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Abstract

An improved Mellor–Yamada (MY) turbulence closure model (MYNN model: Mellor–Yamada–
Nakanishi–Niino model) that we have developed is summarized and its performance is demonstrated against a
large-eddy simulation (LES) of a convective boundary layer. Unlike the original MY model, the MYNN model
considers e¤ects of buoyancy on pressure covariances and e¤ects of stability on the turbulent length scale, with
model constants determined from a LES database. One-dimensional simulations of Day 33 of the Wangara
field experiment, which was conducted in a flat area of southeastern Australia in 1967, are made by the MY
and MYNN models and the results are compared with horizontal-average statistics obtained from a three-
dimensional LES. The MYNN model improves several weak points of the MY model such as an insu‰cient
growth of the convective boundary layer, and underestimates of the turbulent kinetic energy and the turbulent
length scale; it reproduces fairly well the results of the LES including the vertical distributions of the mean and
turbulent quantities. The improved performance of the MYNN model relies mainly on the new formulation of
the turbulent length scale that realistically increases with decreasing stability, and partly on the parameterization
of the pressure covariances and the expression for stability functions for third-order turbulent fluxes.

1. Introduction

Turbulent motions in the atmospheric boundary
layer (ABL) are important because they vertically
transport sensible and latent heats, which amount
to about 60% of the solar radiation absorbed by
the earth’s surface (Kiehl and Trenberth 1997),
thus determining the environment in which the
majority of activities of natural beings take place.
They also a¤ect the formation of boundary layer
clouds that significantly contribute to radiation

budgets over polar regions and the Eastern Pacific.
Furthermore, turbulent convection in the ABL
occasionally triggers cumulus convection, which
transports heat and moisture throughout the tropo-
sphere, thus a¤ecting the basic structure of the
atmosphere.

To express such important roles of turbulent mo-
tions in ensemble-mean numerical models, turbu-
lence closure models of several orders have been
developed. First-order turbulence closure models,
such as the K-profile model (e.g., Troen and Mahrt
1986; Hong et al. 2006), the KE (so-called one-and-
a-half order closure) model (e.g., Therry and Lacar-
rère 1983; Bougeault and Lacarrère 1989), and the
standard k � e model (e.g., Hanjalic and Launder
1972), have succeeded in reproducing various flow
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fields. The major weakness of these models, how-
ever, is that they need somewhat empirical formula-
tions (e.g., Deardor¤ 1972) in order to express a
countergradient di¤usion process resulting from
non-local transport, since they relate second-order
moments to local gradients of the mean fields
through eddy di¤usivities. On the other hand,
higher-order turbulence closure models can express
the countergradient di¤usion by predicting second-
order moments. Among them, third-order turbu-
lence closure models such as André et al. (1978)
and Cheng et al. (2005) have been often used to
evaluate lower-order turbulence closure models
(e.g., Therry and Lacarrère 1983). The third-order
turbulence closure models, however, have a large
number of prognostic equations and require large
computer resources. They also require many model
constants which may not be determined uniquely
with confidence.

Second-order turbulence closure models have a
less number of prognostic equations than that in
the third-order models. A second-order turbulence
closure model which is most widely used in a
variety of numerical models for geophysical flows
is the Mellor–Yamada (MY) model (Mellor and
Yamada 1974, 1982). The primary reason for its
popularity is that a systematic simplification of the
model can be attained according to the degree of
anisotropy (Mellor and Yamada 1974) and a rela-
tively simple level-2.5 model having only one prog-
nostic equation for the turbulent kinetic energy
(TKE) gives a reasonable prediction (Yamada
1977). Another important reason is that it contains
a minimal number of constants which are solely de-
termined from laboratory measurements for neu-
trally stratified flows and yet predicts reasonably
well the observed dimensionless gradient functions
in the surface layer over a wide range of stability
(Mellor 1973).

Several problems in the MY model, such as a
slow growth of a convective boundary layer (e.g.,
Sun and Ogura 1980) and a rapid decay of turbu-
lence in a stably-stratified nocturnal boundary layer
(e.g., Turton and Brown 1987), have been reported,
however. Mellor (1973) parameterized higher-order
moments such as return-to-isotropy terms with-
out considering buoyancy e¤ects. However, later
studies have pointed out that buoyancy e¤ects
need to be considered when these terms are para-
meterized (e.g., Moeng and Wyngaard 1989). Mel-
lor (1973) also assumed that a dominant length
scale in the surface layer is given by kz regardless

of stability, where k is the von Kármán constant
and z is the height. Field observations have shown,
however, that the length scale can vary with stabil-
ity (e.g., Busch and Larsen 1972).

Although most of the previous e¤orts to improve
the MY model focused on excluding singular solu-
tions (e.g., Mellor and Yamada 1982; Galperin
et al. 1988; Helfand and Labraga 1988; Gerrity
et al. 1994; Janjić 2002), several authors did at-
tempt to improve the problems described above
(e.g., Gambo 1978; Sun and Ogura 1980; Kantha
and Clayson 1994; Cheng et al. 2002). Using a da-
tabase of a large-eddy simulation (LES) for dry
ABLs under di¤erent stratifications, Nakanishi
(2001, hereafter N01) recently proposed an im-
proved MY model in which a newly-proposed diag-
nostic equation for the turbulent length scale and
reevaluated model constants are incorporated.
Nakanishi and Niino (2004, hereafter NN04) later
introduced a partial condensation scheme (Som-
meria and Deardor¤ 1977; Mellor 1977) into the
improved MY model, and proposed a convenient
computational scheme for its level-3 model. They
also used a one-dimensional version of the im-
proved MY model to simulate a radiation fog, and
showed that the improved MY model has a good
performance comparable to a moist LES model
of Nakanishi (2000). Nakanishi and Niino (2006,
hereafter NN06) analyzed the singularity and real-
izability of the improved MY level-3 model, and in-
creased its numerical stability by imposing some re-
strictions on a time scale L=q and scalar variances,
where L is the turbulent length scale and q2=2 the
TKE per unit mass. They further incorporated the
improved MY model into a three-dimensional re-
gional model, and showed that it predicts a realis-
tic distribution of an advection fog. The improved
MY model has been incorporated into an opera-
tional nonhydrostatic meso-scale weather predic-
tion model (MSM) at the Japan Meteorological
Agency since May 2007 (Hara 2007; Saito et al.
2007), a general circulation model (MIROC: Model
for Interdisciplinary Research On Climate) at the
Frontier Research Center for Global Change (Chi-
kira and Mochizuki 2007), and an American com-
munity meso-scale model (WRF model: Weather
Research and Forecasting model), and has been
shown to give a good performance. We will here-
after call the improved MY model the MYNN
(Mellor–Yamada–Nakanishi–Niino) model to dis-
tinguish it from the original MY model.

