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ABSTRACT

With increasing computer power, explicit microphysics schemes are becoming increasingly important in
atmospheric models. Many schemes have followed the approach of Kessler in which one moment of the
hydrometeor size distribution, proportional to the mass content, is predicted. More recently, the two-
moment method has been introduced in which both the mass and the total number concentration of the
hydrometeor categories are independently predicted.

In bulk schemes, the size spectrum of each hydrometeor category is often described by a three-parameter
gamma distribution function, N(D) � N0D�e��D. Two-moment schemes generally treat N0 and � as prog-
nostic parameters while holding � constant. In this paper, the role of the spectral shape parameter, �, is
investigated by examining its effects on sedimentation and microphysical growth rates. An approach is
introduced for a two-moment scheme where � is allowed to vary diagnostically as a function of the
mean-mass diameter. Comparisons are made between calculations using various bulk approaches—a one-
moment, a two-moment, and a three-moment method—and an analytic bin model. It is found that the
size-sorting mechanism, which exists in a bulk scheme when different fall velocities are applied to advect the
different predicted moments, is significantly different amongst the schemes. The shape parameter plays an
important role in determining the rate of size sorting. Likewise, instantaneous growth rates related to the
moments are shown to be significantly affected by this parameter.

1. Introduction

In operational numerical weather prediction, com-
puter power and model resolution continue to increase.
As the horizontal grid size decreases, grid-scale satura-
tion becomes more likely and explicit microphysics
schemes should be used for the prediction of clouds and
precipitation.1 Because bin-resolving (spectral) meth-
ods are expensive and impractical in an operational

context, bulk methods continue to be the standard ap-
proach in representing cloud processes in 3D models.

In addition to predicting precipitation, explicit micro-
physics schemes serve other functions. The release of
latent heat during phase change invigorates storm dy-
namics while hydrometeor mass loading reduces the
buoyancy. Radiative transfer calculations in cloudy air
are sensitive to microphysical properties and, depend-
ing on the time scale and the extent to which the mod-
eled microphysics and radiation schemes are coupled,
may affect significantly the evolution of a modeled
storm system (e.g., Yu et al. 1997). Explicit schemes
also serve as an excellent tool for conducting detailed
process studies.

Many bulk schemes represent the size spectra of each
precipitating hydrometeor category by a three-param-
eter gamma distribution function of the form N(D) �
N0D�e��D. For � � 0, the equation reduces to an in-
verse-exponential distribution. Hence the parameters

1 In this paper, “explicit” microphysics schemes refer to
schemes that are activated upon resolved grid-scale saturation.
(Explicit is not used here to refer to the way the hydrometeor size
spectrum is modeled, as it is sometimes used.)
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N0 and � are often referred to as the intercept and the
slope, respectively. The parameter � gives a measure of
the spectral width, or relative dispersion, and is often
called the shape parameter. Changes to the distribu-
tions are modeled by predicting changes to these pa-
rameters. This in turn is accomplished by formulating
prognostic equations for one or more of the moments
of the distribution function. Since each predicted mo-
ment is associated with one prognostic parameter, three
predictive moment equations are required to determine
the three parameters uniquely. However, many bulk
schemes have followed the approach of Kessler (1969)
in which only one moment of the hydrometeor size
distribution function is predicted (e.g., Lin et al. 1983;
Cotton et al. 1986; Kong and Yau 1997) and the other
two parameters are prescribed or diagnosed. Generally,
in one-moment schemes the mass content, which is pro-
portional to the third moment of N(D), is predicted and
� is the prognostic parameter, while N0 and � are held
constant. A number of two-moment schemes [e.g.,
Ziegler (1985, hereafter Z85); Murakami (1990, here-
after M90); Ferrier (1994, hereafter F94); Meyers et al.
(1997, hereafter M97); Cohard and Pinty (2000, here-
after CP00); and Reisner et al. (1998, hereafter RRB)]
formulate predictive equations for both the mass con-
tent and the total number concentration such that � and
N0 become independent prognostic variables while � is
held constant.

The role of the spectral shape parameter, �, for dis-
tributions of precipitation particles in bulk schemes has
not been thoroughly investigated in the literature. A
constant value of � is often used. However, Uijlenhoet
et al. (2003) show that in raindrop spectra of a squall
line described by gamma distributions the value of the
shape parameter for rain (�r) changes from 2.11 during
the stratiform phase to 5.66 during the convective
phase. Furthermore, for an inverse exponential distri-
bution, where the mean particle diameter equals 1/�, a
large mean diameter implies small values for the slope
and unrealistically large particles can be generated near
the tail of the distribution. These artificial large par-
ticles may impact the bulk fall velocities and the bulk
growth rates of microphysical processes. M97 con-
ducted idealized simulations of convection and com-
pared the cases where the shape parameter for all hy-
drometeor categories changes from 0 to 2.2 They found
that the peak accumulated surface precipitation more
than tripled when � increases from 0 to 2.

In view of the importance of the shape parameter, it
is the objective of this paper to analyze the role of � for

precipitating hydrometeor categories and to investigate
alternatives to holding � constant. The approach is to
examine separately the two major roles of a microphys-
ics scheme, the computation of sedimentation and the
calculation of microphysical source/sink terms. In a 3D
atmospheric model, all of these processes interact very
nonlinearly, with each other as well as with the model
dynamics, making it difficult to isolate specific effects
when � changes. We therefore consider separately sedi-
mentation and microphysical sources under simple, ide-
alized conditions by comparing various bulk schemes to
an analytic model. A method to improve the two-
moment scheme by diagnosing � as a function of the
predicted moments is introduced, together with a for-
mulation of a three-moment parameterization. Based
on these results, a new multimoment bulk scheme, with
a balance between complexity and efficiency, poten-
tially useful in operational NWP models, has been de-
veloped and is described in detail in Milbrandt and Yau
(2005, hereafter referred to as Part II).

