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ABSTRACT

A multiphysics and a stochastic kinetic-energy backscatter scheme are employed to represent model un-

certainty in a mesoscale ensemble prediction system using the Weather Research and Forecasting model.

Both model-error schemes lead to significant improvements over the control ensemble system that is simply

a downscaled global ensemble forecast with the same physics for each ensemble member. The improvements

are evident in verification against both observations and analyses, but different in some details. Overall the

stochastic kinetic-energy backscatter scheme outperforms the multiphysics scheme, except near the surface.

Best results are obtained when both schemes are used simultaneously, indicating that the model error can best

be captured by a combination of multiple schemes.

1. Introduction

The central concern of numerical weather prediction is

to predict meso- and synoptic scales of atmospheric mo-

tion as accurately as possible. However, since even small

uncertainties in the initial conditions or the prediction

model will develop over time to meso- and synoptic-scale

errors (Lorenz 1963), the predictability of the detailed

weather evolution is limited (Lorenz 1969). An objective

way to estimate not only the most likely weather evolu-

tion, but also the uncertainty of the forecast, is to run an

ensemble prediction system, which provides a probabi-

listic forecast of the atmospheric evolution.

To account for initial-condition error it is now common

practice to start each member of the ensemble system from

a slightly different initial condition. Initial conditions are

most commonly obtained by attempting to perturb the

model in directions that will exhibit maximal error growth,

for example, by computing singular vectors (e.g., Molteni

and Palmer 1993) or bred vectors (e.g., Toth and Kalnay

1993; Houtekamer et al. 1996). However, even with such

initial conditions, ensemble forecasts tend to be under-

dispersive and underestimate the true uncertainty of the

atmospheric evolution (Buizza et al. 2005). This leads to

unreliable and overconfident probabilistic forecasts, and in

particular to a poor representation of large anomalies such

as extreme weather events.

Another major contributor to forecast uncertainty is

model error (e.g., from parameter and parameterization

uncertainty or altogether unrepresented subgrid-scale

processes), and only recently have limited attempts to rep-

resent model error in probabilistic forecasts been made

(Buizza et al. 1999; Stensrud et al. 2000; Palmer 2001; Eckel

and Mass 2005; Shutts 2005; Berner et al. 2008, 2009;

Bowler et al. 2008, 2009; Li et al. 2008; Plant and Craig

2008; Teixeira and Reynolds 2008; Palmer et al. 2009;

Charron et al. 2010; Tennant et al. 2011). As yet there is no

unique method the scientific community has agreed upon,

partly due to differing views on the nature of model error.
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Model error might arise from a misrepresentation of

unresolved subgrid-scale processes that can affect not only

the variability, but also the mean error of a model (e.g.,

Sardeshmukh et al. 2001; Penland 2003; Palmer et al. 2009).

While they are caused by the inability to capture all de-

grees of freedom of the true atmosphere state, the verdict is

still open if the subgrid-scale fluctuations must be included

explicitly via a stochastic term, or if it is sufficient to include

their mean influence by improved deterministic physics

parameterizations.

Palmer (2001) suggests that we use stochastic dynamic

models (Epstein 1969) such as cellular automata or

Markov models to represent model uncertainty due to im-

properly represented processes in the deterministic models.

Others have promoted physics tendency perturbations

(Buizza et al. 1999), multiple physics schemes (Murphy

et al. 2004), or parameter variations in the physics pack-

ages (Stainforth et al. 2005) to account for parameteriza-

tion uncertainty. Alternatively, the use of multiple models

altogether has been shown to provide reliable probabi-

listic forecasts (Krishnamurti et al. 2000; Hagedorn et al.

2005; Houtekamer et al. 1996).

One advantage of stochastically perturbed models

is that all ensemble members have the same climatol-

ogy and model bias in contrast to multiparameter, mul-

tiparameterization, and multimodel ensembles in which

each ensemble member is de facto a different model with

its own dynamical attractor. From an operational per-

spective, multiple models or physics schemes require ad-

ditional resources, since they all have to be maintained and

supported.

A first comparison of the different model-error

schemes on seasonal to climatic scales is given in Doblas-

Reyes et al. (2009). They found that all model-error

schemes—multimodel, multiparameter, and stochastic

perturbations—lead to significant improvements over un-

perturbed single-model systems. They also found that the

performance details depend on the forecast lead time, and

that for lead times shorter than four months, the multi-

model gave best results, followed by the stochastic-physics

and perturbed-parameter ensemble. However as Doblas-

Reyes et al. (2009) pointed out, the various model-error

schemes are implemented into different models, making it

impossible to fully disentangle core model performance

from model-error scheme performance.

Here we implement a scheme using multiple physics

combinations (‘‘multiphysics scheme’’) and a stochastic

kinetic-energy backscatter scheme into the same ensemble

system and compare their performance to that of the sys-

tem without model-error representation. We use the U.S.

Air Force Weather Agency (AFWA) Joint Mesoscale

Ensemble (JME; Hacker et al. 2011), which is a limited-

area ensemble system using the Weather Research and

Forecasting model (WRF) with Advanced Research WRF

(ARW-WRF) dynamic solver, version 3.1.1. Limited-area

ensemble systems focus on subsynoptic time and length

scales and are faced with additional challenges such as

uncertainties in the lateral boundary conditions, which

are also substantial sources of model error. Here, we focus

on the ‘‘internal’’ model-error component of the forecasting

system by using the same initial and boundary conditions

for all experiments and evaluate the relative performance

of the various schemes.

The idea of stochastic kinetic-energy backscatter of

subgrid-scale fluctuations (Mason and Thomson 1992) was

originally developed in the context of large-eddy simula-

tion and is based on the notion that the turbulent dissipa-

tion rate is the difference between upscale and downscale

spectral transfer, with the upscale component being avail-

able to the resolved flow as a kinetic-energy source. Shutts

(2005) adapted these concepts subsequently to numerical

weather prediction.

Berner et al. (2009) report on the performance of a sto-

chastic kinetic-energy backscatter scheme in the ECMWF

global ensemble system, and find improved probabilistic

skill for medium-range forecasts up to 10 days. The devel-

opment of this scheme in the ECMWF model is ongoing

(for the latest refinements see Palmer et al. 2009). Here, we

implement a similar, but simplified scheme into a limited-

area model designed for short-range ensemble forecasts of

mesoscale events. Hence the focus is on shorter time scales

of a few days, and on the performance at the surface and in

the boundary layer. Consequently, the different model-

error representations are not only verified against analy-

ses, but also observations.

Other variants of Shutts’s (2005) stochastic kinetic-

energy backscatter scheme have independently been

implemented into the Met Office Global and Regional

Ensemble Prediction System (MOGREPS) also used for

short-range weather forecasting (Bowler et al. 2008, 2009;

Tennant et al. 2011) and into the Meteorological Service of

Canada (MSC) Ensemble Prediction System for medium-

range global forecasts (Charron et al. 2010). These studies

also report positive impact on spread, reliability, and

probabilistic skill for most of the forecast range. The latest

model improvements to the MSC ensemble system include

an updated multiparameterization suite as well as two

stochastic parameterizations: a stochastic kinetic-energy

backscatter scheme and perturbations to the physical ten-

dencies (Charron et al. 2010). They report that the differ-

ent model-error schemes improve different aspects of

probabilistic skill. In particular, the effect of including

a stochastic kinetic-energy backscatter scheme is most

pronounced in the low-level winds, while using multiple

parameterizations for deep convection has a marked

positive impact on midtropospheric temperature.
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For more theoretical studies of stochastic kinetic-en-

ergy backscatter schemes see Frederiksen and Davies

(1997, 2004) and Frederiksen and Kepert (2006). This

work consists of formulating dynamical subgrid-scale

parameterizations based on eddy-damped quasi-normal

Markovian, direct-interaction approximation closure

models and also a Markov model for the subgrid scale.

They found that the kinetic-energy spectra of their large-

eddy simulations with subgrid-scale parameterization, in-

cluding a stochastic backscatter term, agree well with

those of the direct numerical simulations.

The goal of the work presented here is threefold: first,

we report on the performance of a stochastic kinetic-

energy backscatter scheme in a mesoscale ensemble sys-

tem, with emphasis on both the surface and the boundary

layer. Second, the performance of this model-error scheme

is compared against a model-error scheme utilizing multi-

ple physics suites within the same ensemble system. Finally,

we show how much improvement can be made by com-

bining the two model-error representations. The paper is

organized as follows. The experimental setup and data are

described in section 2a, section 2b summarizes the multi-

physics and stochastic kinetic-energy backscatter schemes,

and section 2c defines the verification metrics. The verifi-

cation of the model-error schemes against observations and

analyses is given in section 3, followed by summary and

conclusions in sections 4 and 5.

