1872

MONTHLY WEATHER REVIEW.

VOLUME 117

Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model

P. BOUGEAULT AND P. LACARRERE
Centre National de Recherche Météorologique, Toulouse, France
(Manuscript received 21 April 1988, in final form 20 March 1989)

ABSTRACT

The possibility of extending existing techniques for turbulence parameterization in the planetary boundary
layer to altitude, orography-induced turbulence events is examined. Starting from a well-tested scheme, we show
that it is possible to generalize the specification method of the length scales, with no deterioration of the scheme
performance in the boundary layer. The new scheme is implemented in a two-dimensional version of a limited-
area, numerical model used for the simulation of mesobeta-scale atmospheric flows. Three well-known cases
of orographically induced turbulence are studied. The comparison with observations and former studies shows

a satisfactory behavior of the new scheme.

1. Introduction

The understanding and numerical simulation of
weather events induced by orography are major chal-
lenges for mesobeta-scale meteorology (Orlanski
1975), as well as for the parameterization of kinetic
energy dissipation in general circulation models. The
numerical modeling of these flows offers great insight
but present a number of specific difficulties, which have
been pointed out by previous authors, for instance,
Klemp and Lilly (1978) or Pielke (1984). Among
these, the parameterization of the turbulent exchanges
of heat and momentum becomes a more difficult
problem in mountainous areas, since the dynamics of
gravity waves generated by the terrain can increase the
wind shear or decrease the static stability, thereby
helping to generate turbulence, which in turn feeds back
on the structure of the waves. Klemp and Lilly (1978)
have pointed out the necessity of a good parameter-
ization of the intense turbulence generated by wave
breaking events to achieve correct numerical simula-
tions of these processes. This has been confirmed in
later work by Peltier and Clark (1979 ) and Durran and
Klemp (1983). ‘

The present paper is an attempt to take advantag
of the recent development of parameterization schemes
to forecast the turbulence kinetic energy (TKE), which
originate from planetary boundary layer (PBL) studies,
and are economical enough to be included into full
three-dimensional mesoscale models. The primary
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motivation t0 undertake this study is to forecast the
position and intensity of clear-air turbulence, which
may have a number of important practical applications.
It is also hoped that the feedback of the parameteriza-
tion scheme on the model dynamics will improve the
general quality of the simulation. This is, however, a
more difficult task because some of the schemes pre-
viously used to parameterize turbulence are already
able to describe much of the involved physics as soon
as they include a significant dependence on the static
stability.

In the authors’ knowledge, only Beljaars et al.
(1987), Richard et al. (1988, personal communication)
and Buty (1988) have tried a similar approach based
on a prognostic equation for the TKE. The study by
Beljaars et al. is, however, restricted to the planetary
boundary layer over a hill, whereas the present study,
as well as the two other references, address disturbances
that extend to the entire troposphere. Previous works
on the modeling of orographic flows have used either
empirical procedures or first-order closure schemes to
specify the vertical and horizontal turbulence exchange
coefficients. For instance, Kiemp and Lilly (1978 ) used
a turbulence adjustment procedure based on the idea
that whenever the local Richardson number Ri drops
below the critical value of 0.25, the mean fields of wind
and potential temperature must be adjusted to rees-
tablish dynamic stability, while conserving momentum,
energy, mass, and hydrostatic balance. On the other
hand, Peltier and Clark (1979) used the first-order clo-
sure scheme suggested by Lilly (1962), that reads:

Km = (KDX)? def(1 — Ri)'/2,

where K, is the mixing coefficient for momentum, def
the magnitude of the deformation tensor, Ri the Rich-
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ardson number, DX the grid resolution and K = 0.21.
For the eddy Prandtl number, they assumed Pr= X,/
K, = 1, where K}, is the eddy diffusion coefficient for
heat. Whenever Ri > 1, they assumed K,, = K, = 0.
Durran and Klemp (1983 ) used a similar formulation,
except for the eddy Prandtl number K,,,/ K;, = 5. Thus,
in their model, the mixing was not allowed if Ri > 14,
Finally, Hoinka (1985) used a stability independent
formulation

a3
= 3=
Ky = aDX ‘ x|’

with « = 0.42 and ¢ = (dw/dX) — (du/dZ).

In the current practice of NWP models, stability-
dependent schemes are widely used to specify the mix-
ing coefficients. For instance, the French operational
models use a version of the scheme by Louis et al.
(1981) whereby the mixing coefficients take large val-
ues when the Richardson number is small or negative.

In contrast with these formulations, we have tried
to embody the stability dependence in the TKE prog-
nostic equation, and use the most simple formulation
K,n = K, = Cidx(e)'/?, where e is the TKE, Cyx a nu-
merical constant, and /x a characteristic length scale
defined in section 3b.

The paper proceeds as follows: the host model is
briefly presented in section 2. The turbulence scheme
is described in section 3, together with results of vali-
dation tests in the convective planetary boundary layer,
and a comparison with former work on the turbulence
generated by gravity waves. The model is then applied
to three well-documented and well-known cases of
flows over a mountain range, and the results are com-
pared with observations.

2. The host model

The dynamical model used in this study is a two-
dimenstonal version in X and Z of the French Weather
Service Limited Area Model Péridot (Imbard et al.
1986; Bougeault 1986). Only 2D simulations are
shown in this paper, but the generalization to the 3D
frame is straightforward.

The model uses a terrain-following coordinate o
= p/ps, where p; is the pressure at surface level. Prog-
nostic equations are solved for Z = In(py), the tem-
perature T, and the horizontal wind velocity U. De-
fining ¢ = do/dt, w = dp/dt, Zy, Ty, Up, the lateral
boundary values for Z, T, U, and ¢ the geopotential,
the governing equations read:

0z 1(9 3, . ,
o o {6_/\7 (p,U) + 30 (psa)} — Kp(Z — Zy),
(i)

(1)
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tarl, |, KU U )
(ii) (iii) — (i)

Here R, is the universal gas constant, and Cp the specific
heat at constant pressure for air.