The following section gives a general overview of the
bulk method and discusses the advantages of the two-
moment over the one-moment approach. Section 3 in-
troduces a method to diagnose the shape parameter in
a two-moment scheme. An analysis of the computation
of sedimentation and microphysical growth rates for
various bulk methods, with particular attention given to
the role of �, is presented in section 4. Concluding re-
marks are given in section 5.

2. Overview of the bulk method

a. Equations related to the size distribution

To facilitate the discussion on the role of the shape
parameter in bulk microphysics schemes, a general
overview of the bulk method is presented here. The
particle size distribution for each hydrometeor category
in a bulk scheme is described by an analytic function.
Most bulk schemes use some form of the generalized
gamma distribution function, which can be expressed as

Nx�D� � NTx

�x

��1 � �x�
�x

�x�1��x�D�x�1��x��1

exp����xD��x	, �1�

where Nx(D) is the total number concentration per unit
volume of particles of diameter D for category x, NTx is
the total number concentration, �x is the slope param-
eter, 
x and �x are dispersion parameters, and � is the
gamma function. CP00 indicated that (1) best describes
the observed distribution of cloud droplets. However,
for raindrops (e.g., Ulbrich 1983) and ice crystals (e.g.,

2 M97 use the symbol 
 (and refer to it as the breadth param-
eter), which is equivalent to our � � 1.
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Ivanova et al. 2001), a simplified form of (1) with 
x �
1 has been found adequate. For snow and hail, the in-
verse exponential function with 
x � 1 and �x � 0 in (1)
is often used (e.g., Z85 and M90).

Equation (1) can be integrated analytically over all
sizes. This property is especially useful in obtaining the
moments of the distribution required in the derivation
of the source terms and the bulk fall velocities. Specifi-
cally, the pth moment of the distribution, Mx(p), is
given by

Mx�p� � �
0

�

DpNx�D� dD �
NTx

�x
p

��1 � �x � p��x�

��1 � �x�
.

�2�

By setting 
x � 1, (1) reduces to a three-parameter
function involving NTx, �x, and �x as

Nx�D� � N0xD�xe��xD, �3�

where

N0x � NTx

1
��1 � �x�

�x
1��x. �4�

For the remainder of the paper, we consider only the
gamma distribution function of the form of (3), though
the generalized form of (1) with 
x � 1 is implicitly
assumed. Now �x can be related to NTx and the mixing
ratio qx as follows. It is assumed that the mass mx of a
particle in a hydrometeor category is related to its di-
ameter Dx by mx(Dx) � cxDx

dx, where cx and dx are
constants. The mixing ratio is then given by the dxth
moment through the relationship Qx � pqx � cxMx(dx),
with 
 being the density of air. By substituting p � dx in
(2), it is readily shown that

�x � ���1 � dx � �x�

��1 � �x�

cxNTx

�qx
�1�dx

. �5�

Many one-moment schemes predict qx while fixing N0x

and �x, and use (4) and (5) to solve for NTx and �x. Most
two-moment schemes predict qx and NTx and hold �x

constant. To also prognose �x, it is necessary to add a
third predictive equation for an added moment to form
a three-moment scheme. In principle, any other mo-
ment can be used. However, there is the advantage in
using the sixth moment of the distribution Mx(6), which
is the radar reflectivity factor Zx, obtained routinely
from radar measurements. Here Zx can be derived from
(2) and (5) and is of the form

Zx � Mx�6� �
G��x�

cx
2

��qx�2

NTx
, �6�

where

G��x� �
�6 � �x� �5 � �x� �4 � �x�

�3 � �x� �2 � �x� �1 � �x�
.

Using Raleigh theory, Zx can also be converted to the
equivalent radar reflectivity Zex using

Zex �
�K�i

2

�K�w
2 �cx

cr
�2

Zx, �7�

with the ratio of the dielectric constants for ice and
liquid water |K|i2/|K|w2 � 0.224 (F94), and cr � (�/6) 
w,
where 
w is the density of water. Equations (4)–(6),
along with the microphysical source/sink terms to pre-
dict changes in NTx, qx, and Zx, constitute a three-
moment bulk scheme to predict the size spectra for
hydrometeor category x.

b. Advantages of the two-moment over the
one-moment approach

Before proceeding to analyze the role of the shape
parameter, it is useful to understand the advantages in
predicting two moments instead of a single moment. In
a one-moment scheme, regardless of the choice of the
predictive variable, (4) and (5) indicate that the mass
mixing ratio qx and the total number concentration NTx

(or N0x) are always monotonically related. However,
this assumption is not always valid because in nature
each quantity can vary independent of the other. For
example, if particles were growing by accretion or dif-
fusion, the total mass of the particles changes but the
total number does not. Conversely, for aggregation or
breakup, the total number of particles changes while
the total mass remains constant. The independent
change of qx and NTx is also borne out by numerical
experiments. In two squall line simulations using a two-
moment scheme for the ice phase, Ferrier et al. (1995)
found that �x varied by a factor of 3 while N0x varied by
several orders of magnitude for snow, graupel, and hail
particles.