2. Methodology

a. Experiments, data, and verification period

The AFWA JME system is a limited-area ensemble

system and uses initial perturbations and lateral boundary

conditions from the National Centers for Environmental

Prediction (NCEP) Global Ensemble Forecast System

(GEFS; Wei et al. 2008) based on the Global Forecasting

System (GFS; Kalnay et al. 1990). Initial conditions in

GEFS are generated via an ensemble-transform technique

with regional initial-perturbation scaling to account for re-

gional differences in the analysis error variance. Forecasts

are made over the conterminous United States (CONUS)

domain (see Fig. 1 of Hacker et al. 2011). An overview over

the detailed setup of the AFWA mesoscale ensemble and

its performance are provided in Hacker et al. (2011).

Details on WRF are available in Skamarock et al. (2008).

To represent uncertainties in the land-use characteristics,

the AFWA JME system uses perturbed land-use tables,

which are generated following a method proposed by Eckel

and Mass (2005). Three land surface parameters—albedo,

soil moisture availability, and roughness length—are per-

turbed with random draws from G-like distributions, with

distribution parameters chosen through physical arguments

and empirical data. With those perturbed parameters, dif-

ferent land-use tables are generated for each ensemble

member and do not change throughout the experiment

[see Hacker et al. (2011), especially their Fig. 2 for a de-

scription of the impact].

The ensemble prediction system was run with ten

ensemble members every other day for the period between

21 November 2008 and 13 February 2009, producing a to-

tal of forty 10-member ensemble forecasts. Forecast are

initialized daily at 0000 UTC and integrated for 60 h. All

results here use a grid spacing of 45 km in the horizontal

and 40 vertical levels. For the subperiod 21 November–

21 December 2008, additional forecasts were initialized at

1200 UTC.

It is known that the performance of an ensemble system

can depend on the verification reference (e.g., Bowler

et al. 2008), that is, if the model is verified against obser-

vations or analyses. Since both ways have different ad-

vantages and disadvantages as outlined below, here all

experiments are verified against both observations and

analyses.

The GFS analysis is taken from the NCEP Global Data

Assimilation System (GDAS) in which surface observa-

tions were assimilated. An advantage is that the analysis

is available at each grid point and level; a disadvantage is

that it is not generated by the same WRF model as the

forecasts and that it is difficult to estimate the analysis

error. The evaluation against observations is performed at

106 upper-air sounding stations providing vertical profiles

with 11 mandatory pressure levels, and at about 3000

surface stations for the aviation routine weather report

(METAR) measurements. A disadvantage of the obser-

vation diagnostics is that there are relatively few obser-

vation stations, that the data from these stations can have

missing values, and that the model output has to be inter-

polated to the station locations. Observation and analysis

errors are a substantial component of forecast error and

need to be included in an accurate verification (e.g., to de-

termine if an ensemble system is under- or overdispersive).

However, since we have little trust in the estimate of ob-

servation and analysis errors (Hacker et al. 2011), we mostly

omit them in this study.

Since our interest is on the relative performance of dif-

ferent model-error schemes, rather than on their absolute

performance, this omission should not affect our findings.

The verification against analysis is done for the entire

period from November 2009 to February 2010, but only

for 0000 UTC initializations every other day, resulting

in a total of 40 ensemble forecasts. For the verification

against observations, initializations for 0000 and 1200 UTC

were used, but only for a month from 21 November–

21 December at odd days, leading to a total of 30 ensemble

forecasts. While the details of the verification period differ

1974 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



somewhat depending on which data are used for the ver-

ification, they are similar enough to enable a direct com-

parison. To confirm this, we repeated all verifications on

the intersection of the verification periods. The results

were qualitatively the same, but since less data were used,

less significant. To maximize the significance of the results

presented, we decided to keep slightly different verifica-

tion periods.

To quantify the impact of different model-error schemes,

four ensemble experiments were conducted (Table 1):

The first one is the control ensemble (CNTL) where each

member uses the same physics packages. A second exper-

iment comprises a multiphysics ensemble (PHYS), where

each member uses a distinctly different set of physics suites.

The ensemble system STOCH uses the control physics

for each ensemble member (the same as in CNTL), but

introduces streamfunction perturbations generated by

a stochastic kinetic-energy backscatter scheme. Finally, in

the experiment PHYS_STOCH the multiphysics scheme

is combined together with the perturbations from the

stochastic backscatter scheme.

b. Model-error schemes

1) MULTIPLE-PHYSICS SUITES

The multiphysics ensemble tries to account for param-

eterization uncertainty by using different parameteriza-

tions for land surface, microphysics, planetary boundary

layer, cumulus convection, and long- and shortwave radi-

ation. Choosing an optimal set of physics suites, and suites

with schemes that work well together, is a challenging and

time-consuming task. Here, operational and computational

considerations partially constrain the selection of phys-

ics suites included in PHYS. Aiming to include as much

member independence as possible and produce a skillful

ensemble, review of the formulation behind the phys-

ics schemes in the WRF (Skamarock et al. 2008) led to

20 candidate ensemble members with suites of physics

that differ from each other in one or more fundamental

ways. Subsequent testing of those candidate ensemble

members for a 1-month trial period, to confirm numer-

ical stability and reveal member behavior, reduced the

set to 10 members that runs stably and produces reason-

able ensemble forecasts for that period (see also the dis-

cussion in Hacker et al. 2011). The resulting multiphysics

configuration for the ensemble PHYS are summarized in

Table 2. Details on the physical parameterization pack-

ages can be found in Skamarock et al. (2008).

This approach is not exhaustive, and results in ensem-

ble members that are not necessarily appropriate for all

regions or times of year (e.g., using a microphysics scheme

lacking ice-phase physics). We adhere to this constraint

and accept the inevitable possibility that there might be

better multiphysics combinations for that particular pe-

riod over the CONUS domain, which points to the more

general issue of the difficulty to maintain and run multi-

physics schemes operationally. To confirm that there are

no members that are substantially less skillful than others,

we compared the debiased RMS error for each ensemble

member (not shown) and could not find any systematic

outliers. We point out that the skill in the ensemble PHYS

is the result of the different physics packages in combi-

nation with the perturbed land-use parameters.

2) THE STOCHASTIC KINETIC-ENERGY

BACKSCATTER SCHEME

The stochastic kinetic-energy backscatter scheme aims

at representing model uncertainty resulting from inter-

actions with unresolved scales and is based on the notion

that the turbulent dissipation rate is the difference be-

tween upscale and downscale spectral transfer, with the

parameterized upscale component being available to the

resolved flow as a kinetic-energy source (Shutts 2005).

The scheme implemented here is a simplification of the

stochastic kinetic-energy backscatter scheme of Berner

et al. (2009), who demonstrated its ability to improve the

performance in the European Centre for Medium-Range

Weather Forecasts (ECMWF) medium-range ensemble

forecasting system. The simplification consists of assuming

a spatially and temporally constant dissipation rate as

discussed below. Here, we derive the equations for the full

dissipation rate and comment on the simplifying assump-

tions at the end of this section. The ECMWF ensemble

system is a global model and its dynamical core is pseu-

dospectral with streamfunction as one of its prognostic

variables. Since the WRF model is a limited-area model

and uses finite differences, the basis functions of the sto-

chastic kinetic-energy backscatter scheme were changed

from spherical harmonics to 2D-Fourier modes. In this

section we briefly give some motivation and background

on the adaption of stochastic kinetic-energy backscatter

schemes to numerical weather forecasting, and subse-

quently describe the equations in the 2D-Fourier basis

used here. For details of the derivation we refer to Berner

et al. (2009) and in particular, their appendix.

TABLE 1. Experimental setup.