The first aim of the present paper is to summa-
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rize the principal features of the MYNN model that
we have developed for the last several years. The
second aim is to demonstrate its good performance
in a convective mixed layer that develops much
deeper (> 1,000 m) than the convective ABLs of
the LES database (N01), which was used to tune
the model constants. Day 33 of the Wangara exper-
iment (Clarke et al. 1971) is selected as the target
of the present simulation. Since numerous models
have simulated this experiment, comparisons with
their results would be illuminating. In Section 2
the MYNN model developed by N01, NN04, and
NN06 is summarized. In Section 3 several con-
stants in the MYNN model are reevaluated by re-
ferring to several recent studies on turbulence clo-
sure models. Section 4 compares the results of the
MYNN and MY models with those of a LES, and
demonstrates the good performance of the MYNN
model. Section 5 gives a summary and a discussion
on future subjects for the MYNN model.

2. Description of the MYNN model

In the MYNN model, the liquid water potential
temperature yl ð1 y� ðy=TÞðLv=cpÞqlÞ and total
water content qw ð1 qv þ qlÞ are used as thermody-
namic variables, where y is the potential tempera-
ture, T the absolute temperature, Lv the latent heat
of vaporization, cp the specific heat of dry air at
constant pressure, ql the liquid water content, and
qv the specific humidity.

Notations in the present paper are the same as
those in N01, NN04, and NN06; capital letters de-
note ensemble-averaged variables, small letters tur-
bulent variables, the angle brackets h i an ensem-
ble average, and the subscript 0 a reference state.

2.1 Equations for mean quantities

The one-dimensional equations for the ensemble-
averaged quantities are given by

qU

qt
¼ � q

qz
huwiþ f ðV � VgÞ; ð1Þ

qV

qt
¼ � q

qz
hvwi� f ðU �UgÞ; ð2Þ

qYl

qt
¼ � q

qz
hwyliþ fY0

g
V
qUg

qz
�U

qVg

qz

� �
; ð3Þ

qQw

qt
¼ � q

qz
hwqwi; ð4Þ

where ðu; v;wÞ are the velocity components,
ðUg;VgÞ the velocity components of the geostro-
phic wind, f the Coriolis parameter, and g the

gravitational acceleration. The second term on the
right-hand side of Eq. (3) represents the horizontal
advection of Yl obtained from the thermal wind re-
lations.

2.2 Equations for turbulent quantities

To determine the unknown second-order turbu-
lent fluxes such as huwi and hwyli, the MYNN
model solves equations for second-order turbulent
quantities. The one-dimensional equations for these
quantities are given by

qq2

qt
¼ � q

qz
hwðu2 þ v2 þ w2 þ 2p=r0Þi

� 2 huwi
qU

qz
þ hvwi

qV

qz

� �

þ 2
g

Y0
hwyVi� 2e; ð5Þ

qhy2l i

qt
¼ � q

qz
hwy2l i� 2hwyli

qYl

qz
� 2eyl ; ð6Þ

qhylqwi

qt
¼ � q

qz
hwylqwi� hwqwi

qYl

qz

� hwyli
qQw

qz
� 2eyq; ð7Þ

qhq2wi

qt
¼ � q

qz
hwq2wi� 2hwqwi

qQw

qz
� 2eqw; ð8Þ

where p is the pressure, r the air density, yV
ð1 yð1þ 0:61qv � qlÞÞ the virtual potential temper-
ature, and e, eyl , eyq, and eqw are the dissipation
rates of q2=2, hy2l i=2, hylqwi=2, and hq2wi=2, re-
spectively.

On the other hand, the Reynolds stresses and
second-order turbulent fluxes are given diagnosti-
cally by neglecting the time-tendency, advection,
and di¤usion terms in the case of models of level 3
or less (Mellor and Yamada 1974, 1982): e.g.,

qðhw2i� q2=3Þ
qt

¼ 0

¼ 2

3
huwi

qU

qz
þ hvwi

qV

qz

� �

þ 4

3

g

Y0
hwyViþ 2

p

r0

qw

qz

� �
; ð9Þ

qhuwi

qt
¼ 0 ¼ �hw2i

qU

qz
þ g

Y0
huyVi

þ p

r0

qu

qz
þ qw

qx

� �� �
; ð10Þ
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qhwyli

qt
¼ 0 ¼ �hw2i

qYl

qz

þ g

Y0
hylyViþ p

r0

qyl

qz

� �
; ð11Þ

where the dissipation rates of huwi and hwyli are
neglected based on the local isotropy assumption.
The last term on the right-hand side of these equa-
tions is called the pressure covariance.

In a level-2.5 model, q2 is predicted by Eq. (5),
but the time-tendency and di¤usion terms of Eqs.
(6)–(8) are neglected and therefore hy2l i, hylqwi,
and hq2wi are given diagnostically. In a level-2
model, q2 is also given diagnostically (Mellor and
Yamada 1974, 1982).

2.3 Parameterizations

Second-order turbulence closure models require
us to parameterize (a) the dissipation rates, (b) pres-
sure covariances, and (c) third-order turbulent
fluxes. Following Mellor (1973), the dissipation
rates e, eyl , eyq, and eqw are given by

e ¼ q3

B1L
; ð12Þ

eyl ¼
q

B2L
hy2l i; ð13Þ

eyq ¼
q

B2L
hylqwi; ð14Þ

eqw ¼ q

B2L
hq2wi; ð15Þ

where B1 and B2 are closure constants.
The parameterization of the pressure covariances

is revised from Mellor (1973), since one of the prob-
lems in the MY model is the neglect of buoyancy
e¤ects on the pressure covariances (e.g., Moeng
and Wyngaard 1989). N01 parameterizes them as

p

r0

qui

qxj
þ quj

qxi

� �� �

¼ � q

3A1L
huiuji� 1

3
q2dij

� �

þ C1q
2 qUi

qxj
þ qUj

qxi

� �

� C2
g

Y0

�
huiyVidj3 þ hujyVidi3

� 2

3
hu3yVidij

�

þ C4

�
huiuki

qUj

qxk
þ hujuki

qUi

qxk

� 2

3
hukuli

qUk

qxl
dij

�
; ð16Þ

p

r0

qyl

qxi

� �
¼ � q

3A2L
huiyli� C3

g

Y0
hylyVidi3

þ C5hukyli
qUi

qxk
; ð17Þ

where ðu1; u2; u3Þ ¼ ðu; v;wÞ are the velocity compo-
nents in the directions of ðx1; x2; x3Þ ¼ ðx; y; zÞ, re-
spectively, dij the Kronecker’s delta, and A1, A2,
and C1–C5 closure constants. The terms with A1

and A2 represent the return-to-isotropy hypothesis
of Rotta, while the terms with C1, C4, and C5 and
those with C2 and C3 represent e¤ects of shear and
buoyancy, respectively. This parameterization is
more elaborate than that by Mellor (1973) who ne-
glected the terms with C2–C5, but is slightly simpler
than that by Sun and Ogura (1980) or Cheng et al.
(2002). We will eliminate the term with C4 by set-
ting C4 ¼ 0 because, for unstable conditions, this
term tends to predict hu2i smaller than our LES
data (N01). The values of the other closure con-
stants will be given in Section 3.