Many one-moment schemes use a Kessler-type
(1969) approach to model the warm rain process. The
size distribution of raindrops is assumed to follow a
Marshall–Palmer (1948) distribution with a fixed N0r.
Although this assumption may be valid for certain
stratiform conditions, N0r can vary by 2 orders of mag-
nitude in time and space for convective cases (Waldvo-
gel 1974). Furthermore, in convective situations with
rainwater contents larger than 1 g m�3, �r tends toward
a constant while N0r varies with the rainwater content
(Srivastava 1978; Ferrier et al. 1995; RRB). Many storm
systems consist of regions that are distinctly stratiform
and others that are distinctly convective. Since the dif-
ferent regions have different microphysical structures
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and histories, a two-moment scheme would be more
appropriate than a one-moment approach.

Another drawback of one-moment schemes lies in
the treatment of sedimentation. Sedimentation is an
important process because surface precipitation and the
feedback of microphysics to storm dynamics through
mass loading and diabatic heating are highly dependent
on the distribution of hydrometeor mass, which is af-
fected by sedimentation. In an NWP or mesoscale
model, the distribution of hydrometeor mass is gov-
erned by the equation

	qx

	t
� �

1
�


 · ��qxU� � TURB�qx� �
1
�

	

	z
��qxVQx�

�
dqx

dt �S , �8�

where U is the 3D velocity vector, and VQx is the mass-
weighted fall speed [see (A3) in the appendix]. The
terms on the right of (8) represent, respectively, advec-
tion/divergence, turbulent mixing, sedimentation, and
microphysical sources. In nature, a major effect of sedi-
mentation is size sorting, where large particles, by vir-
tue of their large terminal fall speed, appear preferen-
tially at lower levels than at upper levels. As a result,
the mean size of the particles would decrease with
height if sedimentation were to act alone. This effect,
however, cannot be duplicated in a one-moment
scheme because there is a single mean fall speed for
particles of different sizes in a hydrometeor category.

Size sorting can be modeled by a two-moment
scheme that includes a second predictive equation for a
quantity like the total number concentration

	NTx

	t
� �
 · �NTxU� � TURB�NTx� �

	

	z
�NTxVNx�

�
dNTx

dt �S, �9�

where VNx is the number concentration-weighted fall
velocity [see (A5)]. Since qx and NTx sediment at dif-
ferent bulk fall velocities, and since VQx is always larger
than VNx [see (A3) and (A5)], sedimentation would
result in larger values for the ratio qx/NTx at lower lev-
els than at upper levels. Hence the mean-mass diameter
Dmx, given by

Dmx � � �qx

cxNTx
�1�dx

, �10�

increases toward the ground. Differential sedimenta-
tion in a bulk scheme (i.e., NTx sediments at a different
bulk fall velocity than qx), therefore effectively repre-
sents a realistic gravitational size-sorting mechanism

whereby the mean sizes are redistributed in the vertical
with larger (smaller) mean sizes appearing at relatively
lower (higher) levels. This effect does not occur in a
one-moment scheme or in a multimoment scheme in
which qx and NTx sediment at the same fall velocity. A
more accurate method of incorporating the effects of
size sorting is to treat sedimentation using a spectral
approach, such as in Feingold et al. (1998). This ap-
proach is more costly, however, since it involves the use
of look-up tables. Furthermore multimoment bulk
schemes can closely reproduce the effects of sedimen-
tation from a bin model, as is shown below in section 4,
provided that each of the predicted moments of the size
distribution sediments at the appropriate fall velocity.

During sedimentation, the rate of change of (
qx)/
NTx (and thus Dmx) is proportional to the fall speed
ratio

VQx

VNx
�

��1 � dx � �x � bx� ��1 � �x�

��1 � dx � �x� ��1 � �x � bx�
, �11�

where bx is the fall speed parameter defined in (A1).
For the five precipitating hydrometeor categories (rain,
ice, snow, graupel, and hail, denoted by the subscripts
r, i, s, g, and h, respectively) considered in the scheme
described in Part II, the values for bx are tabulated
in Table 2 of that paper. Figure 1 depicts the fall
speed ratio, a measure of the rate of size sorting or
the rate at which Dmx is redistributed in the vertical,
against the shape parameter �x. Evidently, the size-
sorting rate decreases as �x increases and approaches 1
for large values of �x. For a given value of the shape
parameter, size sorting occurs faster for categories with

FIG. 1. Ratio of the mass-weighted fall velocity (VQx) to the
number-weighted fall velocity (VNx) vs �x for rain (long dashed),
hail (solid), ice (dashed), snow (dot–dashed), and graupel (dot-
ted).
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larger values of bx. Since the fall speed ratio exceeds 1,
size sorting always occurs and, given enough time, can
eventually lead to unrealistically large mean sizes. CP00
discussed this problem for rain and proposed a solution
by setting an upper limit on Dmr to account for spon-
taneous breakup of water drops. Wherever Dmr ex-
ceeds the maximum allowable size DmrMAX of 5 mm
immediately after sedimentation, NTr is adjusted so that
Dmr � DmrMAX. For frozen categories, breakup does
not occur and the setting of a maximum size cannot be
justified on physical grounds but may still be necessary
for numerical reasons.

3. Diagnostic relation for �—An alternative
two-moment approach

Ideally, for a hydrometeor category described by a
three-parameter size distribution function, three mo-
ments of the distribution should be independently pre-
dicted such that the shape parameter is a prognostic
variable. However, three-moment schemes are costly
and hence two-moment schemes are still attractive in
terms of efficiency. In most two-moment schemes, �x is
held constant. This assumption is not intrinsic of the
method, which only requires that �x cannot vary inde-
pendently. Similarly, a one-moment scheme with an in-
verse-exponential distribution need not fix one of the
distribution parameters (N0x or �x) as a constant. It is
possible to obtain a diagnostic relation between the two
parameters provided that there is a good physical jus-
tification (e.g., Sekhon and Srivastava 1970; Cheng and
English 1983).