Expt

Physics package/

model-error scheme

Line

style

CNTL Control physics Black dashed

PHYS Multiple physics schemes Gray solid

STOCH Stochastic kinetic-energy

backscatter scheme

Black solid

PHYS_STOCH Multiple physics schemes

and stochastic kinetic-energy

backscatter scheme

Gray dashed

JUNE 2011 B E R N E R E T A L . 1975



To calculate a stochastic kinetic-energy source, random

streamfunction perturbations C9(x, y, t) and temperature

perturbations T9(x, y, t) are introduced, with a prescribed

kinetic-energy spectrum. The effective streamfunction

perturbations C9(x, y, t) are given by

C9(x, y, t) 5 rD(x, y, t)c9(x, y, t), (1)

where x is the zonal and y the meridional direction in

physical space, and t denotes the time. Here we use x and y

rather than the global variables l and f to emphasize that

the domain is limited. Here D(x, y, t) is the local, instan-

taneous dissipation rate, c9(x, y, t) is a 2D streamfunction

pattern with a prescribed kinetic-energy spectrum, and r is

the parameter ‘‘backscatter ratio.’’ The spatial and tem-

poral characteristics of the perturbation pattern are con-

trolled by expanding the streamfunction pattern c9(x, y, t)

in spectral space, and evolving each wavenumber as a

first-order autoregressive process as described below. If

D is constant, then these characteristics will directly

transfer to the effective streamfunction perturbations C9.

However, if D is a function of space and time, then the

spatial and temporal characteristics will be the convolu-

tion between D(x, y, t) and c9(x, y, t) (see Fig. 2 in Berner

et al. 2009). A difference from Berner et al. (2009) is that

in the present work we follow the argument of Shutts

(2005), who proposes that the energy in the subgrid-scale

should be backscattered onto not only u and y, but also T.

Hence, we generate temperature perturbations in the

same manner as the streamfunction perturbations and

add them to the prognostic equation for the tempera-

ture. For brevity, we give here only the derivation for

c9(x, y, t).

Let c9(x, y, t) be a 2D streamfunction-forcing pattern

and u9(x, y, t) and y9(x, y, t) the corresponding zonal and

meridional wind perturbations, respectively, expressed

in 2D Fourier space:

c9(x, y, t) 5 �
K/2

k5�K/2
�
L/2

l5�L/2
c9

k,l
(t)e2pi(kx/X1ly/Y), (2)

u9(x, y, t) 5�›c9(x, y, t)

›y

5�2pi

Y
�
K/2

k5�K/2
�
L/2

l5�L/2
lc9

k,l
(t)e2pi(kx/X1ly/Y),

(3)

y9(x, y, t) 5
›c9(x, y, t)

›x

5
2pi

X
�
K/2

k5�K/2
�
L/2

l5�L/2
kc9

k,l
(t)e2pi(kx/X1ly/Y),

(4)

where k and l denote the (K 1 1) and (L 1 1) wavenumber

components in the zonal x and meridional y direction in

physical space and t denotes time. The Fourier modes

e2pi(kx/X1ly/Y ) form an orthogonal set of basis functions on

the rectangular domain 0 , x , X and 0 , y , Y. If the

c9k,l are nonvanishing for at least one jkj, K/2 or jlj, L/2

and do not follow a white-noise spectrum, the stream-

function perturbations will be spatially correlated in phys-

ical space. The Fourier expansion implies doubly periodic

boundaries. This imposes some constraints on the pattern,

but since it is only used for perturbations, we do not an-

ticipate any problems.

Since the physical processes mimicked by this stream-

function forcing have finite correlation times, we intro-

duce temporal correlations by evolving each spectral

coefficient by a first-order autoregressive (AR1) process:

c9
k,l

(t 1 Dt) 5 (1� a)c9
k,l

(t) 1 g
k,l

ffiffiffi
a
p

«
k,l

(t), (5)

TABLE 2. Configuration of the multiphysics ensemble. Abbreviations are Betts-Miller (BM), Community Atmosphere Model (CAM),

Kain–Fritsch (KF), Mellor–Yamada–Janjic (MYJ), Rapid Radiative Transfer Model (RRTM), Rapid Update Cycle (RUC), WRF Single-

Moment 6-class (WSM6), and Yonsei University (YSU). For details on the physical parameterization packages and references see

Skamarock et al. (2008).

Member Land surface Microphysics PBL Cumulus Longwave Shortwave

1 Thermal Kessler YSU KF RRTM Dudhia

2 Thermal WSM6 MYJ KF RRTM CAM

3 Noah Kessler MYJ BM CAM Dudhia

4 Noah Lin MYJ Grell CAM CAM

5 Noah WSM6 YSU KF RRTM Dudhia

6 Noah WSM6 MYJ Grell RRTM Dudhia

7 RUC Lin YSU BM CAM Dudhia

8 RUC Eta MYJ KF RRTM Dudhia

9 RUC Eta YSU BM RRTM CAM

10 RUC Thompson MYJ Grell CAM CAM
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where (1 2 a) is the linear autoregressive parameter, gk,l is

the wavenumber-dependent noise amplitude, and «k,l is a

complex-valued Gaussian white-noise process with mean

h«k,l(t)i5 0 and covariance h«k,l(s)«m,n* (t)i 5 s2dk,mdl,nds,t.

The * denotes the complex conjugate. In addition, we as-

sume a2 (0, 1] (i.e., we exclude the case of a nonfluctuating

forcing). The variance and autocorrelation of the AR1 are

well-known quantities (e.g., von Storch and Zwiers 1999)

and are given for the Markov process in (5) by

hc9
k,l

(t)c9
k,l
*(t)i5

g2
k,ls

2

2� a
and

hc9
k,l

(t 1 Dt)c9
k,l
*(t)i

hc9
k,l

(t)c9
k,l
*(t)i 5 1� a. (6)

Here we interpret (5) as the discrete approximation of a

Stratonovitch stochastic differential equation with an

exponentially decaying autocorrelation function and a

decorrelation time t 5 Dt/a (e.g., Berner 2005). The

Stratonovitch interpretation is valid for systems where the

noise represents continuous processes with decorrelation

times smaller than the time increment. For such systems,

the noise variance s2 and a depend implicitly on the time

increment and the
ffiffiffi
a
p

in front of the noise term guarantees

that the noise decorrelates faster than the time step, and

fulfills the fluctuation–dissipation relationship. For a de-

tailed discussion see Penland (2003) and references therein.

We furthermore assume that the noise amplitudes follow

the power law:

g
k,l

5 br
b

k,l (7)

with amplitude:

b 5
aDE9

4p2s2G

� �1/2

, where G 5 �
K/2

k5�K/2
�
L/2

l5�L/2
r

2b12
k,l (8)

and r
k,l

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2/X2 1 l2/Y2

p
is the effective radial wave-

number. As derived in Berner et al. (2009), this choice of

b is such that at each time step Dt a fixed domain-averaged

kinetic energy per unit mass:

DE9 5 2p2X Y �
K/2

k5�K/2
�
L/2

l5�L/2
r2

k,lhjck,l
(t 1 Dt)j2�jc

k,l
(t)j2i,

(9)

5 2p2X Y �
K/2

k5�K/2
�
L/2

l5�L/2

2

a
� 1

� �
r2

k,lhjc9
k,l

(t)j2i, (10)

5
2p2s2 X Y

a
�
K/2

k5�K/2
�
L/2

l5�L/2
r2

k,lg
2
k,l. (11)

This is injected into the flow, where the injected energy is

given as the difference in the total kinetic energy between

time t 1 Dt and time t as expressed by the total stream-

function in Fourier space, ck,l(t). In the ensemble-mean

sense, these perturbations will inject the domain-averaged

kinetic energy DE9 given in (11) into the flow.

In summary, a perturbation of the form in (5) with the

noise amplitude in (7) will generate streamfunction per-

turbations with the kinetic-energy spectrum:

E
k,l

5
2p2s2 X Y

a
r2

k,lg
2
k,l. (12)

We note that the change of total kinetic energy in (10)

does not solely consist of the injected kinetic energy

2p2X Y�K/2

k 5�K/2�
L/2

l 5�L/2r2
k,lhjc9k,l(t)j2i, but is modified by

the factor [(2/a) 2 1]. Berner et al. (2009) show this

modification is noise induced and reflects the correla-

tions between the total streamfunction c(x, y, t) and the

streamfunction forcing c9(x, y, t) at time t due to their

mutual dependence on the streamfunction forcing at

the previous time t 2 Dt. If there are no such corre-

lations (i.e., a 5 1) in the evolution in (5), this factor

equals 1 and the change in total kinetic energy equals that

of the injected energy assuming that the forcing incre-

ments are instantaneously injected at each time step.

Second, we remark that if (7) is inserted into the equa-

tion for the kinetic-energy spectrum in (12),

E
k,l

5
4p2s2b2

a
r

2b12
k,l , (13)

which states that a streamfunction forcing with power-

law r
b

k,l will result in a kinetic-energy spectrum of pow-

erlaw r
2b12
k,l .