In (1)-(3) we have included, beside the classical
adiabatic terms, (i) boundary relaxation terms (KXp
being a constant which varies slowly from O inside the
model domain to a large value at the boundary, see
Appendix), (ii) vertical diffusion terms, and (iii) hor-
izontal diffusion terms. The formulation of these terms
will be discussed below. The numerical discretization
uses standard second-order accurate formulations (see
Appendix).

When using the model on steep slopes, care must
be taken that the horizontal diffusion terms do not
induce spurious circulations. For the sake of simplicity,
it is a common practice in large-scale atmospheric

‘models to use constant diffusion coefficients, and to

compute the gradients along coordinate surfaces. As
shown by several authors (e.g., Alpert and Neumann
1984), this procedure is producing undesirable artifacts
in mesobeta-scale models. Thus, we use the chain rule
to evaluate the X derivatives along true p surfaces and
write the horizontal diffusion operator as

3

—Ja,

do

P

da _(6 do 6)K(6 do
== VKl —
L \ax | 30) "\ ax
(4)

ot X oX
for « = U and T. The horizontal diffusion coefficient
K} is related to the grid size AX of the model by Kj;
= U,AX, U, being a velocity scale set to 4 m s~ in
the present experiments. The above formulation has
been tested extensively by comparison with solutions
without diffusion and is performing satisfactorily. In
particular, we checked that if the model atmosphere is
initially at rest, no circulation is generated by the dif-
fusion terms.

The vertical diffusion terms are given the standard
expressions

or
at,

o o

pw'd’,

U
ar |,

__._16 wi'
ooz P

(3)

6 being the potential temperature and p the air density.
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For all levels but the surface, the vertical turbulent
fluxes w'a’ are computed by the turbulence scheme
(see section 3), using vertical diffusion coefficients,
which depend on the TKE. At the surface level, the
vertical turbulent fluxes are computed through bulk
transfer formulae:

wal = —C,l VN"(aN — ag),

(6)

where Vy, ay stand for the model-predicted values at
the lowest level and «a; is the suiface value (assumed
constant in time for the present study). The transfer
coefficients C, follow Louis et al. (1981), reading

Ca = {k/In(Zn/Zo)}* fARY), (7)

where k is the von Karman constant (k = 0.4), Zy is
the height of the lowest model level above the surface,
and f,(Ri) are stability-dependent functions. In the ex-
periments shown in sections 4, 5 and 6, the roughness
height Z, is given the value 0.1 m and Zy is taking
values ranging from 125 to 250 m.

Finally, it is necessary to prevent the reflection of
upward propagating internal gravity waves at the top
of the model. This is achieved by the use of an ab-
sorbing layer, following Klemp and Lilly (1978). The
" model dynamics has been tested extensively (Bougeault
1987, 1988) following the suggestions of previous au-
thors, on linear and nonlinear cases. As an example,
Fig. 1 shows the linear response of the model when an
isothermal (7 = 273 K) atmosphere with uniform
mean wind (U = 20 m s™') passes over a bell-shaped
mountain with a 50 m height and a 25 km half-width.
The results have been amplified by a factor of 10 for
the purpose of visualization, and the linear analytic
solution is shown for comparison. The version of the
model used for this test has 160 grid points on the
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horizontal, with AX = 5 km, and 40 grid points on
the vertical, with AZ = 500 m. The absorbing layer is
defined between 15 and 20 km height. The solution
shown in Fig. 1 is a 24 hour simulation, which corre-
sponds to the nondimensional tU/d = 34 with Klemp
and Lilly’s (1978) notations. The vertical momentum
flux at the same time is compared with the theoretical
value in Fig. 1b.

Other tests have included simulations of the Boulder
windstorm of 11 January 1972, made with a version
of the model designed to be as similar as possible with
previously published studies: The subgrid-scale mixing
was parameterized through the stability dependant
scheme of Louis et al. (1981), and a free-slip condition
was applied at the lower boundary. These tests com-
pared well with published results (Klemp and Lilly
1978; Peltier and Clark 1979; Durran and Klemp 1983;
Hoinka 1985; Richard et al. 1985). Finally, an inves-
tigation of the model results sensitivity with several
modifications of the upstream profiles on this same
case gave results in complete agreement with those of
Durran (1986) and Durran and Klemp (1987).

3. The turbulence scheme
a. TKE prognostic equation .

The scheme used in the present study has evolved
from the work of Therry and Lacarrére (1983, TL83
hereafter). This so-called “one-and-a-half order” clo-
sure scheme is based on a prognostic equation for the
turbulence kinetic energy e [e = {(u? + v + w?)]:

Z(KM)

FiG. 1. A comparison of the model steady-state result with the analytical solution for the flow past a bell-shaped mountain. (a} Cross
section of potential temperature; solid line—model result; dashed line—analytical solution. The distance between two ticks on the horizontal
axis is 5 km. (b) The profile of the momentum flux (Pa) computed by the model, as compared to the theoretical value.
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where 3 is the buoyancy coefficient (8 = g/T'), and ¢
the dissipation of TKE by molecular processes.
The second-order moments appearing in Eq. (8) are
- parameterized according to an eddy coeflicient ap-
proximation:

aU
= —K
wu mag
— 14
= —K
v "oz’
de
le' = — K
we <9z’
a0 . .
- K az Y |, 1n the convective PBL
W= 36
-K,— here.
h37 elsewhere

(9)

The vertical diffusion coeflicients are related to the
TKE through:

K, = CKlKe”?': Ky = arK,,, K.= a.K,,

where Ck is a numerical coefficient, and /x a charac-
teristic length for the eddies. The inverse turbulent
Prandtl numbers ar and o, are given the values ar
= a, = 1 (note that this value was 1.3 in TL83).