An alternative solution to the problem of excessively
large mean sizes in a two-moment scheme can be ob-
tained from an inspection of (11). If �x were allowed to
increase as size sorting occurs, the ratio VQx/VNx would
decrease and excessive size sorting can be controlled.
An increase in �x due to size sorting also makes physi-
cal sense because in nature size-sorting results in a nar-
rowing of the spectrum characterized by larger values
of �x.

A method to develop an empirical relation of this
type is to use results from a detailed model as a guide.
Gravitational size sorting is the most important physical
mechanism in producing a narrowing of the hydrome-
teor size spectra. It is demonstrated in the next section
that a three-moment approach reproduces remarkably
well the profiles of various moments resulting from
pure sedimentation in a one-dimensional model. Spe-
cifically, an initial population of hail particles was de-
fined by specifying Qh, NTh, and Zh at all levels between
8 and 10 km above the ground. By solving the equations
governing pure sedimentation in a three-moment

scheme (see the appendix), the evolution of the vertical
profile of the moments of the hail spectrum were ob-
tained. The corresponding profiles of �h and Dmh were
then computed using (6) and (10). Figure 2 shows plots
of �h versus Dmh at various times from the three-
moment sedimentation profiles. Each thin curve repre-
sents all of the (�h, Dmh) points in the vertical at a fixed
time. Although there is no monotonic relation between
�h and Dmh, it is apparent that �h almost always in-
creases with Dmh. This suggests that for a two-moment
scheme, a monotonically increasing function relating
Dmx and �x may be an improvement over the assump-
tion of a constant �x.

The (�h, Dmh) data points from the three-moment
sedimentation profiles were used as guidance to ex-
plore functional relations between �x and Dmx as pos-
sible diagnostic equations for �x in a two-moment
scheme. By trial and error, it was found that the appli-
cation of the following expression in a two-moment
scheme gave the best overall improvement for pure
sedimentation of hail compared to using a fixed value
of the shape parameter:

�h � �c1h tanh�c2h�Dmh � c3h�	 � c4h for Dmh � 8 mm
c5hDmh � c6h for Dmh � 8 mm.

�12�

Similarly, for the other sedimenting hydrometeor cat-
egories described in Part II, the relation between the
mean diameter and the shape parameter is chosen to be

�x � c1x tanh�c2x�Dmx � c3x�	 � c4x, �13�

FIG. 2. Plots of �h vs mean-mass diameter (Dmh) at the indi-
cated times from the sedimentation profiles of hail in a three-
moment scheme and from the diagnostic Eq. (12) for �h � f(Dmh).

SEPTEMBER 2005 M I L B R A N D T A N D Y A U 3055



where the values of the constants for each category x
are listed in Table 1.

4. Assessing the importance of the shape
parameter

The role of the shape parameter was described quali-
tatively in the previous sections. Here, we examine in
some detail the quantitative effects of the different ap-
proaches in the treatment of �x on the prediction of
hydrometeor mass given by (8). Our focus is on how �x

affects the sedimentation terms and the source terms
separately.

a. Sedimentation

A 1D model is used to investigate pure sedimenta-
tion of the various moments of the size distribution of
hail using the appropriate moment-weighted bulk fall
velocities [see (A3), (A5), and (A7)]. The fall velocity
parameters for hail are ah � 206.89 m1�bh s�1, bh �
0.6384, and fh � 0 m�1 (F94). All processes except for
sedimentation are switched off. The hail category is
chosen to avoid confusion regarding the neglected ef-
fects of particle coalescence and breakup. An initial
population of hail particles is defined by specifying Qh

to vary sinusoidally between heights (z) of 8 and 10 km
above ground with a maximum value of 1 g m�3 at z �
9 km. Values of N0h � 4 � 104 m�4 and �h � 0 are used
to compute the initial values of NTh and Zh at each
level. Each frame in Fig. 3 displays the vertical profiles
every 5 min caused by pure sedimentation. The rows
depict the quantities Qh, NTh, Zeh, and Dmh, respec-
tively. The different columns contain the results of the
different bulk methods tested. The symbols SM, FIX0,
FIX3, DIAG, TM, and ANA denote one-moment, two-
moment with �h � 0, two-moment with �h � 3, two-
moment with �h diagnosed by (12), three-moment, and
the Lagrangian analytic model, respectively. For SM,
changes to the Qh profiles were computed using (A2)
and �h is calculated using (5) with N0h and �h held
constant. For FIX0, changes in Qh and NTh were com-

puted using (A2) and (A4), respectively. Also N0h, as
well as �h, becomes a prognosed parameter and Zeh is
computed from Qh, NTh, and �h using (6) and (7). FIX3
is the same as FIX0 except �h � 3. In DIAG, �h is
diagnosed from (12). In TM, changes to Qh and NTh are
calculated using (A2) and (A4) and changes to Zh are
computed using (A6) and converted to Zeh using (7).
With Qh, NTh, and Zh known, �h can be obtained
through the solution of (6). In ANA, the profiles are
computed using an analytic model, in which the size
spectra at each level are partitioned into 5000 size bins.
The levels to which the particles in each bin fall after a
given time are calculated using the fall velocity (A1) for
a given bin. For simplicity, the air density factor � in
(A1) is set to 1.

A number of aspects can be noted from Fig. 3. In SM,
NTh, Zeh, and Dmh are diagnosed directly from Qh and
their profiles are therefore similar (Figs. 3a,g,m,s). This
result is known a priori, but it is important to recognize
that the same profiles would be obtained for a two-
moment scheme without differential sedimentation
where the fall velocities for NTh and Qh are identical. It
may appear from Fig. 3s that size sorting occurs in SM
since larger (smaller) values of Dmh are found at lower
(higher) levels. However, this interpretation is mislead-
ing since in SM, the maximum value of Dmh at all times
simply corresponds to the maximum value of Qh and is
never larger than 4 mm. In all other schemes, size sort-
ing is apparent by the redistribution of larger sizes to
lower levels and the large increase in the mean sizes
with time but without a large mass content.