The scheme has a number of parameters that need to

be set either based on the best knowledge of the physical

processes or by coarse-graining high-resolution model

output. The latter was demonstrated by Berner et al.

(2009), who used the cloud-permitting model described in

Shutts and Palmer (2007) to estimate the power-law ex-

ponent b 5 21.54. Following Berner et al. (2009), the

other parameters are set to s2 5 1/12 for the noise vari-

ance and 1 2 a 5 0.875 for the autoregressive parameter,

so that each wavenumber has a decorrelation time scale

of Dt/a 5 0.5 h, where the model time step is Dt 5 240 s.

The same pattern is used in all vertical levels, leading to a

barotropic vertical structure. Experiments with more so-

phisticated vertical structures (e.g., including vertical cor-

relations from the error covariance matrix of vorticity), did

not have a significant impact on the skill of the ECMWF

ensemble (unpublished results), which is why we did not

improve on this simplification for the present work.
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However, future work is planned to develop more fa-

vorable vertical structures for the stochastic pattern. Two

approaches introducing a vertical structure into the sto-

chastic pattern are described in Palmer et al. (2009) and

Tennant et al. (2011).

To obtain a backscatter scheme that is linked to the

local instantaneous dissipation rate, Shutts (2005) com-

putes a total dissipation rate D(x, y, t) with contributions

from deep convection, numerical dissipation, and gravity/

mountain wave drag. Berner et al. (2009) showed that while

the flow-dependent formulation of the dissipation rate gave

best results, a simplified scheme assuming a spatially and

temporally constant dissipation rate Dc led to improve-

ments that were almost as good. Since the correct com-

putation of instantaneous dissipation rates in weather and

climate models remains a challenging task, we implement

here a simplified scheme assuming a constant backscattered

energy rate of rCDc 5 2 m2 s23 for streamfunction

and rTcpDc 5 2 3 1026 m2 s23 for temperature, where rC

and rT denote the backscatter ratio for streamfunction and

temperature, respectively, and cp is the specific heat. The

backscattered energy rates were chosen to yield a rea-

sonable spread and are effectively tuning parameters. A

number of short runs with different backscatter rates

were conducted to identify values that resulted in the

best spread-error consistency without deteriorating the

RMS error too much.

The scheme and derivation still use streamfunction as

nominal variable, but since WRF uses u and y as prog-

nostic variables, the streamfunction increments DC9(x, y, t)

were transformed into u and y increments in (3) and

(4) and added to the dynamic equations at end of the

dynamical time step, before being passed to the physics

routines. The stochastic temperature increments are

generated in the same manner as the streamfunction

perturbations and added to the prognostic equation for

temperature.

An example of the stochastic perturbations in T and

their impact on a single forecast valid at 1200 UTC on

20 January 2009 is given in Fig. 1. The 60-h forecast for one

member of CNTL is shown in Fig. 1a and its difference

from STOCH at the same forecast lead time in Fig. 1c. We

see that the largest difference is not necessarily in the re-

gions of the largest perturbation, but in regions with strong

gradients where even small perturbations can grow rap-

idly. This confirms that even by assuming a spatially and

temporally constant dissipation rate, the instability of the

flow will lead to a flow-dependent error growth.

The impact of the stochastic backscatter scheme for

the ensemble forecast valid at 1200 UTC on 20 January

2009, is displayed in Fig. 2 for a lead time of 60 h. Shown

are the horizontal pattern of the root-mean-square (RMS)

error of the ensemble mean with regard to the analysis at

70 kPa for CNTL and for the spread for three different

ensemble systems: CNTL, STOCH, and PHYS. The RMS

error of STOCH and PHYS is very similar to that of

CNTL and hence omitted here.

As discussed in the next section, the aim is that the spread

matches the ensemble mean error in terms of its horizontal

pattern and amplitude as closely as possible. We note that

the large error in temperature from the south of the Great

Lakes to the south-central United States is captured by the

spread, but its amplitude is underestimated in CNTL. The

spread of PHYS improves on that, but the best represen-

tation of the error is given by the spread of STOCH. The

patchiness of the RMS error in u is captured well by all

ensemble systems; however, they all overestimate the spread

in the nonwindy regions. In general, the spread of PHYS

is structurally similar but slightly larger than that of CNTL

improving the spread-error consistency. The forecast shown

in Fig. 2 is a good example of this: the spatial anomaly

correlation in the spread between CNTL and PHYS is high,

but the maxima of PHYS are slightly larger. STOCH tends

to introduce spread in regions not captured by either PHYS

FIG. 1. (a) The 60-h forecast of temperature (8C) at 70 kPa at 1200 UTC 20 Jan 2009 over the conterminous United States for one member

of the ensemble system with control physics (CNTL). (b) Snapshot of temperature perturbations from stochastic kinetic-energy back-

scatter scheme for the same member at a forecast lead time of 59 h. (c) Difference between the original forecast in (a) and the corre-

sponding forecast with the stochastic kinetic-energy backscatter scheme (STOCH) at a lead time of 60 h.
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FIG. 2. Horizontal pattern of the RMS error of the ensemble mean with regard to the analysis for the 60-h forecast

at 70 kPa at 1200 UTC 20 Jan 2009 in the ensemble system with control physics (CNTL). For (a),(c),(e),(g) variable

zonal wind u in m s21 and (b),(d),(f),(h) temperature T in C8 are depicted: (a),(b) the RMS error maps; horizontal

pattern of the spread in the (c),(d) ensemble systems CNTL; (e),(f) with multiphysics scheme PHYS; and (g),(h) with

the stochastic kinetic-energy backscatter scheme (STOCH). For each variable, the gray shadings of error and spread

are identical.
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or CNTL. This is sometimes advantageous (e.g., for u

along the East Coast) and sometimes not (e.g., over the

western United States for T).

c. Metrics for forecast evaluation

The performance of the ensemble systems with and

without model-error representation was verified using a

number of metrics to assess statistical consistency, re-

liability, and resolution. The information in different ver-

ification metrics is often similar, and so here we present

a meaningful subset only.

1) SPREAD-ERROR CONSISTENCY

A measure of reliability is the degree of consistency be-

tween ensemble spread and error. A reliable ensemble will

exhibit approximate agreement between RMS ensemble-

mean error and ‘‘total spread,’’ which includes both

ensemble spread and observation/analysis error. This ap-

proximate agreement expresses the degree to which the

ensemble can on average predict the observed or analyzed

distribution, and can be expressed as

1
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where the left-hand side denotes the RMS error of the

ensemble mean and the right-hand side the total spread

composed of the ensemble variance, s2
f ,i, and observation

(or analysis) error variance s2
o,i. The subscript i 5 1, . . . , N

indexes the, the total number of verifying observations

(or analysis objects) at a particular forecast lead time.

Here f
i

is the ensemble-mean forecast and oi an obser-

vation (or analysis) for this verification time.

2) BRIER SCORE

The performance of the ensemble systems is evalu-

ated using the Brier score as defined in Wilks (1995):

BS(p) 5
1

N
�
N

i51
[g

i
(p)�O

i
(p)]2, 0 # g

i
# 1, O

i
2 f0, 1g,

(15)

where gi(p) is the occurrence probability of a dichotomous

event E at pressure p for a particular forecast verification

date i. If E occurred then let Oi 5 1; otherwise, Oi 5 0.

From its definition we see, that the better the forecast,

the smaller the Brier score and that in the ideal limit of

a perfect deterministic forecast BS 5 0.

To determine if the performance of the ensemble system

depends on the magnitude or sign of the anomalies, the

Brier score was categorized in four different verification

FIG. 3. Mean bias (thick lines) relative to analyses for the winter 2008–09 as function of

pressure for (a),(b) u in m s21 and (c),(d) T in K for the ensemble mean of CNTL physics (black

dashed), PHYS (gray solid), and STOCH (black solid). The thin gray dashed lines denote the

individual member biases of PHYS ensemble. The forecast lead time is (a),(c) 12 or (b),(d) 60 h.
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events signifying positive or negative ‘‘common anomalies’’

and ‘‘extreme events.’’ Here we define common anomalies

as an anomaly of less than one standard deviation from the

climatological mean, and extreme events as an anomaly

of more than one standard deviation. At each isobaric

spherical coordinate r 5 (l, f, p), we compute the cli-

matological standard deviation, sx(r) of a variable x 2
fu, Tg with regard to their respective monthly mean, and

take the weighted average over the number of months in

the verification period. Then Brier score profiles as function

of pressure level are computed for the four events: x(r) ,

2sx(r), 2sx(r) , x(r) , 0, 0 , x(r) , sx(r), and sx(r) , x.