The constant v, in (9¢) is the so-called “counter-
gradient” correction (Deardorff 1972), which applies
only in the convective PBL, and allows for slightly sta-
ble stratification persisting with upward heat flux. We
have retained this aspect of the original scheme, al-
though it probably has little significance for the present
study. :

Finally, the TKE dissipation is estimated by the
classical relation

e=Ce*?/l, (10)

where C, is an O(1) numerical coefficient, and /. a
characteristic length of the energy-containing eddies.

b. Specification of the length scales Cxlx and [./C,

In the original version of the scheme (Therry and
Lacarrére 1983) the characteristic length scales have
been adjusted to fit a large number of experimental
data on turbulence in the convective PBL. As a con-
sequence, they were parameterized by rather involved
expressions, which unfortunately have no counterparts
outside the PBL. When trying to use this scheme for
orography-induced turbulence, we need to find a spec-
ification that is as simple as possible and more general,
and that would supply similar values as the former
version in the PBL. This may be achieved by gener-
alizing the basic scaling factors of TL83 formulations,
which are the distance to the surface and the distance
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to the inversion at the top of the PBL. Such a scheme
has been proposed by Bougeault and André (1986) in
the context of a third-order turbulence model, and may
be adapted here.

We postulate that for each level in the atmosphere
[, and /¢ can be related to the distance that a parcel
originating from this level, and having an initial kinetic
energy equal to the mean TKE of the layer, can travel
upward and downward before being stopped by buoy-
ancy effects. More precisely, if we define /,, and /yown
by

Z+lyp
fz B(Z)—6&Z"))dZ' = e(Z), (lla)

VA
[ sz -s@naz = @), )

Ixand [, must be related to some average value between
lyp and lyoun. The main advantage of the method is to
allow for remote effects of stable zones on the definition
of the turbulence length scales. For instance, using Eq.
(11), the vertical depth of an unstable layer capped by
a strong inversion is automatically selected as the length
scale for turbulence. Moreover, close to the surface,
the lower bound for the integral in (11b) is clearly O,
and the height above the surface Z is introduced simply
as the relevant length scale. Finally, in a layer of con-
stant stratification d6/3Z, Eq. (11) provides an expres-
sion which is readily proportional to the buoyancy
length scale
_ ﬁ -1/2
) B e ( B oz .

Careful consideration must be given to the way of
averaging /,, and ljown, since in all regions where /,,
> l4own OT inversely, the order of magnitude of the av-
erage will depend on the type of averaging operator.
We feel that for the mixing length scale Ik, it is con-
venient to choose an averaging operator that has a bias
towards the smaller of /,, and /yown, Since it is well
established that the diffusion coefficient near a wall
varies with the distance to the wall, and we assume
that the region of increased static stability that limits
on the vertical the extension of turbulence acts like a
kind of wall. We therefore choose /x = min(/yp, laown)
(a quite special average).

On the other hand, such a behavior is not established
for the dissipative length /.. On the contrary, it is ob-
served that in convective boundary layers, the depth
of the layer influences the size of the energy-containing
eddies down to a very low height above the surface.
Thus, we choose the formulation /, = (Lp/sown) '/?. Note
that these two averaging methods are different from
the one used by Bougeault and André (1986). Finally,
the inspection of a variety of experimentally deter-
mined values of dissipation rate (for instance, Fig. 5
of TL83) allows for the determination of 1 /C, as 1.4.
Similarly, the value of Ck is set to 0.4.
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¢. Test of the new scheme on a convective PBL moderate cold advection (3 July). It provided an ample
dataset to validate 1D numerical models of the PBL.

Since the definition of CxLg and //C, and the values For a more complete discussion of this situation and
of the turbulent Prandtl number ar and «. are of the numerical simulations, the reader is referred to
changed from the original scheme, it is necessary to André and Lacarrére (1980). A comparison between
repeat at least some of the qualification tests of the the modeled and observed evolution of the potential
model. This is done in repeating the Voves 2 and 3 temperature profile during the 30-h simulated period
July 1977 1D-simulation shown in TL83. This field is shown in Fig. 2. The model clearly does a good job
experiment allowed for observations of the classical in reproducing this evolution. These results are very
diurnal and nocturnal evolution of the PBL during an  close to those produced by the former version of the
undisturbed, anticyclonic period with a weak mean scheme. It is of interest that the model is able to re-
wind divergence (2 July), followed by a period of produce correctly the evolution of the temperature

Z(Km) " ' ' . Z(Km) B ' - ﬁ
04 HTU
2L ] 2 —._ OTHTU 1
.......... 10 HTU
13 HTU
15| 1 18] ]
i/ i
1 /i 1 1| 03/07/77 | ]
[ i
/i i
0s| | os i ]
: £
H I

© 15 20 25 30 60 10 15 20 25 30 B0

ZUKm) | | B Z(Km) T 04.27 HTU
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______________ 18.05 HTU
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1 1 1 03/07/77 |
05| { 05 |
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FIG. 2. A reassessment of TL83 PBL model based on Eq. (8), with the new specification of the length scales. Simulated (upper panel)
and observed (lower panel) potential temperature profiles on 2 and 3 July, 1977 on Voves (France). (HTU means Universal Time

Hour).
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F1G. 3a. The vertical profiles of the turbulent heat flux stimulated by the TL83 model

with the old (Panel a) and new (Panel

profile both on 2 July, when conditions of convective
heating prevailed, and on 3 July, where the temperature
hardly changed because of cooling by advection. The
turbulence fluxes of heat predicted for 2 July with the
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1 b) specification of the length scales.

old and new versions of the scheme are shown in Fig.
3a. They exhibit the familiar, linear decrease with Z,
and negative values in the entrainment zone at the top
of the mixed layer. We note the similarity of these two
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FIG. 3b. The vertical profile of normalized turbulence kinetic energy simulated by the TL83 model with the old (Panel a) and new
(Panel b) specification of the length scales. The three profiles correspond to 2 July 1977 at 1200 UTC (dashed line), 1400 UTC (thick

solid line) and 1600 UTC (thin solid line).
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results. Next, the turbulence kinetic energy simulated
at three different times, again with the old and
new schemes, is shown in Fig. 3b. The result is nor-
malized by the usual convective velocity scale w,
= (Bw'65 H)'"?, H being the height of the mixed layer.
This is a severe way to test the performance of a model.
We note that the normalized result is independant of
time, as expected from the theory. Again, it can be
seen that the changes made in the definition of the
mixing and dissipation length scales have not modified
the energetics of the PBL. Finally, the old and new
formulations of the dissipative length scale [/C, are
favorably compared to a variety of observations in Fig.
4. As a conclusion of this section, we can state that a
more general formulation of the length scales has been
defined, which does not deteriorate the results of the
scheme for cases already simulated, and which allows
for treating cases outside the PBL. '

d. Comparison with other theoretical formulations

It is of interest to see how our scheme compares with
the formulation used in previous studies of turbulence
generated by gravity waves. A summary of relevant
work is given by Weinstock (1987, W87 hereafter).
Both W87 and Fua et al. (1982) have used “one-and-
a-half” order schemes, very comparable to our for-
mulation. Therefore, only the closure hypothesis need
to be compared. We will limit ourselves to the for-
mulation of W87 hereafter.