Because of the relatively large VQh/VNh ratio for �h �
0 depicted in Fig. 1, the effect of differential sedimen-
tation occurs more rapidly in FIX0 than in ANA (cf.
Figs. 3t and 3x and note the different horizontal scales).
The early production of large mean sizes (Fig. 3t) leads
to large values in VQh, earlier arrival of mass at the
surface (Fig. 3b), and too large Dmh. The values of Zeh

are excessively large (e.g., �80 dBZ at z � 2 km after
5 min in Fig. 3n, and �25 dBZ at 2 km for ANA in Fig.
3r). In comparison, the profiles in FIX3 are much better
than those in FIX0 because of the smaller VQh/VNh ra-
tio with �h � 3. Size sorting is still excessive in FIX3.
For instance, Zeh at lower levels are still too large at 5
min (Figs. 3o,r), though not as large as in FIX0 (Fig.
3n). At 15 and 20 min, the Dmh profiles for both FIX0
and FIX3 are reasonable (Figs. 3t,u,x).

In DIAG, both the Qh and NTh profiles (Figs. 3d, j)
are very similar to those of FIX3 (Figs. 3c,i). There is
some improvement in the Zeh profiles at 5 and 10 min.
Excessive size sorting appears to be under control in
DIAG (Fig. 3p), but perhaps too much so as mean sizes
at levels below �4 km at 5 min (Fig. 3v) are now too

TABLE 1. Constants in diagnostic relations for �x [(12) and (13)]
for each hydrometeor category x of the proposed scheme de-
scribed in Part II.

Category, x c1x

c2x

(mm�1)
c3x

(mm) c4x

c5x

(mm�1) c6x

Rain 19.0 0.6 1.8 17.0 n/a n/a
Ice 12.0 0.7 1.7 11.0 n/a n/a
Snow 4.5 0.5 5.0 5.5 n/a n/a
Graupel 5.5 0.7 4.5 8.5 n/a n/a
Hail 3.7 0.3 9.0 6.5 1.0 6.5
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small. At later times, however, they compare well to
ANA for the entire column. The same comments apply
to the Qh, Zeh, and Dmh profiles of TM (Figs. 3e,k,q).
Note the improvement in the NTh profiles (Fig. 3k) in
TM over those of FIX3 (Fig. 3i) and DIAG (Fig. 3j).

Experiments FIX3, DIAG, and TM are much better
than SM or FIX0 at predicting the vertical distributions
of Qh, NTh, Zeh, and Dmh. Even though the Dm profile
at 5 min in FIX3 below 4 km appears better than those
of DIAG and TM, the mass content at the low levels is

FIG. 3. Vertical profiles of (first row) Qh, (second row) NTh, (third row) Zeh, and (fourth row) Dmh resulting from the sedimentation
of hail from (first column) a one-moment scheme, (second column) a two-moment scheme with �h � 0, (third column) a two-moment
scheme with �h � 3, (fourth column) a two-moment scheme with a diagnosed �h, (fifth column) a three-moment scheme, and (sixth
column) an analytic bin model. Profiles in each panel are every 5 min between 0 and 20 min. The ordinate for each panel is height AGL.
The abscissa for each panel is indicated under each row. (Note the scale changes in n, s, and t.)
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however negligible. At 10 min when there is appre-
ciable mass content throughout most of the column,
DIAG and TM give slightly better Dm profiles than
FIX3. In general, the effect of sedimentation is similar
in FIX3, DIAG, and TM, with the latter (Fig. 3q) yield-
ing particularly good agreement in radar reflectivity to
the analytic solution (Fig. 3r).

Figure 4 plots the surface precipitation rates from the
various schemes. For ANA, precipitation reaches the
surface after approximately 8 min with a maximum rate
of �6 mm h�1 at 16 min. The arrival of surface precipi-
tation is delayed in SM, and the peak rate is overpre-
dicted (�17 mm h�1). In agreement with the finding of
Wacker and Seifert (2001), precipitation arrives too
early and the rate is too high in FIX0. However, as the
value of �h increases, the first arrival of precipitation
becomes increasingly delayed and the peak rate is also
reduced. For a two-moment scheme with constant �x, it
is clear that �x � 3 yields the best results in terms of
surface precipitation and the vertical distribution of
mass. On the other hand, TM best predicts the timing of
the arrival but slightly underpredicts the peak rate.
DIAG best predicts the peak rate though the time of
the first arrival is slightly delayed. Except for some mi-
nor differences, FIX3, DIAG, and TM are more similar
to each other than the other schemes.

So far, our 1D results are representative of precipi-
tation falling through an environment with no vertical
motion. If an updraft were present, a population of

hydrometeors would take longer to sediment to the
ground and the differences between the various bulk
schemes may be amplified. To test this, a similar set of
computations was made but with a constant updraft of
10 m s�1. The initial peak Qh at z � 9 km is increased
to 5 g m�3. Only FIX3, DIAG, TM, and ANA are
compared since they yield the best results.

Figure 5 shows the profiles for the four schemes at

FIG. 4. Surface precipitation rates (ordinate) vs time (abscissa)
from the sedimentation of hail (corresponding to Fig. 3) com-
puted using the indicated bulk schemes. FIX(x) refers to the two-
moment scheme with a constant �h � x; SM refers to the one-
moment scheme; DIAG refers to the two-moment scheme with �h

diagnosed from Eq. (12); TM refers to the three-moment scheme;
and ANA refers to the analytic bin model.