To see if the differences between the schemes are sta-

tistically significant, we obtain the empirical distribution

of pair-wise Brier score differences by bootstrap sampling

with replacement over the N dates. If the difference is

positive and statistically significant at the 95% confidence

level, we say that model A is significantly better than

model B (denoted by a filled diamond marker in the fig-

ures). If the difference is negative and statistically signif-

icant, this is marked by an open diamond.

3) CONTINUOUS RANK PROBABILITY SCORE

The continuous rank probability score (CRPS) is a gen-

eralization of the Brier score to all verification thresholds,

and includes contributions from both reliability and reso-

lution. Confidence intervals for the CRPS were obtained

in the same manner as for the Brier score differences. For

further details on the verification scores, we refer to Jolliffe

and Stephenson (2003).

3. Results

The skill of the ensemble systems can be well summa-

rized by the Brier score, the ‘‘spread-error consistency,’’

and CRPS, which are the focus of this section. For clarity,

the verification against observations and analyses and their

respective biases will be discussed separately in sections 3a

and 3b. The investigation is centered on the dynamical

variables zonal wind u, meridional wind y, and tempera-

ture T. However, the results for y are so similar to those

of u that all statements and figures made for the zonal wind

u are also qualitatively valid for the meridional wind y.

Hence, we show no plots for y. The results are discussed

for heights below the 30-kPa pressure level.

a. Verification against analyses

For the multiphysics ensemble, each ensemble member

has a different physics combination and hence is effec-

tively a different model with its own climatology and bias.

FIG. 4. Spread around ensemble mean (thick curves) and RMS error of ensemble mean

relative to analyses (thin curves) for (a),(b) u in m s21 and (c),(d) T in K. Spread and error

curves are shown for 3 ensemble systems: control physics CNTL (black dashed), multiphysics

PHYS (gray solid), and stochastic backscatter STOCH (black solid). The ensemble systems are

debiased with regard to their respective mean monthly bias. Forecast lead time is (a),(c) 12 or

(b),(d) 60 h.
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In general, the statistical verification results depend on

whether or not the systematic bias is removed prior to the

verification. To determine the mean bias for the winter of

2008–09, we compute the bias by subtracting the monthly

averaged ensemble mean for each ensemble member from

the monthly averaged analysis. Then, we take the mean

over the four months of the verification period by weight-

ing each monthly bias with the relative number of dates per

month. Subsequently, the horizontal domain average is

taken, but the dependence on forecast lead time is kept,

since model error evolves with time. For verification pur-

poses the bias was removed a posteriori.

Figure 3 shows the mean bias averaged over all members

from each ensemble scheme (thick lines), and the mean

biases from individual members in PHYS (gray dashed

lines). There are small variances in the member biases even

in STOCH and CNTL because of the limited sample size,

but they are much smaller than those for PHYS (not

shown). At 12-h forecast lead time, the zonal wind is pos-

itively biased with the maximum around 90 kPa. At 60 h,

the bias at 90 kPa is only evident in PHYS, but all en-

semble systems are negatively biased (winds too easterly)

farther aloft between 85 and 50 kPa. The largest bias in u

is evident at the surface with approximately 20.2 m s21

for STOCH and CNTL and 20.4 m s21 for PHYS show-

ing a large discrepancy between the WRF model and the

GFS analysis at the surface.

The temperature bias at 12 h is very small except at the

surface where there is a large negative bias of 20.7 K for

STOCH and CNTL and 21.5 K for PHYS. At 60 h, the

negative bias gets larger, and is now evident in all levels

below a height of 50 kPa, which means that the low- to

midlevel atmosphere is warmer than the analysis. While

the mean biases of STOCH and CNTL are very similar to

each other, because of using the same control physics,

the mean bias in PHYS is clearly different from the two

FIG. 5. Brier score of ensemble system with control physics CNTL (black dashed) relative to analyses,

for zonal wind u, as function of pressure, for three verification events: (a) u(r) , su(r), (b) 0 , u(r) ,

su(r), and (c) su(r) , u; where su(r) is the climatological standard deviation of u as function of longitude

l 5 r1, latitude f 5 r2, and pressure p 5 r3. The score for the event 2su(r) , u(r) , 0 is very similar to that

in (b) and, hence, not shown. A smaller Brier score denotes better skill. (d)–(f) Brier Score differences of

PHYS (gray solid) and STOCH (black solid) from CNTL for the same three events. The sign is defined so

that positive differences signify an improvement over CNTL and negative differences a deterioration.

Filled (empty) markers denote statistically significant improvement (deterioration) with regard to the

skill of CNTL at the 95% confidence level. Forecast lead time is 12 (thin lines) or 60 h (thick lines).
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experiments and gets larger at longer forecast lead times.

The mean bias for individual ensemble members in PHYS

(gray dashed lines) shows that the systematic bias in the

different physics schemes has the largest variability in

boundary layer temperature; implying that various com-

binations of different planetary boundary layer (PBL)

schemes and land surface models can produce very dif-

ferent climatologies.

Although a thorough treatment of observed system-

atic differences is beyond the scope of this work, recent

research shows those differences clearly. For example,

Santanello et al. (2009) used mixing diagrams to diagnose

land–atmosphere coupling for several combinations of

PBL schemes and land surface models. They showed

that the processes controlling PBL growth and land–

atmosphere coupling, including, for example, the Bowen

ratio, are integrated in the co-evolution of temperature at

2 m and water vapor, shown by the mixing diagrams. The

signature of the mixing diagrams differed according to

PBL schemes for dry soils, and according to the land

surface model for wet soils.

The spread around the ensemble mean and the RMS

error of the ensemble mean are computed for horizontal

wind and temperature from all ensemble systems as a

function of pressure level at 12- and 60-h forecast lead

times, and averaged over the entire domain. Prior to the

computation of spread and error, the monthly mean bias

(Fig. 3) for each ensemble member was removed.1 For

a perfectly reliable ensemble system the flow-dependent

initial uncertainty should be fully represented by the total

ensemble spread and thus spread and RMS error should

grow at the same rate so that the uncertainty of the forecast

is well represented by the ensemble spread. On average, all

ensemble systems in this study are underdispersive (i.e., the

error exceeds the ensemble spread at all forecast lead times

and exceeds it more for longer forecast lead times; Fig. 4).

In the spatial and temporal average of the u-wind

component, the error and spread curves have a similar

vertical structure with smallest values near the surface,

a local maximum near 95 kPa and vertically increasing

values above 75 kPa (Figs. 4a,b). For temperature, both

the spread and error curves are approximately constant

with height for pressures below 80 kPa, and the largest

errors near the surface, exceeding 2 K at 60-h forecast

lead time (Figs. 4c,d), even after removing the biases.

This large discrepancy between model and analyses was

also seen in the mean bias (Fig. 3).

FIG. 6. As in Fig. 5, but for temperature T instead of u.

1 To not bias our results in favor of the multiphysics, we removed

the bias caused by sampling, in addition to the systematic model bias.
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We investigated if there are regions that are an ex-

ception to the general underdispersiveness. Looking at

the temporal averages only, we find that above 60 kPa

there are small patches over the ocean and land where

the spread is locally larger than the error. However, these

overdispersive regions seem random and not linked to

any geographical features such as orography. Below

60 kPa the ensemble prediction system is underdispersive

everywhere with one exception: there is a small area over

the ocean southwest of the Baja peninsula away from the

domain boundary, where T is systematically overdispersive.

Comparing the spatially and temporally averaged error

and spread curves confirms that the underdispersiveness

in the PHYS and STOCH ensembles has greatly im-

proved from CNTL, while the RMS error remains almost

the same or is even reduced (Fig. 4). PHYS increases the

spread of temperature at 85 kPa by a factor of 1.25 com-

pared to CNTL, and STOCH does so by a factor of 1.5. It

is noted that STOCH markedly improves the ensemble

spread but hardly degrades the mean errors. Meanwhile,

PHYS can increase the mean errors (near 925 hPa in

u-wind component) or decrease the mean errors (for the

surface temperature) even with smaller increment in the

spread. The ensemble mean constitutes the first moment

of the ensemble distribution and as such, tends to average

over the unpredictable scales of motion. As a second mo-

ment, the spread does not have the same filtering qualities.

For a linear system we would thus expect that random

perturbations would impact the spread, but not the mean.

However, in a nonlinear system such as ours, the situation is

more complex and it is easy to increase the RMS error by

introducing a model error representation. Therefore our

findings are nontrivial: while both parameterization di-

versity and stochastic perturbations lead to an increase

in the spread, it is remarkable, that they do so without

markedly increasing the RMS error.