The parameterization of the third-order turbulent
fluxes will be described in the following subsection.

2.4 Turbulent fluxes

Through the diagnostic equations such as Eqs.
(9)–(11) and the parameterization of the pressure
covariances, models of level 3 or less can express
the second-order turbulent fluxes in the form of
gradient di¤usion (N01; NN04; NN06):

�huwi ¼ LqSM
qU

qz
; ð18Þ

�hvwi ¼ LqSM

qV

qz
; ð19Þ

�hwyli ¼ LqSH

qYl

qz

¼ Lq SH2:5
qYl

qz
þ Gy

� �
; ð20Þ

�hwqwi ¼ LqSH

qQw

qz

¼ Lq SH2:5
qQw

qz
þ Gq

� �
; ð21Þ

�hwyVi ¼ �byhwyli� bqhwqwi; ð22Þ
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where SM ð1SM2:5 þ S 0
MÞ and SH ð1SH2:5 þ S 0

HÞ
are stability functions for a level-3 model for mo-
mentum, and heat and moisture, respectively, the
subscript 2.5 denotes a level-2.5 model, the prime
di¤erence between the level-3 and level-2.5 models.
Gy ð1S 0

HqYl=qzÞ and Gq ð1S 0
HqQw=qzÞ are func-

tions that represent e¤ects of countergradient di¤u-
sion, as will be shown in the following subsection.
by and bq are functions determined from the con-
densation process, which are described in Appendix
B.

The third-order turbulent fluxes need to be para-
meterized. NN04 adopts expressions similar to the
gradient di¤usion of the MY model as

�hwðu2 þ v2 þ w2 þ 2p=r0Þi ¼ LqSq

qq2

qz
; ð23Þ

�hwy2l i ¼ LqSyl
qhy2l i

qz
; ð24Þ

�hwylqwi ¼ LqSyq
qhylqwi

qz
; ð25Þ

�hwq2wi ¼ LqSqw

qhq2wi

qz
; ð26Þ

where Sq, Syl , Syq, and Sqw are also stability func-
tions.

2.5 Stability functions

N01, NN04, and NN06 decomposed the stability
functions SM and SH into two parts: The first part
is given by the corresponding stability functions
SM2:5 and SH2:5 for the level-2.5 model, and the sec-
ond part their corrections S 0

M and S 0
H . After consid-

erable algebra, they are obtained as

SM2:5 ¼ acA1
F3 � 3C1F4

D2:5
; ð27Þ

SH2:5 ¼ acA2
F2 þ 3C1F5

D2:5
; ð28Þ

S 0
M ¼ acA1

F3 �F4

D 0 F 0; ð29Þ

S 0
H ¼ acA2

F2 þF5

D 0 F 0; ð30Þ

where notations follow NN06,

D2:5 ¼ F2F4 þF5F3; ð31Þ

D 0 ¼ F2ðF4 �F1 þ 1Þ þF5ðF3 �F1 þ 1Þ; ð32Þ

F1 ¼ 1� 3a2cA2B2ð1� C3ÞGH ; ð33Þ

F2 ¼ 1� 9a2cA1A2ð1� C2ÞGH ; ð34Þ

F3 ¼ F1 þ 9a2cA
2
2ð1� C2Þð1� C5ÞGH ; ð35Þ

F4 ¼ F1 � 12a2cA1A2ð1� C2ÞGH ; ð36Þ

F5 ¼ 6a2cA
2
1GM ; ð37Þ

F 0 ¼ 3ð1� C3ÞGHðCy � acB2SH2:5Þ; ð38Þ

GM ¼ L2

q2
qU

qz

� �2

þ qV

qz

� �2
" #

; ð39Þ

GH ¼ �L2

q2
g

Y0
by

qYl

qz
þ bq

qQw

qz

� �

1�L2

q2
g

Y0

qYV

qz
; ð40Þ

Cy ¼
hy2l i

L2ðqYl=qzÞ2

¼ hylqwi

L2ðqYl=qzÞðqQw=qzÞ
; ð41Þ

ac 1 1� a ¼ q=q2; q < q2

1; qb q2;

�
ð42Þ

and a is a function introduced by Helfand and
Labraga (1988) to ensure nonsingular solutions for
growing turbulence. q22=2 is the TKE per unit mass
given by the level-2 model (Appendix A).

When qYl=qz and qQw=qz are small, Cy in Eq.
(41) diverges. To avoid this problem, the functions
S 0
M , S 0

HGH , Gy, and Gq are computed as

S 0
M ¼ EM

L

q2
g

Y0

� �2

ðhy2Vi� hy2Vi2:5Þ; ð43Þ

S 0
HGH ¼ EH

L

q2
g

Y0

� �2

ðhy2Vi� hy2Vi2:5Þ; ð44Þ

Gy ¼ �EH

1

q2
g

Y0
ðhylyVi� hylyVi2:5Þ; ð45Þ

Gq ¼ �EH

1

q2
g

Y0
ðhqwyVi� hqwyVi2:5Þ; ð46Þ

where

EM ¼ 3acA1ð1� C3Þ
F3 �F4

D 0GH

; ð47Þ

EH ¼ 3acA2ð1� C3Þ
F2 þF5

D 0 ; ð48Þ

hylyVi ¼ byhy
2
l iþ bqhylqwi; ð49Þ

hqwyVi ¼ byhylqwiþ bqhq
2
wi; ð50Þ

hy2Vi ¼ byhylyViþ bqhqwyVi: ð51Þ
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Note that the sign of EH in this paper is taken to be
opposite to that in NN04.

Although SM2:5 and SH2:5 are always nonnega-
tive (Helfand and Labraga 1988), S 0

M can become
negative and S 0

H can approach even negative infin-
ity (Eqs. 43 and 44). This means that the level-3
model is capable of expressing the countergradient
di¤usion as shown by Gy and Gq (Eqs. 45 and 46)
with the help of the prognostic equations of Eqs.
(6)–(8).

As to the stability functions Sq, Syl , Syq, and Sqw,
Mellor and Yamada (1982) set all of them to a con-
stant value of 0.2. Based on our LES database
(N01), however, we assume them to be propor-
tional to SM ; their proportionality constants will
be shown in Section 3.