FIG. 5. Vertical profiles of (a), (b) Qh, (c), (d) NTh, (g), (h) Zeh

at (left) 10 min and (right) 40 min from the sedimentation profiles
of hail through a constant updraft of 10 m s�1.
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10 and 40 min. They can be interpreted as the results of
pure sedimentation of particles starting near the top of
a deep convective system. We consider the top and the
base of the cloud to be at 12 and 0 km, respectively.
Particles with small bulk fall velocities are advected
upward and can be transported out of the column after
reaching the cloud top. At 10 min, the Qh distribution
(Fig. 5a) predicted by TM is much closer to ANA than
FIX3 or DIAG. By 40 min, the mass distribution (Fig.
5b) for DIAG and TM are very good, with TM being
slightly better, whereas the mass throughout the col-
umn is significantly underpredicted in FIX3. The NTh

profiles for TM are very close to ANA throughout the
entire column at both times (Figs. 5c,d). On the other
hand, both FIX3 and DIAG overpredict NTh aloft
(Figs. 5c,d) with DIAG performing much better than
FIX3. At 10 min, Zeh (Fig. 5e) is well predicted for TM,
underpredicted for DIAG, and overpredicted for FIX3.
At 40 min, Zeh is nearly exact for TM but has a constant
bias of �5 dBZ throughout the column for both FIX3
and DIAG (Fig. 5f). Excessive size sorting in FIX3 re-
sults in overprediction of Dmh throughout the column
(Figs. 5g,h). The situation is better controlled in DIAG.
The Dmh profiles for TM are very close to ANA at both
10 and 40 min.

Based on the results of our experiments, we conclude
that the shape parameter indeed plays an important
role in affecting sedimentation. Although differential
sedimentation of Qx and NTx produces significant im-
provement over a one-moment scheme, setting �x con-
stant can still result in large errors. We found that for
pure sedimentation, setting �x � 3 in a two-moment
scheme results in an apparently optimal fixed VQx/VNx

ratio. However, there is obvious improvement if �x is
diagnosed as an increasing function of the Dmx in a
two-moment scheme. Other initial distributions have
been tested by varying �x and N0x and the conclusions
remain the same. The profiles due to pure sedimenta-
tion were invariably better for the two-moment scheme
with diagnosed �x than with fixed �x. The three-
moment scheme clearly outperforms all the rest.

b. Source/sink terms

The mass source term of (8) for each category x is
computed as the sum of the individual microphysical
sources and sinks (e.g., see a complete list in appendix
A of Part II). Collection, melting, and diffusional
growth/decay are the processes that have the greatest
impact on the prediction of hydrometeor mass content.
It can be shown readily that the growth rate in qx for a
frozen hydrometeor category accreting cloud water is
strongly dependent on Mx(2 � bx), Mx(1 � bx), and
Mx(bx) [see (2) above and (25) of Part II]. Similarly, the

growth rate due to diffusion is strongly dependent on
Mx(1) and Mx(1.5 � 0.5bx) [see (43)–(45) of Part II].
The rate of mass change due to melting is governed by
all the above moments [see (45) and (79) of Part II]. In
addition, the rates of change in NTx and Zx due to col-
lection, melting, and diffusional growth are related to
the rates of change in qx [e.g., see (80) and (81) of Part
II for melting]. Since the shape parameter affects di-
rectly the calculation of the moments, an assessment of
the impact of �x on the source terms is equivalent to
assessing the effect of �x on computing the moments.

Our goal is to determine the errors in the computa-
tion of the instantaneous source/sink terms due to an
incorrect estimation of the value of �x for a given total
number concentration NTx and mass content qx. To this
end we define the following ratio:

r�p, �est, �corr� �
M�p, �est�

M�p, �corr�

�
��1 � �corr� ��1 � p � �est�

��1 � �est� ��1 � p � �corr�

× ���1 � �est� ��4 � �corr�

��4 � �est� ��1 � �corr�
�� p�3�

,

�14�

where M(p, �est) is the pth moment of N(D) calculated
using an estimated value of �est from a bulk scheme
[either fixed, diagnosed, or computed from (6)] and
M(p, �corr) is the pth moment computed using the cor-
rect value �corr. Since r(p, �est, �corr) � 1 when �corr �
�est, the difference between r(p, �est, �corr) and 1 rep-
resents the error in M(p) computed using �est in a given
bulk scheme. Figure 6 displays r(p, �est, �corr) as a func-
tion of �corr for p ranging from 0.6 to 6. The curves
shown are for two values of �est because in many two-
moment schemes, an inverse-exponential distribution is
used for frozen hydrometeor categories with �est � 0
and we have demonstrated previously that for a fixed
value of the shape parameter, �est � 3 yields the best
improvement in terms of sedimentation. Note that the
curves always pass through the point (�est, 1). In gen-
eral, for �corr � �est, the values of the moments with p
smaller (larger) than 3 are underestimated (overesti-
mated). The reverse is true for �corr � �est. For 0 � p �
3 the largest error occurs for p � 1.6, while for p � 3 the
error is larger the higher the moment. For example,
suppose a particular population of hail should have an
�h of 5 (�corr) but the scheme uses a fixed value of 0
(�est), then the radar reflectivity M(6) would be over-
estimated by nearly 700% while the approximate
growth rate by collection of cloud [proportional to
M(2.6) with bh � 0.6] underestimated by �15%. The
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same effect occurs if �est � 3 but �corr � 5. In this case
M(6) is overestimated by �42% while M(2.6) underes-
timated by �3%. However, if � is fixed at 3 and its true
value should be 0, M(2.6) would be overestimated by
�15%.

