA
▫  Two-dimensional
▫  Three-dimensional

12/14/08

8

AGU IN27C-07

/ 17

Operator splitting parallelizes advection /
diffusion kernel in rows and columns
•  Compared function offload

approaches for 2D transport
on the CBEA and shared-
memory multi-core.

•  Demonstrated an effective
method for scalable random
access to matrix column data
using DMA lists.

•  Identified potential compiler
research areas.

NY

NX

NY

NX

12/14/08

9

AGU IN27C-07

John C. Linford and Adrian Sandu. Optimizing large
scale chemical transport models for multicore
platforms. In Proceedings of the 2008 Spring
Simulation Multiconference (SpringSim ’08),
Ottawa, Canada, April 2008.

/ 17

Three versions of the function offload
approach were compared
Ver. 1: Naïve function offload Ver. 2: SPE optimized offload

•  Offloaded the main
computational cores to SPEs
▫  discretize()
▫  advec_diff()

•  Implemented generic data types
for passing arguments to the
SPUs

•  Implemented tiny 32-bit
communication library for
PPU / SPU communication
▫  Based on mailbox registers
▫  Send/receive
▫  Broadcast
▫  Synchronize

•  Double-buffered DMA
▫  23% runtime reduction

•  Vectorized functions with SPU
intrinsics and compiler flags
▫  18% runtime reduction

•  Unrolled loops and used
branch prediction intrinsics
▫  8% runtime reduction

•  ~2⨉ faster. An optimized
compiler should be developed

12/14/08

10

AGU IN27C-07

/ 17

The SPEs copy matrix rows directly from
main memory to LS via DMA

PPE

SPE

SPE

SPE

SPE

SPE

SPE

Main Memory

€



















Buffer

12/14/08

11

AGU IN27C-07

/ 17

The PPU buffers transposed columns in
main memory so SPEs can DMA to LS

PPE

SPE

SPE

SPE

SPE

SPE

SPE

Main Memory

€



















Buffer

12/14/08

12

AGU IN27C-07

/ 17

Scalability is severely limited by PPU
matrix transpose bottleneck

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%

0 1 2 3 4 5 6 7 8

SPEs

Opt. Fcn. Offload

Scalable DMA

Linear

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

S
ec

on
d

s

SPEs

Wall clock
Row discret
Col discret

Scalability is limited by
PPU bottleneck

Wall clock bounded by
column discretization

12/14/08

13

AGU IN27C-07

/ 17

Version 3: Use DMA lists for column data
transfer and alleviate scalability bottleneck
•  Use DMA lists to transfer

incontiguous data
•  16 byte minimum transfer size,

so transfer and process two
columns at once

•  Columns are interleaved in
SPE local storage and must be
separated before processing

0

50

100

150

200

250

300

350

400

450

S
ec

on
d

s

Monza (PlayStation 3)
JUICEnext (BladeCenter QS22)
CellBuzz (BladeCenter QS20)
Jugene (BlueGene/P)
Deva (2x Intel Quad-Core Xeon)

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

1 2 3 4 5 6 7 8 9

Threads

Monza (PlayStation 3)
JUICEnext (BladeCenter QS22)
CellBuzz (BladeCenter QS20)
Jugene (BlueGene/P)
Deva (2x Intel Quad-Core Xeon)
Linear

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8

S
ec

on
d

s

SPEs

Wall clock
Row discret
Col discret

12/14/08

14

AGU IN27C-07

/ 17

Vector Stream Processing in 3D transport uses
every layer of heterogeneous parallelism
•  Combined the stream processing

features of CBEA with the SPE
SIMD ISA

•  Streams are formed by
combining DMA lists with a
triple-buffering scheme.
▫  Asynchronous comm. enables

simultaneous read, write, and
compute on a single SPE

•  Used MFC intrinsics and the
proxy command queue to avoid
mailbox registers and improve
throughput

•  John C. Linford and Adrian Sandu. Vector
stream processing for effective application of
heterogeneous parallelism. 24th Annual ACM
Symposium on Applied Computing (SAC’09),
Honolulu, HI, March 8–12 2009.

19

Fig. 7 Fixedgrid data storage scheme for the 3D transport module showing padding and
vectorization with double-precision data types

This method is particularly useful when programming several separate com-
putational units without explicitly managing allocation, synchronization, and
communication. Stream processing is appropriate for programs using dimen-
sion splitting to reduce multidimensional operations to sets of 1D operations.
The 1D operations can be implemented as kernel functions and the domain
data streamed in parallel through the kernels.

Vector stream processing extends stream processing by making every ele-
ment in the data stream a vector and using vectorized kernel functions. This
approach uses every level of heterogeneous parallelism in the CBEA by over-
lapping memory I/O with SIMD stream kernels on multiple cores. In order to
achieve this, data reorganization in the stream must be minimal. Interleaving
caused by transferring incontiguous data via DMA lists (Section 6.3) implic-
itly arranges stream data into vectors, so DMA lists are an integral part of
this approach. A SIMD kernel can be applied directly to this unorganized data
stream. Contiguous data must either be vectorized or processed with a scalar
kernel.