2.6 Equations for the turbulent length scale

One of the problems in the MY model is that
there exists no reliable expression for the turbulent
length scale L. Based on the LES database, N01
proposed a new diagnostic equation for L, which is
designed to be controlled by the smallest length
scale among the three length scales LS, LT , and LB:

1

L
¼ 1

LS

þ 1

LT

þ 1

LB

; ð52Þ

LS ¼
kz=3:7; zb 1

kzð1þ 2:7zÞ�1; 0a z < 1

kzð1� 100zÞ0:2; z < 0;

8><
>: ð53Þ

LT ¼ 0:23

Ðy
0 qz dzÐy
0 q dz

; ð54Þ

LB ¼

q=N; qYV=qz > 0 and zb 0

½1þ 5ðqc=LTNÞ1=2�q=N; qYV=qz > 0 and z < 0

y; qYV=qza 0;

8><
>:

ð55Þ
where z ð1 z=LMÞ is the dimensionless height,
LM ð1�Y0u

3
�=kghwyVigÞ the Monin–Obukhov

length, u� the friction velocity, N ð1 ½ðg=Y0ÞqYV=

qz�1=2Þ the Brunt–Väisälä frequency, and the
subscript g denotes the ground surface. qc ð1 ½ðg=
Y0ÞhwyVigLT �1=3Þ is a velocity scale defined simi-
larly as the convective velocity w�, except that the
depth zi of the convective ABL is replaced by LT .

LS is the length scale in the surface layer, which
increases with height and is e¤ective to L only near
the surface. LT is the length scale dependent on the
depth of the ABL (Mellor and Yamada 1974) and

is independent of height. LB is related to the buoy-
ancy length scale q=N, which characterizes the dis-
tance to which an air parcel having TKE of q2=2
can move vertically against the buoyancy force; it
is therefore e¤ective only in a stable layer. The em-
pirical constants that appear in Eqs. (53)–(55) were
determined from the LES database (N01).

We will now describe how we have selected the
functional forms given by Eqs. (53) and (55). Note
that the expression for LT (Eq. 54) follows Mellor
and Yamada (1974) except for the proportionality
constant. LS for zb 0 is given by the best fit curve
for the dissipation length scale Le in the surface
layer estimated from the LES data. For z < 0, the
best fit curve for Le in the surface layer was subject
to height, but that for Le at the same height seemed
to have a functional form of ð�zÞ0:2. The constant
value of 100 in Eq. (53) was then determined in
order that L fits Le from the LES data.

When LB for qYV=qz > 0 is given by q=N, it is
likely that the length scale in the upper half of the
convective ABL is underestimated, because TKE
there would be increased through the turbulent
transport and buoyancy production. According to
Moeng and Sullivan (1994), the rate of this increase
of TKE in the highly convective ABL is nearly pro-
portional to w3

�=zi. N01 assumed that, in the upper
part of the ABL, the time scale is given by N�1 and
the rate of the increase of TKE, w3

�=zi ¼ w2
�w�=zi,

may be replaced by q2qc=LT . This replacement is
made because q2qc=LT can vanish above the ABL
and LT has a characteristic similar to zi. The addi-
tion of the square root of q2qc=LTN to q leads to
the expression in Eq. (55)1.

2.7 Nonsingular and realizable level-3 model

NN04 proposed a new scheme to stably integrate
the level-3 model. NN06 later analyzed the singu-
larity and realizability of the level-3 model and sim-
plified the scheme. NN06 showed that nonsingular
solutions of S 0

M and S 0
H can be attained by ensuring

F3 �F1 þ 1 > 0 ðD 0 > 0Þ in Eq. (32) under stable
stratification and imposing a restriction on a time
scale L=q such that

L

q
a

1

N
for

qYV

qz
> 0; ð56Þ

1 The square root should have been computed after the
addition of q2qc=LTN to q2. In that case an optimal
value of the empirical constant in Eq. (55) is 40 in-
stead of 5: i.e., ð1þ 40qc=LTNÞ1=2q=N. This modifi-
cation, however, has little e¤ect on simulated results.
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when Eqs. (43)–(46) are computed. This restriction
becomes substantial in the upper part of the con-
vective ABL.

On the other hand, Rotta’s hypothesis requires
a restriction on the normalized velocity variances
Cu 1hu2i=q2, Cv 1hv2i=q2, and Cw 1hw2i=q2

(e.g., Mellor and Yamada 1982). NN06 similarly
imposed restrictions of Cu b 0:12, Cv b 0:12, and
Cw b 0:12. We here simply impose a restriction on
Cw as

0:12aCw a 0:76; ð57Þ

which means that Cw b 0:12 and Cu þ Cv b 0:24
are assured, but that Cu b 0:12 and Cv b 0:12 are
not necessarily so. Normalization of Eq. (9) with
our parameterizations gives

Cw ¼ Cw2:5 þ Ew

L

q2
g

Y0

� �2

ðhy2Vi� hy2Vi2:5Þ;

ð58Þ
where

Cw2:5 ¼
F1

3

F2 þ 3C1F5

D2:5
; ð59Þ

Ew ¼ ð1� C3Þ
F2ðF1 �F4Þ þF5ðF1 �F3Þ

D 0GH

:

ð60Þ

The restriction on Cw (Eq. 57) therefore results in
that on hy2Vi:

0:12� Cw2:5

aEw

L

q2
g

Y0

� �2

ðhy2Vi� hy2Vi2:5Þ

a 0:76� Cw2:5: ð61Þ

Although this restriction is imposed only on hy2Vi,
it a¤ects the production of TKE (Eq. 43� GM and
Eq. 44) and may also control the other scalar vari-
ances indirectly.

Note that these restrictions are imposed to obtain
realistic solutions of Eqs. (43)–(46), but not neces-
sarily to assure nonnegative SM ð¼ SM2:5 þ S 0

MÞ
for numerical stability of the level-3 model (Eqs. 1,
2, 18, and 19).

3. Closure constants in the MYNN model

By referring to several recent studies on turbu-
lence closure models, we will reexamine the closure
constants and also the proportionality constants in
the stability functions for the third-order turbulent
fluxes.