To further examine the role of � on the source terms,
vertical profiles of M(1.6) and M(2.6) [i.e. Mx(1 � bx)
and Mx(2 � bx) for bh � 0.6] after sedimentation of an
initial population of hail particles, identical to the setup
shown in Fig. 5, were calculated using the various bulk
approaches as well as the analytic model. The moments
M(1.6) and the M(2.6) are related to the largest and the

smallest errors in the instantaneous growth rate of hail,
respectively. To separate the effect of sedimentation
from the computation of the source terms, the profiles
of Qh, NTh, and Zh, due to pure sedimentation in the
analytic model, were used to calculate N0h, �h, and �h in
the various bulk schemes in the same manner described
in section 2. The calculated parameters at various times
were then used to compute M(1.6) and M(2.6). For the
analytic model, the moments were obtained by sum-
ming Dp

i NTi�D over all bins with NTi being the number
of particles in bin i with diameter Di and �D is the bin
width. The ratios of Mh(p)_bulk/Mh(p)ana were then
computed.

The profiles of Mh(p)_bulk/Mh(p)ana for p � 1.6 and
p � 2.6 after 2 and 8 min, along with the corresponding
profiles for �h in a given scheme, are shown in Fig. 7.
These early times are chosen for the following reason.
Size sorting from sedimentation quickly produces nar-
row particle spectra at all levels after only a few min-
utes. In a full simulation, other processes may also be
occurring which maintain a broad spectrum. Therefore
it is important to investigate also situations with rela-
tively broad spectra. For pure sedimentation, these situ-
ations occur only at early times at the mid- and upper
levels. At 2 min, size sorting is only moderate between
z � 8.0 and 10.5 km and the size spectra, characterized
by the low values of � for TM (Fig. 7c), are broad.
Below z � 8.0 km at 2 min and at most levels at or after
8 min, size sorting is well advanced and the size spectra
are relatively narrow. The moment ratio Mh(p)_bulk/
Mh(p)ana is a measure of the accuracy in calculating the
pth moment relative to the analytic solution. Values
smaller (larger) than 1 for a particular bulk scheme
imply under- (over-) prediction of the magnitude of the
moment.

At 2 min, SM (Figs. 7a,b) underpredicts the two mo-
ments above 9 km and greatly overpredicts them below.
The results for FIX0 are generally better with the mo-
ment ratio always less than 1.00 but never below 0.50
for M(1.6) or 0.80 for M(2.6). For FIX3, the curves for
the moment ratio shifted to the right with an underes-
timation of �20% for M(0.6) and �10% for M(2.6) at
lower levels but an overestimation at higher levels.
DIAG behaves similarly to FIX3 above 8.5 km but the
underestimation is greatly reduced below. The best re-
sults occur in TM, particularly for the p � 2.6 moment
ratio, which is close to 1 throughout the column (Fig.
7b). The behavior of the curves at 8 min (Figs. 7d,e) is
consistent with those at 2 min; TM performs the best,
followed by DIAG, FIX3, FIX0, and SM in descending
order of performance.

The accurate prediction of the source terms is closely
related to the accurate prediction of the width of the

FIG. 6. Ratios of r(p, �est, �corr) (see text) vs �corr for (a) �est �
0 and (b) �est � 3 for various pth moments. Insets are magnifica-
tions of the panel.
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particle size distribution. In Fig. 8, the size spectra at
three different levels and at two different times are
displayed. For the calculation of the M(1.6) and M(2.6)
moments, it is important to predict accurately the size
spectra near the peak of the distribution. For example
at 2 min and at z � 9.5 km (Fig. 8a), FIX3, DIAG, and
TM overpredict the concentration in the diameter
range from �0.002 to 0.006 m, while FIX0 underpre-
dicts. This accounts for the overprediction of the mo-
ment M(1.6) in FIX3, DIAG, and TM, but an under-
prediction in FIX0 (Fig. 7a). At z � 7.5 km and 2 min
(Fig. 8b), TM and DIAG predict well the concentration
in the diameter range 0.014–0.028 m surrounding the
peak, as a result the moment M(1.6) in these two
schemes shows excellent agreement with the analytic
solution (Fig. 7a). The underprediction of the concen-
tration in FIX3 and FIX0 in the same diameter range is
reflected in the underprediction of the 1.6th moment.
In the case of the well sorted and thus narrow distribu-
tion at 5 km and 8 min (Fig. 8c), the spectra of FIX0 and
FIX3 are much broader than the analytic distribution
resulting in underestimation of the concentration
around the modal diameter (�0.019 m) as well as the

moments M(1.6) and M(2.6) (Figs. 7d,e). The distribu-
tion is better in DIAG, being narrower and with a
higher concentration around the modal diameter, but it
is not as good as in TM, which has a high value for �
(Fig. 7f). Although still broader than the analytic spec-
trum, the size distribution of TM yields excellent
M(1.6) and M(2.6) as depicted in Figs. 7d,e.

5. Conclusions

Given the increasing importance of bulk microphys-
ics parameterizations in operational weather prediction
and research mesoscale models, it is important to have
an understanding of the strengths and limitations of
various approaches in order to most appropriately de-
velop detailed yet computationally efficient schemes. A
diagnostic equation for the spectral shape parameter �
of the gamma size distribution, based on the mean-
particle size, has been introduced. Comparisons were
made between a one-moment, two-moment (with pre-
scribed and diagnosed values of �), and a three-mo-
ment scheme to study the effect of pure sedimentation
on the vertical distribution of mass content, total num-

FIG. 7. Vertical profiles of the ratios of M(2.6) computed by various bulk schemes to M(2.6) computed from the (left) analytic model
after (top) 2 min and (bottom) 8 min and corresponding profiles of � from (right) the bulk schemes. The bulk schemes shown are the
three-moment (dot–dashed), two-moment with � diagnosed from Eq. (12) (thick solid), two-moment with a fixed � � 3 (thick dashed),
two-moment with a fixed � � 0 (thin dashed), and one-moment (dotted) schemes.
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ber concentration, equivalent reflectivity, and mean-
particle diameter. Each scheme was evaluated by com-
paring the computed profiles to those from a highly
resolved analytic bin model. A comparison was also
made on the accuracy of calculating the moments gov-
erning the tendencies of the most important micro-
physical processes.