In conclusion, the spread-error consistency is improved

by both STOCH and PHYS, but the spread generated by

the stochastic kinetic-energy backscatter scheme is gener-

ally larger than that generated by the multiphysics scheme,

without an increase in the mean forecast errors, which

results in the most reliable ensemble prediction system.

Verifying the spread-error consistency gives us an es-

timate of the predictive accuracy of the ensemble-mean

forecast. However, the true value of an ensemble system

lies in predicting the variability of the potential outcomes.

Latter is best assessed by a probabilistic verification.

Therefore, we perform such a probabilistic verification

FIG. 7. Mean bias (thick lines) with regard to observations for the winter 2008–09 as function of pressure for

(a),(b) zonal wind u in m s21 and (c),(d) temperature T in K for the ensemble mean of CNTL physics (black

dashed), PHYS (gray solid), STOCH (black solid), and PHYS_STOCH (gray dashed): (left) 12-h and (right)

60-h forecast lead time. Thin gray dashed lines denote the individual member biases of PHYS ensemble.
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using the most commonly used score, the Brier score.

Following common practice, we compute the Brier score

after debiasing the monthly mean from each ensemble

member. Since the results for the common anomalies,

2sx(r) , x(r) , 0 and 0 , x(r) , sx(r), are very similar,

we only show plots for the event 0 , x(r) , sx(r). Both, u

wind and temperature forecast time show largest (i.e.,

worst) Brier scores at the surface, and generally have

better probabilistic forecast skills with height [i.e., the

scores decrease with height for u (Figs. 5a–c) or remain

quasi-constant for heights below the 40-kPa pressure

level (Figs. 6a–c)]. The differences between CNTL and

the ensembles that vary model-error schemes (Figs. 5

and 6d–f) are generally small compared to the height

dependence of the Brier score, but nevertheless tend to

be statistically significant at the 95% confidence level

(denoted by filled and empty markers) in most levels. The

sign is defined so that positive differences signify an im-

provement over CNTL and negative differences a de-

terioration. STOCH shows the best skill near the surface

and throughout the free atmosphere in the horizontal

winds at all lead times (Figs. 5d–f). PHYS and STOCH are

both better than CNTL in forecasting the surface tem-

perature, but for short lead times of 12 h, STOCH de-

teriorates the temperature forecast in heights above

80 kPa (Figs. 6c,d). Interestingly, events more than one

climatological standard deviation away from the mean

(Figs. 5 and 6a,c) tend to have lower scores and are better

captured than are common anomalies, which will be stud-

ied further elsewhere. Except that PHYS is statistically

significantly worse than CNTL around 925 hPa for strong

u-wind forecast (Figs. 5d,f) and STOCH is not as good at

predicting T in the free atmosphere at a lead time of 12 h

(Figs. 6d–f), both ensembles with model-error represen-

tation generally outperform CNTL in most cases at most

levels.

b. Verification against observations

We have seen that a model-error representation im-

proves the probabilistic forecast when verified against

analyses. Next we want to see if this conclusion also

holds if we compare the interpolated model output to

the observed data. As in the previous section, we look first

at the mean bias, followed by a discussion of spread-error

FIG. 8. Spread around ensemble mean (thick curves) and RMS error of ensemble mean (thin curves)

relative to observations for (a),(b) u in m s21 and (c),(d) T in K: (left) 12-h and (right) 60-h forecast lead

time. Spread and error curves are shown for four ensemble systems: control physics CNTL (black

dashed), multiphysics PHYS (gray solid), stochastic backscatter STOCH (black solid), and multiphysics

combined with stochastic backscatter PHYS_STOCH (gray dashed). The ensemble systems are debiased

with regard to their respective mean monthly bias.
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consistency and Brier score. For the comparison against

observations, results are shown for the additional exper-

iment PHYS_STOCH, which combines the multiphysics

and stochastic backscatter schemes (Table 1).

First, we compute the model bias by subtracting the

interpolated ensemble forecast from the observations at

each station location. Subsequently, the average over the

1-month verification period is taken, for each ensemble

member separately. The mean bias relative to the radio-

sonde observations is mostly positive in the westerly wind

at all levels and in temperature in the lower troposphere

(Fig. 7). We find that the westerly wind in the forecasts is

not as strong as in the observations. The low-level tem-

perature in the ensemble forecast is 0.5 K warmer than the

sounding observations, but the analysis shows the bound-

ary layer even colder than the ensemble forecast, especially

at 60-h forecast lead time. Considering the common ob-

servation errors of 1–1.5 K for surface temperature and of

1.5 m s21 for surface winds, it is found that the ensemble

mean forecast is very well matched with the observed cli-

matology within the observational uncertainty. Compared

to the observations, temperatures in the ensemble forecasts

with control physics (i.e., CNTL and STOCH) are warmer

at the surface and colder near the top of the boundary

layer. The biases in CNTL and STOCH are quite sim-

ilar to each other, pointing to the fact that it is the physical

parameterizations that are a large contributor to the mean

bias. The biases of PHYS and PHYS_STOCH are overall

smaller for u except at the surface. For T, the bias of PHYS

and PHYS_STOCH is overall larger than for CNTL and

STOCH. At the surface, as shown by individual member

biases in dashed gray lines, different combinations of sur-

face and PBL schemes produce positive and negative bia-

ses resulting in a near-zero mean value.

We note that the profile of the biases verified against

observations is quite different from that verified against

analyses (Figs. 3 and 7). We have repeated the bias cal-

culation using the intersection of verification periods and

found no qualitative change. This confirms that the dif-

ferences are a reflection of the difference in GFS analysis

and observations in combination with interpolation and

sampling errors. (There are 106 sounding stations versus

122 3 98 5 11 956 horizontal grid points.) Since the

analysis is not produced by WRF, but GFS, we suspect

that the bias against the observations is slightly more

trustworthy than that against the analysis, especially at

FIG. 9. Spread around ensemble mean (thick curves) and RMS error of ensemble mean (thin curves) for

(a),(b) zonal wind u in m s21 and (c),(d) temperature T in K for the multiphysics ensemble PHYS_STOCH.

Dashed gray lines without markers denote the debiased ensemble (same curves as in Fig. 8). The spread

including our best estimate of observation error is denoted by the thick gray line with markers. Shown are

spread and error curves for two different forecast lead times at (a),(c) 12 and (b),(d) 60 h.
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the surface. On the other hand, by using only 106 sounding

stations there is considerable sampling error. Since we

debias the data before the verification, our findings will be

largely unaffected by the structure of the biases.

The spread and error curves look qualitatively similar to

those in section 3a, but there are important differences in

the details (Fig. 8). Most markedly, the largest error for T

verified against observations occurs now around 925 hPa

and not any longer at the surface. Overall, STOCH could

best generate the uncertainties in the horizontal winds for

the entire atmosphere while PHYS is best at representing

the uncertainties in the PBL temperature. The most dis-

persive ensemble system is PHYS_STOCH, characterized

by both perturbations from multiple physics schemes and

stochastic perturbations. We note that the combination of

both model-error schemes increases the spread in most

levels, but not in an additive manner. When comparing

PHYS_STOCH to PHYS, we see that the former has

considerably more spread, but the RMS error of the en-

semble mean is hardly different.

The spread-error consistency indicates again that all

ensemble systems considered are underdispersive, and

even more so in comparison against analyses. It needs to be

stressed that the ensemble appears more underdispersive

than it is because we have not accounted for observation

error. To get an estimate of the true dispersiveness, Fig. 9

shows spread and error curves for PHYS_STOCH, when

the best—albeit unreliable—estimate of observation error

has been included. [Note that including the observation

error only affects the spread, not the RMS error in (14).]

We see that the inclusion of observation error improves the

spread-error consistency slightly; however, the ensemble

system is still distinctively underdispersive, except maybe

for temperature at short lead times and for heights above

the 70-kPa pressure level, where the match is quite well.