N01 estimated a set of the closure constants from
the LES data as

ðA1;A2;B1;B2;C1Þ

¼ ð1:18; 0:665; 24:0; 15:0; 0:137Þ;

ðC2;C3;C4;C5Þ ¼ ð0:65; 0:294; 0:0; 0:2Þ;

ð62Þ

where

A1 ¼ B1
1� 3g1

6
; ð63Þ

A2 ¼
1

3g1B
1=3
1

; ð64Þ

C1 ¼ g1 �
1

3A1B
1=3
1

; ð65Þ

g1 ¼ 0:235, and Pr ¼ 0:74. However, the value of
C3 in Eq. (62) is out of the range between the theo-
retical value of 1/3 for isotropic turbulence (e.g.,
Gibson and Launder 1978) and a suggested value
of 1/2 for a convective ABL (Moeng and Wyng-
aard 1986). N01, after determining the other clo-
sure constants, chose the value of C3 in order that
the slope of the dimensionless gradient function fh
for heat approaches 4.7 as z ! y (Businger et al.
1971), where C2 was selected to be 0.65 following
Gambo (1978). If C2 is selected to be 0.75, how-
ever, C3 becomes 0.352 and falls within the range
of the previous studies. These revised values of C2

and C3 reduce the magnitude of SM in the convec-
tive ABL and lead to a better agreement of SM

from the MYNN model with that from the LES
data (Fig. 1). Furthermore, the MYNN model with
these values of C2 and C3 increases the critical gra-
dient Richardson number Ric to 0.95 (Appendix
A), which is very close to Ric @ 1 as suggested by
laboratory data, numerical simulations, and a non-
linear analysis (cf., Cheng et al. 2002, 2003). Thus
we have a new set of the closure constants as

ðA1;A2;B1;B2;C1Þ

¼ ð1:18; 0:665; 24:0; 15:0; 0:137Þ;

ðC2;C3;C4;C5Þ

¼ ð0:75; 0:352; 0:0; 0:2Þ:

ð66Þ

Figure 2 shows the dependence of the stability
functions SM2 and SH2 on Ri for the level-2 models
(Appendix A) of the MYNN model with Eq. (66)
and the MY model with closure constants of Mel-
lor and Yamada (1982). For positive (negative) Ri,
SM2 and SH2 in the MYNN model are larger
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(smaller) than those in the MY model. The larger
magnitudes of SM2 and SH2 in the MYNN model
for positive Ri may solve the problem of a rapid de-
cay of turbulence in a stable ABL (e.g., Turton and
Brown 1987).

It is often claimed that the downgradient-
di¤usion formulation of the third-order turbulent
fluxes (Eqs. 23–26) is inadequate in the convective
ABL (e.g., Moeng and Wyngaard 1989). Results
of N01 have shown, however, that this formulation

Fig. 1. Comparisons of the stability function SM obtained from the MYNN level-3 model with Eqs. (62)
(dotted line) and (66) (dashed line) with that from the LES (solid line) for convective ABLs. The ratios of
the ABL depth zi to the Monin–Obukhov length LM are (a) �4, (b) �11, and (c) �24. SM from the LES
fluctuates, because it is computed using the vertical shear which is small in the convective ABL (Adapted
from Nakanishi 2001).

Fig. 2. Stability functions, SM2 and SH2, for the level-2 model as a function of the gradient Richardson num-
ber Ri. MYNN (solid line) and MY (dotted line) represent the MYNN and MY models, respectively.
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gives a relatively good approximation at least to
our LES data, and that the stability functions Sq

and Syl are likely to be well represented by func-
tions of SM . NN04 then assumed the stability func-
tions Sq, Syl , Syq, and Sqw to be proportional to SM ,
and set all the proportionality constants to 2, for
simplicity (e.g., Deardor¤ 1980). More detailed ob-
servations of the figures of N01 reveal that Sq is
several times larger than SM , while Syl is nearly
equal to SM . To obtain a better performance, we
will revise the proportionality as

Sq ¼ 3SM ; ð67Þ

Syl ¼ Syq ¼ Sqw ¼ SM : ð68Þ

Although the present parameterization of the third-
order turbulent fluxes may be less sophisticated in
comparison with the one that incorporates the
production of their fluxes due to buoyancy (e.g.,
Therry and Lacarrère 1983; Canuto et al. 1994; Ab-
della and McFarlane 1997), the stability functions
in Eqs. (67) and (68) include the buoyancy e¤ects
through SM .

4. Performance of the MYNN model

To demonstrate the performance of the MYNN
model, we report the results of one-dimensional
simulation of Day 33 of the Wangara experiment
(Clarke et al. 1971), which has been often used to
verify numerical simulation models. The results to-
gether with those of a one-dimensional simulation
by the MY model are compared with those of a
three-dimensional LES instead of the observational
data, because the observed boundary layer is af-
fected by a large-scale subsidence (e.g., Deardor¤
1974; Yamada and Mellor 1975) and is not directly
compared with the simulated one.

4.1 Outline of one-dimensional simulation

For such a convective ABL on a clear day as ob-
served on Day 33 of the Wangara experiment, the
condensation of water vapor needs very little to be
considered. Thus the condensation and radiation
processes are excluded in the present simulation.
The governing equations are the same as described
in Section 2, except that ql is equal to zero and
therefore yl and qw are equivalent to y and qv, re-
spectively.

The boundary condition at the ground surface is
given in the form of the turbulent fluxes. Following
Wyngaard and Coté (1974), the heat and moisture
fluxes hwylig and hwqwig at the ground surface
are prescribed as functions of time:

hwyligðtÞ ¼ 2:16� 10�1 cos
t� 13

11
p

� �
K m s�1;

ð69Þ

hwqwigðtÞ ¼ 2:29� 10�5 cos
t� 13

11
p

� �
m s�1;

ð70Þ

where t is the elapsed time in hours from 0000 LST.
The surface momentum flux, on the other hand, is
calculated from Monin–Obukhov similarity theory
with the dimensionless gradient functions of Busi-
nger et al. (1971), where the roughness length is set
to 0.01 m.

The top boundary is treated as a stress-free rigid
lid:

qU

qz
¼ qV

qz
¼ qQw

qz
¼ 0; ð71Þ

qYl

qz
¼ 0:0075 K m�1: ð72Þ

Initial conditions for ðU ;VÞ, Yl , and Qw are
given by the observational data at 0900 LST on
Day 33 (16 August 1967) of the Wangara experi-
ment (Clarke et al. 1971). The geostrophic wind is
assumed to be independent of time (Deardor¤
1974); Ug varies linearly from �5.5 m s�1 at the
surface to �2.6 m s�1 at z ¼ 1 km, and then to
�1.2 m s�1 at z ¼ 2 km, and Vg is 0 m s�1 at all
heights.

The vertical computational domain consists of 50
layers with a uniform grid spacing of 40 m. Spatial
derivatives are approximated by a centered di¤er-
ence scheme of second-order accuracy. Time inte-
gration of the equations is performed until 1600
LST using the Crank–Nicholson scheme with a
time step of 2 s. Such a small time step is used in
order to assure the same conditions as the LES.