The two-moment scheme is superior in all aspects to

the one-moment approach. For a two-moment scheme
with a fixed �, it was shown that setting � � 3 is much
better than setting � � 0, regardless of the precipitating
hydrometeor category. On the other hand, there is con-
siderable improvement when � is diagnosed from a
monotonically increasing function of the mean-mass di-
ameter, Dm. While very simple, this relation is success-
ful because Dm essentially acts as a surrogate for the
amount of size sorting that has occurred and increasing
values of � control excessive size sorting. By far the best
results are from the three-moment scheme, in which �
is a prognostic parameter.

It is recognized that the results presented regarding
the role of the shape parameter are for sedimenting
hydrometeor categories only, for which size sorting
plays an important role in narrowing the size spectra.
The role of the shape parameter in affecting the cloud
droplet spectrum was not discussed. It is well known
that the width of the cloud droplet spectrum also plays
an important role in the overall prediction of precipi-
tation processes by affecting the rate of autoconversion
to rain (e.g., Z85; M98; CP00). Methods to predict or
diagnose changes to the dispersion of the cloud droplet
spectrum in the bulk scheme are outside the scope of
this paper.

In Part II, a three-moment closure approach is pro-
posed. In view of the importance of the added benefit
of allowing the shape parameter to vary in a bulk pa-
rameterization, a new microphysics scheme, with op-
tions for � to be either diagnosed or prognosed, is pre-
sented and described in detail.
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APPENDIX

Computation of Sedimentation

The computation of sedimentation follows the stan-
dard approach, extended to include Zx. Values for the
fall speed parameters ax, bx, and fx for various hydro-
meteor categories can be found in F94. The vertical flux
convergence terms for qx, NTx, and Zx of each sedi-
menting category x are computed using moment-
weighted fall velocities. The terminal fall velocity,
Vx(Dx) for a single particle of size Dx is given by

Vx�Dx� � 
axDbx exp��fxDx�, �A1�

FIG. 8. Particle size distributions from ANA (solid), TM (dot–
dashed), DIAG (thick solid), FIX3 (thick dashed), and FIX0 (dot-
ted) at (a) z � 9.5 km at 2 min, (b) z � 7.5 km at 2 min, and (c)
z � 5.0 km at 8 min.
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where � � (
0/
)1/2 is the density correction factor, with

0 being the surface air density and 
 the air density.
For each category x, the change in qx due to sedimen-
tation is given by the vertical flux convergence for fall-
ing particles

	qx

	t �SEDI
�

1
�

	�qxVQx�

	z
, �A2�

where the mass-weighted fall speed is given by

VQx �

�
0

�

Vx�Dx�mx�Dx�Nx�Dx� dDx

�
0

�

mx�Dx�Nx�Dx� dDx

� 
ax

��1 � dx � �x � bx�

��1 � dx � �x�

�x
�1�dx��x�

��x � fx��1�dx��x�bx�
.

�A3�

Similarly, the change in NTx due to sedimentation is

	NTx

	t �SEDI
�

	�NTxVNx�

	z
. �A4�

Here, the concentration-weighted fall speed, rather
than the mass-weighted fall speed, is used:

VNx �

�
0

�

Vx�Dx�Nx�Dx� dDx

�
0

�

Nx�Dx� dDx

� 
ax

��1 � �x � bx�

��1 � �x�

�x
�1��x�

��x � fx��1��x�bx�
.

�A5�

Likewise, changes to Zx due to sedimentation are cal-
culated by

	Zx

	t �SEDI
�

	�ZxVZx�

	z
, �A6�

where

VZx �

�
0

�

D6Vx�Dx�Nx�Dx� dDx

�
0

�

D6Nx�Dx� dDx

� 
ax

��1 � dx � �x � bx�

��1 � dx � �x�

�x
�1�dx��x�

��x � fx��1�dx��x�bx�
.

�A7�

Generally, VZx is larger than VQx, which in turn is larger
than VNx (except for rain with small values of �r). The
existence of different bulk fall velocities for the differ-
ent moments creates potential numerical problems in a
discretized model since, for instance, Zx can arrive at a
lower level before qx and likewise qx can arrive before
NTx. This must be treated with some care since a level
must never contain a nonzero value for one moment
and a value of zero for another. It was found that simply
setting all values to zero whenever there is zero value in
either one or two variables (and adding the mass qx

back to water vapor, q�, to conserve the total mass)
handles this problem quite adequately. A small quan-
tity of hydrometeor mass can be lost at the top of a
vertical profile, but this is a negligible amount. Another
possible solution to this problem is simply to use the
same bulk fall velocity for the sedimentation of all of
the prognostic variables. However, the use of different
fall velocities for the different moments results in im-
portant differences to the vertical distribution of the
quantities, which is an important benefit of multimo-
ment schemes (discussed in section 2).

Equations (A2), (A4), and (A6) are solved by using
a forward-in-time and upstream-in-space finite differ-
ence scheme in the paper. The time step is 2.5 s and the
vertical grid size is 153 m.
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