Z/H
1

08
06
04

0.2

0 05 |¢/ceH

FIG. 4. An assessment of the specification of the dissipative length
scale 1,/ C,. Dashed line—new formulation; solid line—old formu-
lation. Experimental determinations: Lenschow et al. (1980) (@ H
= 1010 m; O H = 1200 m; ¥ H = 1430 m; O H = 1200 m; Willis
and Deardorff (1974): A Deardorff (1974) (- - -).
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In conditions of unstable density stratification, W87
uses ¢ = 0.24kye’?, and K., = (2/3e)/?(3k)!
~ 0.27¢'%ky . Here, k, is the wave number of en-
ergy-containing eddies, and W87 postulates that ky can
be related simply to the depth L, of the unstable region
by ko = 27/ Ly. In our formulation, assuming an un-
stable region of depth Lo, limited on the vertical by
two stable areas, (11) will supply lyp = lgown = Lo/2
for the central point of the unstable zone. Thus, we
will compute Ix = I. = 27/ 2k,, therefore ¢ = e3/2/(1.4
X 27 /2ko) =~ 0.23kpe*? and K,,, = 0.4(27/2ky)e!/?
~ 1.25e'?/ky. For given values of e and k;, our
scheme will therefore supply the same estimate of ¢ as
W87, and a value five times larger for K,,,. We probably
should not worry too much about the discrepancy on
K., since as noted by the author himself, his compu-
tation involves a large degree of uncertainty, and the
results are merely qualitative. We note, however, that
a value of K,,, five times smaller in the PBL test reported
in section 3¢ would not supply a correct evolution of
the PBL structure. It may be hoped, however, that the
similarity between our formulation and W87 will allow
for qualitatively similar behavior of the two models.

Turning now to conditions of stable density strati-.
fication, the comparison with W87 is made more dif-
ficult because of the collapse condition he advocates.
This may be summarized in the following way: for
given Brunt-Viisild frequency N and ko values, the
turbulence kinetic energy should be set to zero when-
ever N/(2/3e)!/? > ky, to simulate the effect of rapid
energy dispersion by gravity waves. Such a condition
cannot be implemented in our model, since these
quantities are strongly related in regions of stable strat-
ification. In fact, solving ( 11) for conditions of vertically
uniforrn N and e supplies the condition: /,, = l4own
= (2e)'/?/N. Therefore, we will compute Ly/2 = 27/
2ko = (2€)"/?/ N, which gives: N/(2/3¢e)'/? ~ 0.55ko,
and the collapse condition will never be satisfied. The
qualitative behavior of the two models may not be very
different, however, because W87 uses a constant de-
termination of &, in time, which is equivalent to stating
that the turbulence length scale is determined by a
memory of the most unstable conditions encountered
during the gravity wave period. On the contrary, in our
scheme, /,, and /jows are updated at every time step

. during the model integration, resulting in a strong

damping of turbulence as soon as stable conditions are
encountered. This may represent the very mechanism
which is simulated by W87 collapse condition. Finally,
it is of interest to compare our estimate for the ratio
K,/ e under stable conditions to theoretical predictions.
Lilly et al. (1974) have proposed K,/e = (3N?)7!,
and Weinstock (1978) has demonstrated a more ac-
curate formulation K,,/¢ = 0.8/N?. Using again /,,
= liown = (2€)/2/ N, we find K,, = 0.4V2¢/N and e
= eN/(1.42). Thus K,,/¢ = 1.4 X 0.8/N?. The pre-
dictions therefore agree within a 1.4 factor, which can
be thought reasonable, given the limits of the theoretical
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computation. We conclude that our simple formulation
is in reasonable agreement with former theoretical
work.

e. Inclusion of the turbulence scheme into the meso-
beta-scale model

When including the turbulence scheme in the model
to represent horizontally nonhomogeneous cases, it is
necessary to include in Eq. (8) two types of additional
terms: advection and production by horizontal shear.
Based on the following considerations, we assume that
the production by horizontal shear can be neglected as
a first approximation. The expanded form of the shear
production term of TKE, for a two-dimensional model,
reads:

- g U _ gy U
Pa oZ oz ax
[1] [2] [3]
—— W —5 W
u'w 3 w 3z (12)

[4] (3]

Assuming a nearly isotropic turbulence, u'> ~ w'?,
terms 3 and 5 cancel each other because dU/dX + W/
08Z = 0. An extreme value of 9 /93X can be estimated,
by inspection of observational and numerical results
on the Boulder windstorm (see section 5), to 1073 s™!
(a gradient of 20 m s ™! per 20 km). On the other hand,
a reasonable value of d0U/0dZ in the region of intense
turbulence would be 1072 s™! (a gradient of 10 ms™!/
km ). Therefore, there is at least an order of magnitude
difference between the vertical and horizontal shear
production terms. Of course, these estimations are lo-
cally wrong in those areas when dU/dZ takes small
values, but this may not be important since the TKE
is usually small at these places. Numerical tests in-
cluding all the terms of Eq. (12) are required to verify
our assumption. Also, it should be noted that this anal-
ysis is highly scale-dependent. For models of meso-
gamma scale, which resolve a larger part of the spec-
trum of vertical motions, it would be incorrect to as-
sume that the production by horizontal shear can be
neglected. The advection of TKE, on the other hand,
is by no means negligible, and is included in Eq. (8).
The full form of the TKE equation implemented in
the mesoscale model reads therefore:

de_ 00 . de 10
EY ox  “ac poz ™€
//aU —l-'laV W71
—uwaZ vwaZ+6w0 e. (13)

