# Benchmarking NWP Kernels on Multi- and Many-core Processors

John Michalakes, NCAR Manish Vachharajani, University of Colorado





#### Motivation



"At this rate,  $10^{10}$  –  $10^{12}$  improvement will take 40 years" – Rich Loft, NCAR

#### Hardware Acceleration

- Recover parallelism being wasted
- Multi-core and many-core
  - Higher core-count CPUs
  - Micro-SIMD and Vector instructions
  - Graphics Processing Units (GPUs)
  - Cell BE
  - FPGA
- Metrics: Flops, Flops/dollar, Flops/watt
- How do we judge effectiveness for earth system applications?





## **Application Benchmarks**

- Objectives
  - Provide basis for comparing and evaluating hardware
  - Develop understanding of factors affecting performance
  - Feed back kernels into source models
- Kernel benchmarks
- Whole code benchmarks
- Make codes and results publicly available





## WRF Application Benchmarks

- WSM5 cloud microphysics
  - Original, GPU, & multi-core
- 5<sup>th</sup> Order Positive-definite advection/diffusion
  - Original, GPU
- Radiation (LW and SW)
  - Original only
- KPP chemistry kinetics
  - Under development for GPU, Cell BE (VA. Tech)





#### WSM5 Microphysics



## Advection/Diffusion



### Chemistry (still working on this one)



# Computational Footprints

| General <sup>(1)</sup> | WSM5 | Adv./Diffus. | Chemistry <sup>(2)</sup> |
|------------------------|------|--------------|--------------------------|
| FP operations          | 2702 | 301          | 609,226                  |
| Load/Stores            | 1224 | 396          | 1,021,227                |
| Ops. per word          | 2.2  | 0.76         | 0.600                    |
| Ops. per byte          | 0.55 | 0.19         | 0.075                    |

| CUDA on GPU          | WSM5              | Adv./Diffus.     | Chemistry        |
|----------------------|-------------------|------------------|------------------|
| Registers per thread | 60                | 40               | 84               |
| Occupancy            | 17%               | 28%              | 19%              |
| Speedup              | 40 <sup>(3)</sup> | 4 <sup>(4)</sup> | 2 <sup>(4)</sup> |

<sup>&</sup>lt;sup>1</sup> per cell per step

<sup>&</sup>lt;sup>2</sup> double precision

<sup>&</sup>lt;sup>3</sup> GTX280 vs. single core 2.4 GHz AMD Opteron

<sup>&</sup>lt;sup>4</sup> Tesla vs. single core 2.83 GHz Intel Xeon

# Summary

- Ongoing work
  - Whole code benchmarks
  - Additional kernels, other models
  - Message passing from device memories
- Other information
  - Michalakes, J., M. Vachharajani. GPU Acceleration of Numerical Weather Prediction. *Parallel Processing Letters*. Volume 18, Issue: 4 (December 2008). World Scientific. pp 531-548.
  - http://www.mmm.ucar.edu/wrf/WG2/GPU



