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Best Practices of WRF

 WREF is well-tested and documented. It can be used by people who

have no experiences or formal training.

* However, in spite of advanced parameterization schemes in WRF
and high-resolutions permitted by faster computers, correct choice

of options is still a prerequisite for successful application of WRF



Best Practices of WRF

* A Thorough Analysis of the Research Topic
* Conclusions and approaches in previous studies? Questions not answered?
Incomplete knowledge? Important processes (convection, radiation, surface
forcing, etc.? )
* extensive literature review
* Your Scientific or Practical Objectives?

 Scientific questions you want to answer

* What can you do with WRF? Where and how WRF simulations may be
helpful



Best Practices of WRF

* The Model Configuration

 Domain — often have profound influences

Resolution (horizontal and vertical)

Time and method of initialization
e Cold start?
e Variational data assimilation?

e Spinup time?

Lateral Boundary Locations

Physics/dynamics options



How to determine the model domain

* How large do they need to be?

« Should not be too small, otherwise solution will be determined

by forcing data
* No less than 100x100 (at least 10 grid points are in the
boundary zone)
* Where to place my lateral boundaries?
 Avoid steep topography

* Away from the area of interest



Importance of domain
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12-hour simulations of 250-hPa winds (m s-1) from the 40-km grid
increment Eta Model initialized at 1200 UTC 3 August 1992, based on
experiments that used a large (a) and a small (b) computational

domain. (Warner, 2011)



Initialization and Spin-up Issues

* Model problems often arise from poor initial condition
* Appropriate initial time
* Quality of initial condition
» Check land data:
e.g. landuse: does it represent my area well?
« Know about the data: how good are the data?
» Forecast data
« Reanalysis data

* Climate model data

* In the first few hours, expect noise in pressure fields

* Mostly sound waves adjusting winds to terrain. No harmful lasting effects



Impervious fraction (%)

Skintemp simulated with and
without Impervious

(Aug 26, 2006, 10Z)
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Initialization and Spin-Up

Convective Spin-Up: An example of NCAR’s 3-km convective runs
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Lateral Boundary Condition

* A basic and potentially serious limitation to regional model

simulation, including WRF
* Possible negative effects of LBC

* How to minimize the negative LBC impact on forecast quality:
guidelines and cautions
» Strong forcing should be avoided at lateral boundaries
» Resolution-consistent input data should be used
* More frequent is better

* Interactive boundaries should be employed when possible



non-periodic LBCs

Gaudet et al. (ZOKA‘




Grid Size and Impact

e A =3 km: Traditional cloud-permitting resolution

* No need for deep-convective parameterization

* A =30 m: Traditional large-eddy simulation (LES) resolution
* No need for a planetary boundary layer (PBL) parameterization

* Turbulent eddies (i.e., thermals, rolls, etc.) are handled by the model’s governing

equations [plus surface-layer and subgrid turbulence schemes]
* 100m<A<1km
* A PBL scheme will still be needed for most cases
* Shallow cumulus probably can be turned off (still on for A >500 m)
» Advection Scheme: better use a monotonic/non-osciallaory option (adv_opt>2)

(Bryan, 2014)



Case Study: The Derecho of 29-30 June 2012
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Model Levels and High Tops
* At least 30 or more levels for a model top at 50 mb
* For tops near 1 hPa (45-50km), 60 or more levels are required.
* Ozone climatology becomes important above 30 hPa, where
some or all of the ozone layer are included
* Use RRTMG and CAM

* For high tops <50 hPa

« vertical grid distance should not be larger than 1000 m
(Radiation, microphysics, less accurate lateral BC)

« If finer horizontal grid size is used, more levels will be needed in
the vertical

 Make sure dz < dx



Complex Terrain
» Steep terrain ( > 45 degrees) may cause numerical stability problems.
* Increasing epssm ( 0.1->0.5 or even larger)

* This is a sound wave damper that can stabilize slope
treatment by dynamics
* For large slopes, set diff opt=2
 diff opt=1is less realistic than diff opt=2, and diff _opt=2
used to be less stable but becomes more stable in recent

versions

e For V3.6 and later version, diff_opt=2 and km_opt=4 can be

used together to improve stability



Diffusion

Isotherms
Mixing ho‘rizontally: co;rect diff opt=2

Isotherms
Mixing along levels: Not correct diff_opt=1
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Selecting Model Physics

* Many options = more works

* http://www2.mmm.ucar.edu/wrf/users/phys references.html

* http://www2.mmm.ucar.edu/wrf/users/docs/wrf-phy.html

* Testing of multiple options for a particular application

* A given set of physics will perform differently depending on domain size,

location, initialization and phenomenon of interest

* Certain combinations better tested than others, but still no guarantee for

better performance


http://www2.mmm.ucar.edu/wrf/users/phys_references.html

Physics in multi-scale model

* Grid size and cumulus
* DX > 10km, yes
* DX < 4km, probably not
* Grey Zone: 5-10km, no consensus, may try to use scale-
aware cumulus scheme, such as GF, MSKF.
* Grid size and microphysics
* For DX > 10km, no complex scheme is necessary

* For DX <4km ( convection-resolving), need at least graupel



Physics in Multi-scale Model

* Grid Size and PBL
* PBL assumes all eddies are unresolved
e« DX > 500 m, PBL should be activated
 LES assumes eddies are well resolved
DX < 100 m, LES should be applied
e For DX 100-500 m, either may work to some extent

 Terra incognita: resolved CISCs, violation of PBL assumption, and

unresolved interaction between CISC and smaller scale turbulence.
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Simulation of Hurricane Sandy: why such a large difference?

Bassill (2014) L 12))



Test of Sandy Simulation

* For this case, cumulus parameterization is the dominant driver of

forecast track accuracy

* Poor track forecasts by the GFS/GEFS are not due to ‘inappropriate’
initial conditions, nor are they consequences of the differences in

model resolution

* These types of examples serve to emphasize the importance of
parameterization development as a necessary condition for forecast

improvement



Other Options That May Be Considered

Example:
* Upper level damping over topography
 Gravity-wave drag if resolution is coarse
* Digital Filter Initialization

e Spectral Nudging



Keep in mind

» Model results can be affected by many choices:
« Domain configuration, both horizontal and vertical;
* |nput data;
 Initial and lateral boundary conditions.
* Model has limitations:
» Physics: biases, may not represent certain processes well,
etc.
« Limitation of the lateral boundaries

« Knowing where model is biased can be very useful