Note that there is no advection along V since the model
is 2D; however, V is not zero, and the production of
energy by the shear of the V' component is taken into
account.
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4. Simulation of the bora observed on 6 March 1982

The bora is a severe northeasterly downslope wind
off the mountains along the Adriatic coast of Yugos-
lavia. Several events have been documented by aircraft
during the ALPEX experiment field phase (Spring
1982). Analyses of these data, including TKE vertical
cross sections, have recently been published by Smith
(1987) and Pettré (1988). We have selected the case
of 6 March 1982 as particularly appropriate to test our
model. An upstream sounding for this case, (courtesy
of P. Pettré) is shown in Fig. 5. Northeasterly flow in
the lower layers rotates southeasterly above the inver-
sion near 3 km altitude. To simulate this case in the
2D model, we assume that the mountain range can be
considered roughly two-dimensional, oriented north-
west to southeast, i.e., perpendicular to the low-level
wind. The horizontal and vertical grid size are chosen
as AX = 5 km and AZ = 250 m. One may question if
this horizontal resolution is adequate to resolve the
steep lee-slope. The present work, however, is primarily
directed to the qualification of a mesobeta scale, hy-
drostatic model. It would not be reasonable to increase
further the resolution of the model without additional
damping of the shortest waves. An alternative solution
would be to smooth the mountain profile. In view of
the results presented below, smoothing does not seem
necessary in this case. The model has 43 grid points
on the horizontal and 30 on the vertical. The absorbing
layer is defined between 5 and 7.5 km altitude. The

100.
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2s50.

300.

400.

SQ0.

FIG. 5. Sounding at Zagreb, Yugoslavia, 1200 UTC 6 March 1982
used as initial condition in the model.
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topography is obtained from the downward looking
radar of the aircraft. The model is initialized with uni-
form data corresponding to the sounding in Fig. 5, and
the same data are used as boundary relaxation values
during the simulation. The model reaches a stationary
state after roughly 4 h of simulated time. The results
. after 6 h are shown on Fig. 6. For comparison, the
vertical cross sections of U, W, and # produced by
Pettré (1988) are shown in Fig. 7, together with the
cross section of vertical velocity variance by Smith
(1987) on Fig. 8. The simulation is in agreement with
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these observations below the linear critical level (U
= () occurring at Z = 4 km. The wind gradually ac-
celerates when approaching the crest and reaches a
maximum value larger than 25 m s™! on the down-
stream slope, but it recovers quickly through a hy-
draulic jump. The vertical velocities reach —1.5 m s ™!
on the downslope side. A return flow is observed right
over the crest at Z = 3 km. Note that these results are
in qualitative agreement with those of previous nu-
merical simulations. Hoinka (1985) has simulated the
bora of 7 March 1982 and Klemp and Durran (1987)
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FIG. 6. Results of the simulation of 6 March 1982, after the steady state is reached. (a) Potential temperature. (b) Horizontal wipd. (c)
Vertical velocity. (d) Turbulence kinetic energy [the isoline interval is 2 (m s~')?], starting at 2 (m s~')*. Note that the mean flow is fro
the right to the left of the picture. Ticks are every 5 km on the horizontal axis. :
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have simulated the bora of 15 April 1982. There is a
close similarity between the upstream soundings of all
three cases, which show low-level northeasterly winds
surmounted by an inversion of temperature, containing

E 306 | Senj
Turbulence
o, (m¥/st)

a hnear critical level induced by the wind rotation. We
may therefore consider these three cases as slight vari-
ations of the same mechanism. The turbulence devel-

ops in the region of low static stability corresponding
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F1G. 8. From Smith ( 1987); turbulence cross section for 6 March 1982. Vertical velocity variance over 10 sec. (1300
m) of the flight track is shown with no trend removal. Leeside turbulent region has a width of 40 km and a depth of

2 to 3 km (Smith’s comment).
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to the ascending branch between Z = | km and Z
= 3 km, with intensity reaching more than 10 (m s !)2.
This is in remarkable agreement with Smith (1987)
observations if we assume that the vertical velocity
variance is a good estimate of the total TKE. There is
also an appreciable amount of turbulence near the sur-
face, but no data are available to estimate if its intensity
is realistic. ‘
Above the linear critical level, the model results are
at variance with the observations. The wave energy is
not propagating beyond Z = 4 km, as might be ex-
pected from the theory. In the observations, strong up-
drafts and downdrafts are seen to occur near Z = 4.5
km. We suspect that the three-dimensional character
of the real topography may explain this discrepancy as
well as the fact that the zero wind line dips much lower
in the observations than in the simulation. In fact, when
looking at a topography map of the area, it is clear that
the gravity wave field cannot be 2D; as noted by a
- reviewer, this may also be inferred from the fact that
the V-component cross section shown in Fig. 7b ex-
hibits significant structures. Thus, a significant amount
of wave components are able to propagate upward,
and may explain the observations. When running the
simulation with a uniform upstream wind of 20 m s~}
above the inversion, we were able to obtain a quali-
tatively correct description of the vertical velocity at Z
= 4.5 km (not shown).