Note that, to obtain nonsingular solutions, a re-
striction on L=q as in Eq. (56) has to be strength-
ened to L=qa 0:45=N for the MY model because
of the di¤erent closure constants.

4.2 Outline of three-dimensional LES

The LES model used in this study is the same as
that of Nakanishi (2000), except that the subgrid
turbulent fluxes are determined from the standard
Smagorinsky–Lilly model, because the two-part
model of Sullivan et al. (1994), which is composed
of isotropic and anisotropic parts, is considered to
have only a minor e¤ect on a simulation of a con-
vective ABL. The Smagorinsky constant is 0.18.
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The turbulent Prandtl number is 1/3 for unstable
and neutral conditions, and increases with increas-
ing stability to 1 above the Richardson number of
0.25 (Nakanishi 2000).

The bottom and top boundary conditions are the
same as those of the one-dimensional simulations,
except for the conditions that the vertical velocity
component vanishes at these boundaries and
Monin–Obukhov similarity theory is applied to
horizontally-averaged quantities. A sponge layer
for avoiding reflections of the gravity waves from
the top boundary is not placed. The lateral bounda-
ries are periodic.

In the LES, small random perturbations are ini-
tially added to all velocity components below a
height of 100 m. A ‘‘spin-up’’ process for generat-
ing a realistic intensity of turbulence is skipped be-
cause turbulence grows quickly without such a pro-
cess in a convective ABL.

The computational domain of the LES consists
of 125� 125 grid boxes horizontally and 50 layers
vertically. A uniform grid spacing of 40 m is used
in all directions. Time integration of the equations
is done using the Adams–Bashforth scheme and
SMAC method. When solving the Poisson equation
for the pressure, Fourier expansion is applied to the
horizontal directions. The LES are also run with a
time step of 2 s until 1600 LST.

LES has demonstrated the good ability to repro-
duce turbulence properties in various types of tur-

bulent flows (e.g., Schmidt and Schumann 1989;
Andrén 1995). The results of our LES compare
well with those of previous LESs of the Wangara
experiment (e.g., Deardor¤ 1974; Golaz et al.
2002).

4.3 Results

The results of the MYNN and MY models are
compared with horizontally-averaged total (re-
solved plus subgrid scales) quantities of the LES,
which are considered to approximate the ensemble
averages. In expectation of wide applications of
the MYNN model, the results of the MYNN level-
2.5 model are also shown. Compared with the level-
3 model, the level-2.5 model reduces the computa-
tional cost of the turbulence process by about 40%,
because it does not require the prognostic equations
for scalar variances (Eqs. 6–8).

a. Potential temperature

Figure 3 shows vertical profiles of potential tem-
perature at every two hours between 1000 and 1600
LST obtained from the MYNN level-3 (NN30),
MY level-3 (MY30), MYNN level-2.5 (NN25)
models, and the LES, where the initial profile at
0900 LST is also shown. NN30 shows excellent
agreement with the LES results (Fig. 3a); it nicely
predicts the growth of the ABL with time, a weakly
stable stratification in the upper half of the ABL,
and the decrease of potential temperature due to
the convection penetrating into the overlying stable

Fig. 3. Vertical profiles of potential temperature obtained from the (a) MYNN level-3 (NN30), (b) MY
level-3 (MY30), and (c) MYNN level-2.5 (NN25) models. Thin lines represent the LES results, which are
horizontally-averaged total (resolved plus subgrid scales) quantities. Numerals in the legend mean the time
in LST.
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layer (the entrainment zone). On the other hand,
MY30 reproduces the LES results less satisfactorily
(Fig. 3b); the growth of the ABL is insu‰cient, un-
stable stratification prevails throughout the ABL,
and the entrainment zone is very thin. NN25 also
predicts a slightly unstable stratification throughout
the ABL (Fig. 3c). With respect to the growth of
the ABL and the entrainment zone, however, it
gives much better agreement with the LES results
than MY30 does.

Figure 4 shows vertical profiles of heat flux. Be-
low the inversion, the heat flux predicted by the
three models agrees well with that in the LES. The
combination of Figs. 3 and 4 reveals that only
NN30 is able to reproduce the countergradient dif-
fusion in the weakly stable layer in the upper half of
the ABL. Near the inversion, on the other hand,
MY30 considerably underestimates the negative
heat flux (Fig. 4b), implying an inability to incorpo-

rate the e¤ects of the penetrative convection and
entrainment. Although the absolute values of the
minimum heat flux in NN30 and NN25 are some-
what smaller than those in the LES (Figs. 4a,c),
they are significantly larger than those in MY30
(Fig. 4b).

Parameters of the convective mixed layer as ob-
tained from the di¤erent models are summarized in
Table 1. The ratio R of the minimum value of the
vertical heat flux to its surface value, the depth zi
of the mixed layer, and the convective velocity w�
by NN30 are all predicted more closely to those of
the LES than those by MY30. It is also noted that
even NN25 gives a better performance than MY30
does. zi predicted by the LES and NN30 is larger
than that of the Wangara observational data. This
is considered to be due to a large-scale subsidence,
the magnitude of which is unknown and can be
only determined so as to better reproduce the ob-

Fig. 4. Same as Fig. 3 but for the vertical heat flux hwyli.

Table 1. Parameters of the convective mixed layer as obtained from the models. NN30, MY30, and NN25 indicate
the MYNN level-3, MY level-3, and MYNN level-2.5 models, respectively. R is the ratio of the minimum value
of the vertical heat flux to its surface value, zi the height at which its minimum value occurs, and w� ¼
½ðg=Y0ÞhwyVigzi�

1=3.

Time �R zi (m) w� (m s�1)

(LST) LES NN30 MY30 NN25 LES NN30 MY30 NN25 LES NN30 MY30 NN25

1000 0.117 0.114 0.009 0.095 240 240 200 200 1.06 1.06 1.00 1.00
1200 0.230 0.185 0.027 0.158 1080 1080 880 1000 1.99 1.99 1.86 1.94
1400 0.221 0.157 0.022 0.167 1320 1360 1120 1240 2.13 2.15 2.02 2.09
1600 0.233 0.154 0.039 0.181 1520 1480 1280 1400 1.97 1.95 1.86 1.91
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servational data (e.g., Deardor¤ 1974; Golaz et al.
2002).

b. TKE

Figure 5 shows vertical profiles of TKE from the
three one-dimensional models and the LES. NN30
reproduces the LES results very well except near
the surface (Fig. 5a). NN25 also predicts TKE pro-
files similar to the LES results (Fig. 5c). On the

other hand, the magnitude of TKE in MY30 is
only a half of that in the LES throughout the ABL
(Fig. 5b).

