Application of WRF: How to Get Better Performance

Ming Chen Wei Wang Jimy Dudhia National Center for Atmospheric Research

Best Practices of WRF

- WRF is well-tested and documented. It can be used by people who have no experiences or formal training.
- However, in spite of advanced parameterization schemes in WRF and high-resolutions permitted by faster computers, correct choice of options is still a prerequisite for successful application of WRF

Best Practices of WRF

- A Thorough Analysis of the Research Topic
 - Conclusions and approaches in previous studies? Questions not answered? Incomplete knowledge? Important processes (convection, radiation, surface forcing, etc.?)
 - extensive literature review
- Your Scientific or Practical Objectives?
 - Scientific questions you want to answer
 - What can you do with WRF? Where and how WRF simulations may be helpful

Best Practices of WRF

- The Model Configuration
 - Domain often have profound influences
 - Resolution (horizontal and vertical)
 - Time and method of initialization
 - Cold start?
 - Variational data assimilation?
 - Spinup time?
 - Lateral Boundary Locations
 - Physics/dynamics options

How to determine the model domain

- How large do they need to be?
 - Should not be too small, otherwise solution will be determined by forcing data
 - No less than 100x100 (at least 10 grid points are in the boundary zone)
- Where to place my lateral boundaries?
 - Avoid steep topography
 - Away from the area of interest

Importance of domain

12-hour simulations of 250-hPa winds (m s-1) from the 40-km grid increment Eta Model initialized at 1200 UTC 3 August 1992, based on experiments that used a large (a) and a small (b) computational domain. (Warner, 2011)

Initialization and Spin-up Issues

- Model problems often arise from poor initial condition
 - Appropriate initial time
 - Quality of initial condition
 - Check land data:
 - e.g. landuse: does it represent my area well?
 - Know about the data: how good are the data?
 - Forecast data
 - Reanalysis data
 - Climate model data
- In the first few hours, expect noise in pressure fields
 - Mostly sound waves adjusting winds to terrain. No harmful lasting effects

Impervious fraction (%)

Skintemp simulated with and without Impervious (Aug 26, 2006, 10Z)

Initialization and Spin-Up

Convective Spin-Up: An example of NCAR's 3-km convective runs

Red: StageIV

Blue: WRFV3.9

Lateral Boundary Condition

- A basic and potentially serious limitation to regional model simulation, including WRF
- Possible negative effects of LBC
- How to minimize the negative LBC impact on forecast quality: guidelines and cautions
 - Strong forcing should be avoided at lateral boundaries
 - Resolution-consistent input data should be used
 - More frequent is better
 - Interactive boundaries should be employed when possible

Gaudet et al. (2012)

Grid Size and Impact

- $\Delta \approx 3$ km: Traditional cloud-permitting resolution
 - No need for deep-convective parameterization
- $\Delta \approx 30$ m: Traditional large-eddy simulation (LES) resolution
 - No need for a planetary boundary layer (PBL) parameterization
 - Turbulent eddies (i.e., thermals, rolls, etc.) are handled by the model's governing equations [plus surface-layer and subgrid turbulence schemes]
- 100 m < Δ < 1 km
 - A PBL scheme will still be needed for most cases
 - Shallow cumulus probably can be turned off (still on for $\Delta > 500$ m)
 - Advection Scheme: better use a monotonic/non-osciallaory option (adv_opt ≥ 2)

(Bryan, 2014)

Case Study: The Derecho of 29-30 June 2012

Radar composite reflectivity (provided by NOAA)

WRF simulation of maximum reflectivity, DX=3km, initialized at 1200 UTC 29 June

3-km run

15-km run

Model Levels and High Tops

- At least 30 or more levels for a model top at 50 mb
- For tops near 1 hPa (45-50km), 60 or more levels are required.
- Ozone climatology becomes important above 30 hPa, where some or all of the ozone layer are included
 - Use RRTMG and CAM
- For high tops < 50 hPa
 - vertical grid distance should not be larger than 1000 m (Radiation, microphysics, less accurate lateral BC)
- If finer horizontal grid size is used, more levels will be needed in the vertical
- Make sure dz < dx

Complex Terrain

- Steep terrain (> 45 degrees) may cause numerical stability problems.
 - Increasing epssm (0.1->0.5 or even larger)
 - This is a sound wave damper that can stabilize slope treatment by dynamics
 - For large slopes, set diff_opt=2
 - diff_opt=1 is less realistic than diff_opt=2, and diff_opt=2 used to be less stable but becomes more stable in recent versions
 - For V3.6 and later version, diff_opt=2 and km_opt=4 can be used together to improve stability

Diffusion

Dudhia (2014)

Selecting Model Physics

- Many options = more works
 - http://www2.mmm.ucar.edu/wrf/users/phys_references.html
 - http://www2.mmm.ucar.edu/wrf/users/docs/wrf-phy.html
- Testing of multiple options for a particular application
 - A given set of physics will perform differently depending on domain size, location, initialization and phenomenon of interest
 - Certain combinations better tested than others, but still no guarantee for better performance

Physics in multi-scale model

- Grid size and cumulus
 - DX > 10km, yes
 - DX < 4km, probably not
 - Grey Zone: 5-10km, no consensus, may try to use scaleaware cumulus scheme, such as GF, MSKF.
- Grid size and microphysics
 - For DX > 10km, no complex scheme is necessary
 - For DX <4km (convection-resolving), need at least graupel

Physics in Multi-scale Model

- Grid Size and PBL
 - PBL assumes all eddies are unresolved
 - DX > 500 m, PBL should be activated
 - LES assumes eddies are well resolved
 - DX < 100 m, LES should be applied
 - For DX 100-500 m, either may work to some extent
 - Terra incognita: resolved CISCs, violation of PBL assumption, and unresolved interaction between CISC and smaller scale turbulence.

Simulation of Hurricane Sandy: why such a large difference?

()))

Bassill (2014)

Test of Sandy Simulation

- *For this case,* cumulus parameterization is the dominant driver of forecast track accuracy
- Poor track forecasts by the GFS/GEFS are not due to 'inappropriate' initial conditions, nor are they consequences of the differences in model resolution
- These types of examples serve to emphasize the importance of parameterization development as a necessary condition for forecast improvement

Other Options That May Be Considered

Example:

- Upper level damping over topography
- Gravity-wave drag if resolution is coarse
- Digital Filter Initialization
- Spectral Nudging

Keep in mind

- Model results can be affected by many choices:
 - Domain configuration, both horizontal and vertical;
 - Input data;
 - Initial and lateral boundary conditions.
- Model has limitations:
 - Physics: biases, may not represent certain processes well, etc.
 - Limitation of the lateral boundaries
- Knowing where model is biased can be very useful