5. Simulation of a stationary mountain wave observed
on 17 February 1970

The second test case is provided by observations of
Lilly and Kennedy (1973, LK73 hereafter) over the
Rocky Mountains. This well-known case has been
simulated by Klemp and Lilly (1978) and Hoinka
(1985). An upstream sounding for this case can be
found in the former paper. Strong winds are blowing
from the west throughout the troposphere, and the tro-
popause is very high (80 hPa). To simulate this case,
we retain AX = 5 km, but use 50 levels with AZ = 600
m. The absorbing layer is defined between 25 and 30
km. The topography is approximated by a bell-shaped
mountain with height 2000 m, and half-width a = 10
km, following previous modeling studies. The results
of the model after 6 h of simulated time are shown on
Fig. 9, which may be compared to experimental ref-
erence of LK73. As expected, the wave reaches its
maximum amplitude just below the tropopause level,
where a blocking zone develops. The § and U cross
sections are in close agreement with observation
throughout the troposphere. The mean vertical mo-
mentum flux resolved by the model has been computed
as

1 .
MZ) = ZLp(Z)U(X, Z)-W(X, Z)dX

and is shown in Fig. 10a. The normalization length
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has been set at 200 km as in Lilly and Kennedy’s paper.
For comparison with previous studies, Fig. 13 of LK73,
Fig. 19 of Klemp and Lilly (1978) and Fig. 9 of Hoinka
(1985) have been reproduced here as Figs. 10b—d. The
currently admitted mean value for the flux throughout
the troposphere, in this case, is —0.6 Pa. Both previous
model studies show that the flux is essentially constant
throughout the troposphere, and rapidly decreasing in
the turbulence layer (between 16 and 17 km in Klemp
and Lilly’s model, and between 13 and 16 km in
Hoinka’s model). This has been interpreted as the ab-
sorption of the wave by the nonlinearly generated crit-
ical layer near 17 km. This feature is well captured by
our model. In addition, a small relative minimum of
the flux is occurring near 11 km in Klemp and Lilly’s
model, near 7 km in Hoinka’s model, and near 9.5 km
in the observations. Our model is predicting larger ver-
tical variations of the flux, with a maximum of —0.9
Pa near Z = 4 km and a minimum of —0.4 Pa near Z
= 8 km. Part of these larger variations may be due to
an insufficient horizontal resolution, since they de-
crease slightly when using AX = 2.5 km (not shown).
Given the general dispersion of previous results, how-
ever, we conclude that our model result falls within
the range of possible values for this parameter.

The TKE cross section (Fig. 9d) shows that the
model develops turbulence near the edge of the block-
ing zone, in agreement with the observations (Fig. 1
of LK73). This has been related by Klemp and Lilly
to the observed rapid decrease of the wave-momentum
flux at this level. In fact, the model confirms that this
region is behaving as a nonlinearly generated critical
level, which absorbs the upward-moving wave. It is
particularly encouraging that the model is able to de-
termine by its own dynamics the height and length
scale of this turbulence zone. There is, unfortunately,
no way of checking the quantitative value about the
TKE cbserved in this case. Given the qualitative in-
formation on the spatial repartition of turbulence in-
tensity contained in Fig. 1 of LK73, one may state that
the model is producing a correct spatial pattern, but
probably slightly underestimating the intensity of
the TKE.

6. Simulation of the 11 January 1972 Chinook

Finally, we test the model on the famous Boulder
windstorm (Lilly and Zipser 1972) for which numerous
references of model studies exist. The upstream sound- -
ing is taken from Durran and Klemp (1983). To sim-
ulate this case, we retain AX = 5 km, and use 40 levels
with AZ = 500 m. The absorbing layer is defined be-
tween 15 and 20 km. We use the same topography as
in the former case. The model results after 6 h are
shown in Fig. 11. They bear a strong resemblance with
observations and previous model studies. The down-
slope wind velocity reaches nearly 60 m s™!. Farther
downstream, the flow appears to experience a hydraulic
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jump. Many quantitative estimates given by Lilly
(1978) allow for an assessment of the quality of the
simulation. First, the wave momentum flux, computed
as in the former case with L = 200 km, is shown in
Fig. 12. It reaches a maximum value of —8 Pa near
the mountain top and is generally decreasing with
height in the troposphere, with an oscillation leading
to a relative maximum near Z = 7.5 km. The obser-
vational estimates at 6 km (3.5 Pa) and 9 km (8 Pa)
have been plotted on the figure. Although they provide
only scarce evidence, they do not conflict with the os-
cillatory pattern. It is difficult to assess the confidence
in these results. Klemp and Lilly (1978) preferred to

use a mean value of 4.7 Pa in order to compare it with
their model result. More confidence can be given to
the fact that the wave momentum flux is generally de-
creasing throughout the troposphere, meaning that the
wave energy is dissipated by the wave breaking mech-
anism. Next, the simulated surface wave drag has been
computed as

with again L = 200 km, and compared to other model
studies. Our model result gives D = 9.4 Pa, close to
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the maximum values obtained by Hoinka (1985) (7
Pa), and Durran and Klemp (1983) or Peltier and
Clark (1979) (8 Pa). Our model result is obtained after
a 6 h forecast, and corresponds to a stationary state.
On the other hand, in the three referenced numerical
studies, the model had not reached steady state, as is
obvious from the plots of surface drag versus time
shown by the authors. Durran and Klemp, as well as
Peltier and Clark, used nonhydrostatic models, with

AX = 2 km, and run their model about 2.5 hours with
a free-slip lower boundary condition. Hoinka’s model
is hydrostatic with AX = 5 km, and was run for until
10 hours again with a free-slip condition. We do not
know why different models predict different time scales
for the development of the Boulder windstorm. The
major difference between our model and all three
models mentioned previously, however, is that we do
not use a free-slip boundary condition, but rather a



AUGUST 1989

1S Py s
14. k
13,
12,
11,
20. L .
9k — 320 E
~ 8. 320 00—~
$ .| ]
N o L
s. | 04
i b-__/——-——3 \/\/“04___,__/1
3. L .
2. L i
THETR (K)
DATA 11/ 1/72/1200Z BHR FCST EXP 5105
1S T T T T T
14. | \ m\)
13. b o ° j
12. | -
11. | L i
10. |
s |
—~ 8|
g 2L e
N e |
s. | A
a. | §
a | {
2. ~
1. b c.l
O. Lewv o en vy p vyt e v n sty

W (M/S)
OATA 11/ 1/72/1200Z 6HR FCST EXP 5105

P. BOUGEAULT AND P. LACARRERE

1s.
14.
13.
12.