The Brier score profiles for u and T agree (here shown for

at a forecast lead time of 60 h) qualitatively very well with

those in section 3a (Figs. 10–11). The verification against

observations confirms that both PHYS and STOCH, and

their combination perform without exception better than

the control ensemble. This is also true for a forecast lead

time of 12 h (not shown). Many of these improvements

over CNTL are still statistically significant, but because of

the smaller sample size, the results are less significant than

those presented in Figs. 5 and 6. For u, STOCH performs

better than PHYS, especially aloft. For T, the superiority

of the stochastic physics ensemble is not as evident as for

u especially in the boundary where—in contrast to the

previous results—PHYS outperforms STOCH for all

events. In the boundary layer and at the surface, the best

FIG. 10. As in Fig. 5, but for the verification against soundings and for a forecast lead time of 60 h. The

Brier score differences of PHYS_STOCH from CNTL are denoted by the gray dashed line.
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ensemble system is clearly PHYS_STOCH. It significantly

outperforms both PHYS and STOCH for both u and T.

Short-range ensemble prediction systems focus on the

mesoscale and are intended to provide accurate near-

surface predictions. Since both soundings and analyses

have their largest errors in the lowest levels it makes it

difficult to determine which results to trust more. Hence,

we investigate the performance of the model-error schemes

further by verifying against the dense METAR observation

network with approximately 3000 stations over the con-

terminous United States. The focus will be in the temper-

ature at 2 m (T2m) and wind speed at 10 m. As skill score

we choose the CRPS, which is a generalization of the Brier

score (see section 2c). A comparison of pair-wise CRPS

difference at different forecast lead times ranging from

12 to 60 h allows us to examine the relative performance of

the ensemble systems (Figs. 12–15). Since CRPS is nega-

tively oriented, we reverse the difference so that im-

provements over CNTL (top row), PHYS (middle row),

or STOCH (bottom row) are shown as positive values.

Confidence intervals for the score differences are obtained

in the same way as for the Brier score. The intervals de-

picted as bars denote the 5th and 95th percentiles of the

scores differences (see section 2c).

The CRPS results show that at the surface, both model-

error schemes outperform CNTL for all forecast lead

times (Figs. 12–13, top row). The scores of PHYS and

PHYS_STOCH are very similar, but a close investigation

shows that PHYS_STOCH is slightly better than PHYS,

which is consistent with the Brier score results (Figs. 10 and

11). For the surface variables T2m and wind speed at 10 m,

the combination of both model-error schemes, PHYS_

STOCH, yields the best performing ensemble system,

closely followed by PHYS and then STOCH (Figs. 12 and

13, right column). All score differences are highly significant.

When we investigate continuous rank probability

score differences at 70 kPa (i.e., in the free atmosphere),

the qualitative performance of different ensemble systems

changes somewhat. Note, that in this level the observations

consist of upper-air sounding stations. Again all model-

error schemes clearly outperform CNTL except at initial

time. However, now STOCH is the most skillful ensem-

ble, followed by PHYS_STOCH, and then PHYS (Figs.

14 and 15). The results are again statistically significant for

most lead times. An exception is the wind speed at 70 kPa,

where the difference in CRPS for PHYS_STOCH and

STOCH is not significant.

4. Summary

To account for model uncertainty we tested the perfor-

mance of three model perturbation schemes: a scheme

FIG. 11. As in Fig. 10, but for temperature T instead of u.
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using multiple physics suites (PHYS), a stochastic kinetic-

energy backscatter scheme (STOCH), and their combi-

nation (PHYS_STOCH). The model-error schemes were

implemented into the same mesoscale ensemble prediction

system and constrained by the same initial and boundary

conditions, which allowed for a relatively clean testing of

the different model-error schemes.

We found that the qualitative performance of the model

is not sensitive to the skill measure used, and hence we

focused on the Brier score. For completeness, the model-

error schemes were evaluated against both observations

and analyses. Overall, the results agree very well, al-

though they are verified over slightly different verification

periods—3 months from 21 November 2008 to 13 February

2009 for the comparison with analyses and 1 month from

21 November to 21 December 2008 for the comparison

with observations. One exception is the surface, where both

analysis error and observation error from soundings are

FIG. 12. Pair-wise CRPS difference for temperature at 2m (T2m) for CNTL, PHYS, STOCH, and PHYS_STOCH verified against

surface observations. The sign of the differences is defined in such a way that improvements of model A over model B are shown as positive

values, where model A is (left) PHYS, (middle) STOCH, or (right) PHYS_STOCH and model B is (top) CNTL, (middle) PHYS, or

(bottom) STOCH. The forecast lead times are 0, 12, 24, 36, 48, and 60 h.
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large, and the relative merit of the model-error schemes

differs somewhat depending on the reference verification.

To summarize the performance, Fig. 16 consists of a

pair-wise comparison of Brier scores for a verification

against observations. Shown are the variables u, y, and

T for forecast lead times of 12 and 60 h, 7 vertical levels

and for 4 thresholds for positive and negative small and

large anomaly events with regard to the respective clima-

tologies. This amounts to a total of 3 variables 3 2 forecast

lead times 3 7 levels 3 4 thresholds 5 168 outcomes. Since

small Brier scores signify a better forecast, values below the

diagonal signify that the model on the ordinate performs

better than that on the abscissa. The pair-wise compari-

son of the number of outcomes (and percentages) of how

often model A performs better than model B is given in

Table 3, together with the number of outcomes where the

score differences are statistically significant. All model-

error schemes clearly outperform the control ensemble

system with no model-error representation: they have

a Brier score better than that of CNTL at least 82% of the

time. STOCH performs slightly better than PHYS: 63%

of the Brier scores are lower (better) in STOCH than in

PHYS. The best-performing ensemble system, PHYS_

STOCH, is obtained by combining both model-error

schemes. It beats PHYS 79% of the time and STOCH

58% of the time. The same conclusion is drawn when the

forecasts are verified against analyses, where STOCH

outperforms PHYS in 76% of the cases (Table 4).

FIG. 13. As in Fig. 12, but for wind speed at 10 m instead of T2m.
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5. Conclusions

The major findings of this study are the following:

d Including a model-error representation leads to ensemble

systems that produce significantly better probabilistic

forecasts than a control physics ensemble that uses the

same physics schemes for all ensemble members.
d Overall, the stochastic kinetic-energy backscatter scheme

outperforms the ensemble system utilizing multiple com-

binations of different physics-schemes. This is especially

the case for u and y in the free atmosphere. However,

for T at the surface the multiphysics ensemble produces

better probabilistic forecasts, especially when verified

against observations.
d The best-performing ensemble system is obtained by

combining the multiphysics scheme with the stochastic

kinetic-energy backscatter scheme. The superiority of

the combined scheme is most evident at the surface

and in the boundary layer.
d There is no obvious superiority of one model-error

scheme with regard to ‘‘extreme events’’ in the sense

of anomalies that are greater or smaller than one

FIG. 14. As in Fig. 12, but for temperature T at 70 kPa instead of T2m. Verification is against soundings.
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climatological standard deviation. Rather it seems that

an increase in spread helps the score for all thresholds.
d Even with model-error schemes and accounting for

observation error, the ensemble spread is still un-

derdispersive. This is consistent with our finding that

in general the most dispersive ensemble system is the

most skillful.

We conjecture that the superiority of stochastic kinetic-

energy backscatter scheme in the free atmosphere oc-

curs because it perturbs the dynamic state directly. The

dynamical variables are then fed into the physical pa-

rameterizations, which respond to this slightly perturbed

dynamical state. This is very different from perturbing the

physical tendencies directly, as described in Buizza et al.

(1999), which can introduce inconsistencies between the

physics and dynamics. The tendency of the model might be

to readjust any such inconsistencies at the next time step,

possibly leading to erroneous phenomena (e.g., spurious

gravity waves). Near the surface, however, the ensemble

systems are even more underdispersive than aloft, es-

pecially for temperature. Currently, the multiphysics en-

semble is more efficient at introducing boundary layer

temperature dispersion resulting in better probabilistic

skill. Work is planned to improve the performance of the

backscatter scheme in the boundary layer.

FIG. 15. As in Fig. 12, but for wind speed at 70 kPa instead of T2m. Verification is against soundings.
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Charron et al. (2010) stress that from a practical per-

spective the maintenance of several state-of-the-art subgrid

parameterizations is challenging. However, when using a

single set of subgrid parameterizations, their ensemble

prediction system, even when including two different

stochastic parameterization schemes, was not as skillful

as their multiphysics ensemble. Our results are promis-

ing, in that the inclusion of a stochastic kinetic-energy

TABLE 3. Pair-wise comparison of the percentage of outcomes, where model A (columns) performs better or worse than model B (rows)

as measured by the Brier score when verified against observations. The outcomes comprise the forecast lead times 12 and 60 h, 4 veri-

fication events (see text), and 7 vertical levels for the variables zonal wind u, meridional wind y, and temperature T, totaling 168 outcomes.