Fixedgrid uses dimension splitting to calculate 3D transport separately
along the x-, y-, and z-axis with the same kernel function. Similar to the 2D
module in Section 6.3, DMA lists are used to transfer incontiguous y- and
z-axis data to SPE local storage in the 3D module. Fixedgrid uses second
order time splitting to reduce truncation error in 3D transport (see Figure 3).
This doubles the work required to calculate mass flux along the x- and y-axis,
so discretization in these directions should be highly efficient.

7.2 Streaming Vectorized Data with the CBEA

Streams of vector data are formed in the 3D module by combining DMA in-
trinsics with a triple-buffering scheme. Triple-buffering permits a single SPE
to simultaneously fetch data from main memory, apply the kernel function,

8

finite difference methods. This produces the third order upwind-biased advec-
tion discretization (Equation 2) and the second order diffusion discretization
(Equation 3) for t′ > t [23].

∂

∂t
ct

x =







a
h

(

− 1
6c

t
x−2 + ct

x−1

)

− a
h

(

1
2c

t
x − 1

3c
t
x+1

)

if a ≥ 0

a
h

(

1
3c

t
x−1 + 1

2c
t
x

)

− a
h

(

ct
x+1 + 1

6c
t
x+2

)

if a < 0
(2)

∂

∂t
ct

x =
(dt

x−1 + dt
x)(ct

x−1 + ct
x)T

2h2
−

(dt
x + dt

x+1)(c
t
x + ct

x+1)
T

2h2
. (3)

The 3D stencil for upwind-biased discretization is shown in Figure 2. Di-
mension splitting can be used to to apply Equations 2 and 3 to each dimension
of a d-dimensional model independently. Parallelism is introduced by reducing
a d-dimensional problem to a set of independent one-dimensional problems.
Equations 2 and 3 can be implemented as a single computational routine and
applied to each dimension of the concentration matrix individually and in
parallel. This forms the kernel functions for use in streaming architectures.
Dimension splitting is common in many transport models and other scientific
applications, thus the techniques given in this paper are applicable to existing
codes.

Fig. 2 3D discretization stencil for explicit upwind-biased advection/diffusion

Dimension splitting introduces a local truncation error at each time step.
This error can be reduced by a symmetric time splitting method [23]. Time
splitting methods are frequently used when applying different time stepping
methods to different parts of an equation. For example, chemical processes
are stiff, which calls for an implicit ODE method, but explicit methods are
more suitable for space-discretized advection. By interleaving time steps taken
in each dimension, the truncation error is reduced. In brief, a linear ODE
describing time-stepped chemical transport, w′(t) = Aw(t) where A = A1 +

12/14/08

15

AGU IN27C-07

/ 17

The vector stream processing approach
achieves the best performance

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
JUICEnext (BladeCenter QS22)

CellBuzz (BladeCenter QS20)

Jugene (BlueGene/P)

Deva (2x Intel Quad-Core Xeon)

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

1 2 3 4 5 6 7 8 9
Threads (# SPEs + 1)

JUICEnext (BladeCenter QS22)
CellBuzz (BladeCenter QS20)
Jugene (BlueGene/P)
Deva (2x Intel Quad-Core Xeon)
Linear

Se
co

nd
s

/* Start buffer 0 transfer */

fetch_x_buffer(0, 0);

/* Start buffer 1 transfer */

fetch_x_buffer(1, NX_ALIGNED_SIZE);

/* Process buffer 0 */

transport_buffer(0, size, dt);

/* Loop over rows in this block */

for(i=0; i<block-2; i++)

{

 w = i % 3;

 p = (i+1) % 3;

 f = (i+2) % 3;

 /* Write buffer w back to main memory (nonblocking) */

 write_x_buffer(w, i*NX_ALIGNED_SIZE);

 /* Start buffer f transfer (nonblocking) */

 fetch_x_buffer(f, (i+2)*NX_ALIGNED_SIZE);

 /* Process buffer p */

 transport_buffer(p, size, dt);

}

/* Discretize final row */

w = i % 3;

p = (i+1) % 3;

/* Write buffer w back to main memory (nonblocking) */

write_x_buffer(w, i*NX_ALIGNED_SIZE);

/* Process buffer p */

transport_buffer(p, size, dt);

/* Write buffer p back to main memory (nonblocking) */

write_x_buffer(p, (i+1)*NX_ALIGNED_SIZE);

/* Make sure DMA is complete before we exit */

mfc_write_tag_mask((1<<w) | (1<<p));

spu_mfcstat(MFC_TAG_UPDATE_ALL);

12/14/08

16

AGU IN27C-07

/ 17

12/14/08

17

AGU IN27C-07