Figure 6 shows the TKE budget normalized by
w3
�=zi at 1400 LST for NN30 and MY30, where

the results of NN25 are omitted because they are
fairly similar to those of NN30. NN30 is in excel-
lent agreement with the LES results (Fig. 6a). Since
the vertical wind shear is small (not shown), the

Fig. 5. Same as Fig. 3 but for the TKE.

Fig. 6. TKE budget normalized by w3
�=zi at 1400 LST, obtained from the (a) MYNN level-3 (NN30) and (b)

MY level-3 (MY30) models. Thin lines represent the LES results. S (solid line) means the shear production,
B (dashed line) the buoyancy production, Tþ P (dotted line) the turbulent and pressure transports, and D
(dash-dotted line) the dissipation rate.
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shear production S is negligibly small in all models.
The sum of the turbulent and pressure transports,
Tþ P, in NN30 and the LES has a large negative
(positive) value near the surface (the ABL top),
showing that the TKE is transported from the
lower part to the upper part of the ABL. However,
Tþ P in MY30 are considerably smaller than that
in the LES (Fig. 6b), mainly because the stability
function for the third-order turbulent fluxes in
MY30 is given by Sq ¼ 0:2, which is considerably
smaller than Eq. (67). Consequently, the buoyancy
production B nearly balances the dissipation rate D
in MY30.

c. Turbulent length scale

Figure 7 shows vertical profiles of turbulent
length scale L from the three one-dimensional
models and the LES, where L in MY30 is esti-
mated from the diagnostic equation of Mellor and
Yamada (1974) instead of the prognostic equation
of Mellor and Yamada (1982), and L in the LES is
estimated from the dissipation rate in the TKE
equation. The turbulent length scale L in NN30
and NN25 is comparable to or slightly larger than
that in the LES (Figs. 7a,c), while L in MY30 is
considerably smaller than that in the LES (Fig.
7b). This smaller L in MY30 causes the smaller
TKE (Fig. 5b), insu‰cient representation of the
e¤ects of penetrative convection, and less entrain-
ment, thus resulting in the slower growth of the
convective ABL (Figs. 3b and 4b). The better per-
formance of the MYNN model relies mainly on
the better formulation of L that realistically in-

creases with decreasing stability.
In the lower part of the ABL except near the sur-

face, L in NN30 and NN25 becomes larger than
that in the LES, as the ABL develops. This matter
will be discussed in the following section. Near the
top of the ABL, L in NN25 decreases more rapidly
with increasing height than that in NN30. This is
because NN25 does not reproduce the weakly sta-
ble stratification in the upper half of the ABL (Fig.
3c) and thus the length scale LB in Eq. (55) does not
work for NN25 except above the top of the ABL.

d. Specific humidity

Figure 8 shows vertical profiles of specific humid-
ity from the three one-dimensional models and the
LES. As the ABL develops, the specific humidity
increases (decreases) in the upper (lower) part of
the ABL. NN30 predicts these features very well
(Fig. 8a). Because of the smaller depth of the
ABL, the specific humidity within the ABL in
MY30 is about 0.3–0.4 g kg�1 larger than that in
the LES (Fig. 8b). NN25 has performance compa-
rable to NN30 (Fig. 8c).

Figure 9 shows vertical profiles of moisture flux.
The significant negative moisture flux near the top
of the ABL in the LES may be an artifact caused
by the centered di¤erence scheme of second-order
accuracy for the advection term (cf., Moeng 1986),
so that the di¤erences of the moisture flux among
the models in this region will not be discussed. The
profiles after 1200 LST illustrate that the moisture
flux increases gradually from the surface to the
ABL top and then decreases sharply across the

Fig. 7. Same as Fig. 3 but for the turbulent length scale.
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ABL top. NN30 reproduces generally well the LES
results (Fig. 9a). MY30 does not predict the mois-
ture flux very well, particularly at 1400 LST (Fig.
9b). It predicts the flux in the residual layer (be-
tween 300 and 700 m) at 1000 LST, although the
e¤ect of this flux does not appear clearly to the
distribution of the specific humidity (Fig. 8b). The
moisture flux near the top of the ABL after 1400
LST in NN25 seems to give slightly better agree-
ment with the LES results than that in NN30 (Fig.
9c). We think that this better agreement for NN25
is rather accidental, since NN25 does not reproduce
the weakly stable layer and the e¤ect of LB in the
upper half of the ABL (Fig. 3c).

5. Summary and discussion

Starting from N01, we have made e¤orts to-
ward improving the MY model. We consider buoy-
ancy e¤ects on the pressure-strain and pressure-
temperature-gradient covariances that are neglected
in the MY model, and have proposed a new diag-
nostic equation for the turbulent length scale L

that changes realistically with stability. The closure
and empirical constants have been determined from
the LES database of dry ABLs under di¤erent
stratifications. We also introduced a partial conden-
sation scheme of Sommeria and Deardor¤ (1977)
and Mellor (1977), and proposed a convenient

Fig. 9. Same as Fig. 3 but for the vertical moisture flux hwqwi.

Fig. 8. Same as Fig. 3 but for the specific humidity.
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computational scheme for a level-3 model (NN04;
NN06). This scheme enabled the use of the im-
proved MY (MYNN) level-3 model in an opera-
tional weather prediction model of the Japan
Meteorological Agency (Hara 2007; Saito et al.
2007).

Although the closure constants are based on our
LES database, they have been slightly revised by
referring to several recent studies on turbulence
closure models. This leads to the following further
improvements: The value of C3 on the buoyancy
term in the pressure-temperature-gradient covari-
ance falls within the range of generally accepted
values; The stability functions now show better
agreement with our LES data (Fig. 1); Finally,
the critical gradient Richardson number Ric of
0.95 approaches unity, which is the value sug-
gested by a variety of data (cf., Cheng et al. 2002,
2003), although the value of Ric is still under some
debate.

The good performance of the MYNN model has
been demonstrated against a LES of a convective
ABL observed on Day 33 of the Wangara experi-
ment (Clarke et al. 1971). Both the MYNN level-3
and level-2.5 models are shown to reproduce fairly
well the vertical distributions of the mean and
turbulent quantities obtained from the LES, and
greatly improve several weak points of the MY
model. The level-3 model has the remarkable capa-
bility of expressing the countergradient di¤usion in
the upper part of the ABL (Figs. 3a and 4a), while
the level-2.5 model has advantages of diagnostic de-
termination of scalar variances and relatively low
computational cost.

The good performance of the MYNN model
relies partly on the improvement of the stability
functions SM and SH for momentum and heat,
respectively, through the parameterization of the
pressure covariances that includes buoyancy e¤ects
(Figs. 1 and 2), and partly on the expression for
the stability functions Sq, Syl , Syq, and Sqw for the
third-order turbulent fluxes through SM (Figs. 5
and 6). The major improvement in its performance,
however, is due to our formulation of the turbulent
length scale L that realistically increases with de-
creasing stability (Fig. 7).