[T
o

Z (KM)
OP NW AN N DB

LA a4 1) L by ) b L a1y a1l

U (M/S)
DATA 11/ 1/72/12002Z 6HR FCST EXP 5105

e
14. _
13. | 1
12. | ]
11. |

P
o

7 (KM)
oPr MW RMOONDYDC

:

L dJ
)T R N N Y T O I Y N

TKE (M2/52)
OATA 11/ 1/72/1200Z 6HR FCST EXP S105

F1G. 11. Results of the simulation for 11 January 1972 after steady state is reached. (a) Potential temperature; (b) horizontal
wind; (c) vertical velocity; (d) turbulence kinetic energy (the isoline interval is 20 m? s=2, starting at 20 m? s~2). For observational
results, see, e.g., Klemp and Lilly (1978, Fig. 13a). The mean flow is from the left to the right of the picture. Ticks are every 5 km

on the horizontal axis.

more realistic drag coefficient computed with a rough-
ness height of 10 cm. This allows our model to reach
a steady state after about 4 h of simulation, while other
models clearly do not (this is illustrated in section 7).
Here, we assume that the former authors have stopped
their model simulations when the development of the
windstorm had reached a realistic intensity, and there-
fore that the maximum values of the drag obtained
during these simulations constitute a reasonable basis
to appreciate the realism of our simulation. The mean
surface turbulent drag over the same distance is esti-
mated by our model as 0.62 Pa, whereas Lilly’s esti-

mate, based on a constant Cp = 0.01, is 1.5 hPa. Finally
in our simulation, the surface pressure difference be-
tween two points at the altitude of 2600 m upstream
and downstream of the mountain crest reaches the
value of —14.3 hPa, a result very similar to Lilly’s rough
estimate of —12 hPa from direct pressure measure-
ments. We may therefore conclude that the simulation
of the mean flow by our model has a fair degree of
realism.

We now discuss the TKE predicted by the model.
Figure 11 shows that in the near-neutral, weak-wind
zone that develops downstream of the crest, the TKE
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reaches very high values (about 140 (m s™')? for the
maximum). This is, again, in good agreement with
Lilly’s (1978) observations, since his estimate of th
TKE intensity is 150 (m s™1)2. '

Moreover, the different terms in the TKE budget
[Eq. (12)] are displayed on Fig. 13 and are in quali-
tative agreement with the observations. The leading
term is the shear production, with an intensity reaching
1 m?s73(1.5 to 3 observed). The conversion into po-
tential energy has a maximum value of —0.2 m2 s~3
near 9 km and fits well with the observation. The model
predicts the dissipation to lie within the range of —0.2
to —0. 4 m? s~ (—0.8 observed). Finally, the advection
terms exhibit positive and negative values, with a max-
imum negative of —0.4 m? s~ (—0.6 observed ). Other
terms (time change and vertical diffusion ) were found
to be of lesser importance. Although the agreement
between the model and observed values for these dif-
ferent terms is not as good as for the TKE itself, we
feel that the model has captured the gross features of
the TKE budget. We may therefore conclude that the
simulation of the turbulence induced by this extreme
event is quite realistic.

Similar results have been recently obtained by Rich-
ard et al. (1988 personal communication), using a
similar model based on a modified formulation of the
Therry and Lacarrére (1983) turbulence scheme. The
major difference with our study lies in a more empirical
specification of the mixing and dissipative lengths. We
- feel that our formulation, based on Eq. (11), opens
the possibility to the scheme being applied in more
general cases, since, €.g., we have checked that PBL
turbulence still scales properly.
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7. Conclusions and perspectives

We have shown that the inclusion of the well-known
turbulence kinetic energy equation in a mesobeta-scale
model allows for successful predictions of the localiza-
tion and intensity of clear-air turbulence in regions
where the flow passes over steep orography. The success
of the simulations is due to two aspects: 1) the good
dynamical behavior of the model, which must have a
sufficient vertical resolution to resolve the propagating
internal wave, a sufficient horizontal resolution to re-
solve the main topographic features, and must not suf-
fer from reflections at the top. This good dynamical
behavior provides a good spatial distribution of the
shear and of the static stability, which are the main
parameters controlling the orography-induced turbu-
lence. 2) The new formulation of the length scales,
initially proposed by Bougeault and André (1986) for
PBL studies, which turns out to be fairly general, since
in most atmospheric flows, the length scale for tur-
bulent eddies is primarily determined by the resistance
to vertical displacements due to the static stability.

The accurate numerical simulation of the TKE
opens several exciting possibilities. First, it allows for
an improvemerit of the mean flow simulation, since it
is well known that the waves are modified in regions
of turbulent dissipation. To demonstrate this point, we
have performed adiabatic frictionless simulations on
the same three test cases. More precisely, the vertical
diffusion terms in Egs. (2) and (3) have been removed,
but the. horizontal diffusion terms were still present.

_The results after a 6 h simulation are shown in Fig. 14.

For the bora and chinook cases, they are very different
from those discussed in the previous sections. The
shooting flow develops much further downstream and
the flow seems to recover from the torrential regime
only because of the downstream boundary condition.
The momentum flux, computed as before, is much
larger than in the dissipative runs. For the 17 February
1970 case, on the other hand, the change is not as ob-
vious as for the two other cases, as there is no shooting
flow. As is clearly visible in Fig. 14b, however, a stat-
ically unstable region develops at Z = 18 km, down-
stream of the crest. This leads to numerical instability
after 9 h of simulation, whereas the dissipative runs
were steady and absolutely stable. The comparison of
the results with and without turbulence parameteriza-
tion therefore shows a net improvement in the model
behavior when the turbulence parameterization is in-
cluded. This is not to say that previous schemes used
to parameterize turbulent mixing are not good enough
to simulate breaking mountain waves. In fact, with the
former scheme used in this model, based on Louis et
al. (1981) stability-dependent formulation of the eddy
mixing coefficients, we obtained results of similar
quality to those shown in this paper, as regard to the
mean fields and the momentum fluxes. The major ad-
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vantage of this new approach is to provide a consistent
prediction of the TKE intensity, allowing for experi-
mental verification. Also, since it links the eddy dif-
fusion coefficients to the TKE and to an interactively
defined mixing length, one may hope that it will result
in improvements in the simulation of the dynamic
fields. This is, however, not yet demonstrated and
would need more complete observational datasets.
Second, the present work may help to improve our
theoretical understanding of orographic processes. We
may already notice that the overall behavior of the flow
in two of the three cases described here (bora and chi-
nook) bears strong resemblance with the conceptual