The bold numbers in parentheses denote statistically significant outcomes at the 95% confidence level. The mean monthly bias was

removed from each ensemble member prior to the verification.

PHYS better PHYS worse STOCH better STOCH worse PHYS_STOCH better PHYS_STOCH worse

CNTL 82 (39) 18 (2) 93 (57) 7 (1) 87 (54) 13 (3)

PHYS 63 (14) 37 (5) 79 (31) 21 (3)

STOCH 58 (14) 42 (8)

FIG. 16. Pair-wise comparison of the outcomes where model A (ordinates) performs better or worse than model B (abscissas) as

measured by the Brier score when verified against observations. Model A is (a) PHYS; (b),(d) STOCH; or (c),(e),(f) PHYS_STOCH and

model B is (a)–(c) CNTL; (d),(e) PHYS; or (f) STOCH. Values below the line BSA 5 BSB denote an improvement of model A over B. The

outcomes comprise the forecast lead times 12 and 60 h, 4 verification events (see text) and 7 vertical levels for the variables zonal wind u

(crosses), meridional y (stars), and temperature T (circles) totaling 168 outcomes. Statistically significant improvements of model A over

model B at the 95% confidence level are displayed in red, and statistically significant deterioration is in dark blue.
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backscatter scheme could yield similar, if not better prob-

abilistic skill than the multiphysics ensemble, making sto-

chastic parameterizations a real alternative to ‘‘ensembles

of opportunity.’’

An additional outcome of the present work is that—

consistent with the findings of Palmer et al. (2009), Charron

et al. (2010), and Hacker et al. (2011)—combining multiple

stochastic parameterizations or stochastic parameteri-

zation with multiple physics suites resulted in the most

skillful ensemble prediction system. There is no doubt

that different model-error strategies represent fundamen-

tally different forms of model error. Thus, a combination of

multiple model-error representations seems best suited

to capture the complex nature of model error and yield

the most reliable ensemble system.

Acknowledgments. This work was partially supported

by the Air Force Weather Agency. Thanks go to Matt

Pocernich, who developed the verification package that

was used to produce Figs. 12–16. We are indebted to

David Gill, Julie Schramm, and Jimy Dudhia for their

insight into the physical and technical aspects of WRF

and the AFWA mesoscale ensemble. Thanks to Steven

Rugg for his enthusiasm for stochastic parameteriza-

tions and to Steve Mullen for insightful comments on an

earlier version of this manuscript.

REFERENCES

Berner, J., 2005: Linking nonlinearity and non-Gaussianity of plan-

etary wave behavior by the Fokker–Planck equation. J. Atmos.

Sci., 62, 2098–2117.

——, F. J. Doblas-Reyes, T. N. Palmer, G. Shutts, and A. Weisheimer,

2008: Impact of a quasi-stochastic cellular automaton back-

scatter scheme on the systematic error and seasonal predicition

skill of a global climate model. Philos. Trans. Roy. Soc. London,

366A, 2561–2579.

——, M. L. G. Shutts, and T. Palmer, 2009: A spectral stochastic

kinetic energy backscatter scheme and its impact on flow-

dependent predictability in the ECMWF ensemble prediction

system. J. Atmos. Sci., 66, 603–626.

Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and

S. E. Beare, 2008: The MOGREPS short-range ensemble pre-

diction system. Quart. J. Roy. Meteor. Soc., 134, 703–722.

——, ——, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The

local ETKF and SKEB: Upgrades to the MOGREPS short-

range ensemble prediction system. Quart. J. Roy. Meteor. Soc.,

135, 767–776.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic repre-

sentation of model uncertainties in the ECMWF Ensemble

Prediction System. Quart. J. Roy. Meteor. Soc., 125, 2887–2908.

——, P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu,

2005: A comparison of the ECMWF, MSC, and NCEP Global

Ensemble Prediction Systems. Mon. Wea. Rev., 133, 1076–

1097.

Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon,

H. L. Mitchell, and L. Michelin, 2010: Toward random sam-

pling of model error in the Canadian Ensemble Prediction

System. Mon. Wea. Rev., 138, 1877–1901.

Doblas-Reyes, F., and Coauthors, 2009: Addressing model un-

certainty in seasonal and annual dynamical seasonal forecasts.

Quart. J. Roy. Meteor. Soc., 135, 1538–1559.

Eckel, F. A., and C. F. Mass, 2005: Aspects of effective mesoscale,

short-range, ensemble forecasting. Wea. Forecasting, 20, 328–350.

Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21,

739–759.

Frederiksen, J. S., and A. G. Davies, 1997: Eddy viscosity and

stochastic backscatter parameterizations on the sphere for

atmospheric circulation models. J. Atmos. Sci., 54, 2475–2492.

——, and ——, 2004: The regularized DIA closure for two-

dimensional turbulence. Geophys. Astrophys. Fluid Dyn., 98,

203–223.

——, and S. M. Kepert, 2006: Dynamical subgrid-scale parame-

terizations from direct numerical simulations. J. Atmos. Sci.,

63, 3006–3019.

Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather

Agency’s mesoscale ensemble: Scientific description and per-

formance results. Tellus, in press, doi:10.1111/j.1600-0870.2010.

00497.x.

Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The

rationale behind the success of multi-model ensembles in sea-

sonal forecasting—I. Basic concept. Tellus, 57A, 219–233.

Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and

H. L. Mitchell, 1996: A system simulation approach to en-

semble prediction. Mon. Wea. Rev., 124, 1225–1242.

Jolliffe, I., and D. Stephenson, 2003: Forecast Verification: A Prac-

titioners Guide in Atmospheric Science. Wiley and Sons, 240 pp.

Kalnay, E., M. Kanamitsu, and W. Baker, 1990: Global numerical

weather prediction at the National Meteorological Center. Bull.

Amer. Meteor. Soc., 71, 1410–1428.

Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow,

D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000:

Multimodel ensemble forecasts for weather and seasonal cli-

mate. J. Climate, 13, 4196–4216.

Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional

ensemble prediction system based on moist targeted singular

vectors and stochastic parameter perturbations. Mon. Wea.

Rev., 136, 443–462.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci.,

20, 130–141.

——, 1969: The predictability of a flow which possesses many scales

of motion. Tellus, 21, 289–307.

Mason, P., and D. Thomson, 1992: Stochastic backscatter in large-

eddy simulations of boundary layers. J. Fluid Mech., 242, 51–78.

Molteni, F., and T. N. Palmer, 1993: Predictability and finite-time

instability of the northern winter circulation. Quart. J. Roy.

Meteor. Soc., 119, 269–298.

TABLE 4. As in Table 3, but for the verification against analyses.

The outcomes comprise the forecast lead times 12 and 60 h, 4

verification events, and 32 vertical levels for the variables zonal

wind u, meridional wind y, and temperature T totaling 768 out-

comes. The bold numbers in parentheses denote statistically sig-

nificant outcomes at the 95% confidence level.

PHYS better PHYS worse STOCH better

STOCH

worse

CNTL 65 (37) 35 (7) 86 (71) 14 (5)

PHYS 76 (59) 24 (5)

1994 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



Murphy, J., D. Sexton, D. Barnett, G. Jones, M. Webb, M. Collins,

and D. Stainforth, 2004: Quantification of modelling uncer-

tainties in a large ensemble of climate change simulations.

Nature, 430, 768–772.

Palmer, T. N., 2001: A nonlinear dynamical perspective on model

error: A proposal for non-local stochastic-dynamic parame-

terization in weather and climate prediction. Quart. J. Roy.

Meteor. Soc., 127, 279–304.

——, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J.

Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic

parametrization and model uncertainty. ECMWF Tech.

Memo. 598, 44 pp. [Available online at http://www.ecmwf.int/

publications/library/ecpublications/_pdf/tm/501-600/tm598.

pdf.]

Penland, C., 2003: Noise out of chaos and why it won’t go away.

Bull. Amer. Meteor. Soc., 84, 921–925.

Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization

for deep convection based on equilibrium statistics. J. Atmos.

Sci., 65, 87–105.

Santanello, J. A., Jr., C. D. Peters-Lidard, S. V. Kumar, C. Alonge,

and W.-K. Tao, 2009: A modeling and observational framework

for diagnosing local land–atmosphere coupling on diurnal time

scales. J. Hydrometeor., 10, 577–599.

Sardeshmukh, P., C. Penland, and M. Newman, 2001: Rossby waves

in a fluctuating medium. Progress in Probability: Stochastic

Climate Models, P. Imkeller and J.-S. von Storch, Eds., Vol. 49,
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