model of Smith (1985), which states that turbulence
develops in a region of slowly moving air delimited by
the two branches of a dividing streamline, while strong
winds plunge underneath. The revival of the hydraulic
theory, as opposed to the mechanism of linear resonant
amplification proposed by Clark and Peltier (1984),
has recently gained some support from numerical ex-
periments by Durran and Klemp (1987). Until now,
only higher resolution, nonhydrostatic models have
provided a possibility to discriminate between these
approaches, but at high computational cost. The pres-
ent model may offer an interesting alternative; it also
opens the possibility to improve the currently devel-



1888

S. LIS S B B A B A B B N S B A B B N O SN B S A A A A B

Z (KM)

a.

O, Lt a1t LW b))t ea g 1eaiail
.THETR (K)

DATAR 6/ 3/82/1200Z 6HR FCST EXP 3034

1S.
i4.

13.
12.
11.

£
©

Z (KM}

IR RN RN R RN NN

S PrPNW MO NOL

THETA (©)
DATA 11/ 1/72/1200Z 6HR FCST EXP S106

oped parameterizations of the unresolved gravity wave
drag effects in climate and NWP models. For instance,
one may run the model in its 3D version over realistic
topography to assess the degree of realism of the hy-
pothesis that governs the vertical momentum deposit,
or the low-level generation of momentum flux.

Finally, a number of studies in applied meteorology
may take benefit from simulations of the TKE inten-
sities; for instance, studies of atmospheric pollution
dispersion, or of the best localization sites for astro-
nomical sightings.
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APPENDIX
Summary of Numerical Methods

We provide here a short summary of the numerical
methods used in the 3D version of the model. The 2D
version is derived by setting to zero all the derivatives
in the y direction.

1. Vertical discretization

The model atmosphere is divided into N layers of
depth Ag, separated by levels. By convention ¢ = 0 is

‘the top of the atmosphere, ox = 1 is the surface and
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or = exp{ —AZ(N — k)g/R,Ty}. (A1)
The layer k extends from o, to oy, with a depth Agy
= g) — 0y, and a nominal ¢ value

1
O'mk=§(0'k+ Oi-1)- (A2)

In the following X will refer to the value of variable
X at level 0,4, except for g, defined at level oy.

2. Hydrostatic equation

The value of the geopotential at any point in the
model is obtained by integrating the hydrostatic equa-
tion upward, with the following discretization:

N
¢c=¢s+ R, 2 aT;+ b Ty, (A3)
I=k+1
where
a;=Ln(oi/01-1), (I=2,N),
b= a2,
b] = Ln2.

3. Conversion term

In Eq. (2), it is necessary to use a discretization of
w/p consistent with (A3) to obtain an accurate con-
version of potential into kinetic energy. The discrete
representation of o f o™ Xdo is noted X, in the fol-
lowing, and defined as

. ak k-1
=" 2 Xibor + b Xy, (A4)
Ao 1oy
where a;, b, are the previously defined coefficients.
Thus the w/p term in Eq. (2) is computed as

— =—V. (psV )k + a,,,kaVZ. (AS)
P/, Ps
4. Mass continuity equation
Similarly, we will note
N
X =3 XA, (A6)

=1

and the mass continuity equation Eq. (1) restricted to
the resolved dynamical terms, takes the form
N
8z 1
— =——V «(p,V).
ol o (psV)

The generalized vertical velocity ¢ is then obtained
from

(A7)

. . . 1 77—
00=0, ox— ox =; {V-(DsV) =~V (DsV ) }-

‘ (A8)
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5. Horizontal discretization

An Arakawa C-type grid is used. We adopt the no-
tations,

b))

-1 Axy _ _b&x
Xx—Ax[X(x+ 2) X(x 2)], (A9)

and further use the normalized value of the wind U
= u/m, V = v/m, where m is the map scale factor (1/
Ax). Let

Vx"_Uy+f
n=s——a

= (A10)

Ps

be the potential vorticity, and
K=%(5§x+7y) (A11)

be the kinetic energy. Equations (1), (2), (3), restricted
to the resolved dynamical part, take the form

9Z m? .~ .
e —I[(ps O)+(p°V),], (Al2)
6Tk m2 Ra —x. — s
—=—-—=T, s x+ syV
Py . G, k(P Ui)x + (ps"Vi)y]
S ———
+-’n__[ps UTy Z, +pskaTkyZy ]
ps Cp
m2 J— x = y
—p—[.l?s UTw + 05 ViTiy 1, (Al3)
s
— N Xy
%[% = _[¢x + R, Ty Zx] + nypsyV - Kx; (A14)
v; 4 —x—xp”
f = ¢, + RTL Z,) - 70U —K,. (Al5)

6. Time discretization

The model is integrated with a leapfrog time scheme,
the decoupling between even and odd time steps being
prevented by the use of a time filter. For the average
Ax = 5 km used here, the time step is Af = 30 s. This
is made possible by a semi-implicit treatment for the
linear part of the gravity-wave solutions of (A12)-
(A15), and a further implicit treatment of the vertical
diffusion terms. The detail of these computations is
not given here.

7. Lateral Boundary Forcing

The boundary relaxation terms in Egs. (1),(2),(3)
are also treated in an implicit way. The result takes the
simple following form: let X¢ be the value of vari-
able X computed without the relaxation term, and
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X, _s the assumed large-scale value of this variable, the
final value of X is given by

(1= a)X+ax'™,

o taking the values, 1.0, 0.45339, 0.20556, 0.09320,
0.04226, 0.01916, and 0.0 for grid points distant from
the lateral boundary by, respectively, 0, 1, 2, 3, 4, 5,
and more grid points.
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