For highly unstable stratification, however, the
present diagnostic equation for L tends to predict
L somewhat larger than that from the LES in the
lower part of the ABL except near the surface.
Also there is a report that the present diagnostic
equation often predicts a somewhat large length

scale in the free atmosphere, when it is incorpo-
rated into an atmospheric general circulation model
(Chikira 2008, personal communication). Note that
the present diagnostic model is primarily designed
to evaluate L within or right above the ABL. We
will continue to examine the applicability to vari-
ous atmospheric phenomena and, if necessary,
make further improvement, while comparing with
a number of simulations and observations.

Our formulation of L is essentially based on the
LES database of dry ABLs (N01). Therefore it
does not explicitly consider the increase or decrease
of L accompanying the phase change of water, al-
though the phase change a¤ects the TKE through
the buoyancy production and also L indirectly.
With the foregoing application to various situations
in mind, a more desirable approach may be to
develop a prognostic equation for L. Unlike the
equation for the TKE, however, an equation for a
length scale has little physical basis; i.e., all the tur-
bulent correlation terms that appear in a length
scale equation have been parameterized in an anal-
ogous way to the corresponding terms in the TKE
equation. Furthermore, the prognostic variable has
been selected rather arbitrarily; e.g., q2L was used
by Mellor and Yamada (1982) and q3=L@ e by
Hanjalic and Launder (1972). In fact, it is reported
that, when the prognostic equation for q2L pro-
posed by Mellor and Yamada (1982) is used to de-
scribe the variation of the length scale with stability
in the surface layer, the characteristics of the sur-
face layer including dimensionless shear, dimen-
sionless temperature gradient, and second-order
moments are not reproduced for typical range of
the dimensionless height z ¼ z=LM (Niino 1990).
Recently, Kantha (2004) formulated a general equa-
tion for qmLn, where m and n are integer values.
We also plan to utilize our diagnostic equation
for L for exploring a suitable variable among
qmLn and empirical constants in its prognostic
equation.
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Appendix A

Level-2 model

In the level-2 model (Mellor and Yamada 1974,
1982), all the second-order turbulent quantities are
calculated diagnostically by neglecting the time-
tendency, advection, and di¤usion terms.

The diagnostic equation for the TKE is expressed
as

1 ¼ B1 SM2GM þ SH2GHð Þ

¼ B1SM2GM 1�Rfð Þ; ðA1Þ

and gives

q22 ¼ B1L
2SM2ð1�RfÞ qU

qz

� �2

þ qV

qz

� �2
" #

;

ðA2Þ

where SM2 and SH2 are the stability functions for
the level-2 model, Rf the flux Richardson number,
and q22=2 the TKE per unit mass for the level-2
model. Substitution of Eq. (A1) into Eqs. (27) and
(28) gives

SM2 ¼
A1F1

A2F2

Rf 1 �Rf

Rf 2 �Rf
SH2; ðA3Þ

SH2 ¼ 3A2ðg1 þ g2Þ
Rfc �Rf

1�Rf
; ðA4Þ

where g1 ¼ 0:235,

g2 ¼
2A1ð3� 2C2Þ þ B2ð1� C3Þ

B1
; ðA5Þ

F1 ¼ B1ðg1 � C1Þ þ 2A1ð3� 2C2Þ

þ 3A2ð1� C2Þð1� C5Þ; ðA6Þ

F2 ¼ B1ðg1 þ g2Þ � 3A1ð1� C2Þ; ðA7Þ

Rf 1 ¼ B1
g1 � C1

F1
; ðA8Þ

Rf 2 ¼ B1
g1
F2

; ðA9Þ

and Rf c is the critical flux Richardson number
given by

Rf c ¼
g1

g1 þ g2
: ðA10Þ

Unlike the stability functions SM2:5 and SH2:5 for
the level-2.5 model, SM2 and SH2 are independent
of histories of q2 and L, which appear in GM and
GH (Eqs. 39 and 40).

The flux Richardson number Rf is obtained from
the gradient Richardson number Ri1�GH=GM ¼
RfSM2=SH2 as

Rf ¼ Ri1½Riþ Ri2 � ðRi2 � Ri3Riþ R2
i2Þ

1=2�;
ðA11Þ

where

Ri1 ¼
1

2

A2F2

A1F1
; ðA12Þ

Ri2 ¼
1

2

Rf 1

Ri1
; ðA13Þ

Ri3 ¼
2Rf 2 � Rf 1

Ri1
: ðA14Þ

Appendix B

Partial-condensation scheme

Following Sommeria and Deardor¤ (1977) and
Mellor (1977), partial condensation scheme is
adopted for the condensation process. We assume
the probability distribution of physical quantities
around their ensemble averages to be a Gaussian
distribution. The liquid-water content Ql is then
given by

Ql ¼ 2ss RQ1 þ
1ffiffiffiffiffiffi
2p

p exp �Q2
1

2

� �� �
; ðB1Þ

where R is the cloud fraction given by

R ¼ 1

2
1þ erf

Q1ffiffiffi
2

p
� �� �

; ðB2Þ

s2
s ¼ a2

4
hq2wi� 2bhylqwiþ b2hy2l i
	 


; ðB3Þ

Q1 ¼
aðQw �QslÞ

2ss
; ðB4Þ

a ¼ 1þ Lv

cp
dQsl

� ��1

; ðB5Þ

b ¼ T

Y
dQsl : ðB6Þ

Qsl 1QsðTlÞ and dQsl 1 qQs=qT jT¼Tl
are deter-

mined from the Tetens formula and the Clausius–
Clapeyron equation, respectively, where Qs is the
saturation specific humidity and Tl ¼ Yl T=Y. For
the level-2.5 model, Eq. (B3) can be rewritten as

s2
s ¼ a2L2acB2SH2:5

4

qQw

qz
� b

qYl

qz

� �2

: ðB7Þ
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The buoyancy flux hwyVi is obtained as

hwyVi ¼ byhwyliþ bqhwqwi; ðB8Þ

where

by ¼ 1þ 0:61Qw � 1:61Ql � ~RRabc; ðB9Þ

bq ¼ 0:61Yþ ~RRac; ðB10Þ

~RR ¼ R� Ql

2ss

1ffiffiffiffiffiffi
2p

p exp �Q2
1

2

� �
; ðB11Þ

c ¼ ð1þ 0:61Qw � 1:61QlÞ
Y

T

Lv

cp
� 1:61Y ðB12Þ

(Mellor and Yamada 1982).
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a convective planetary boundary layer—A higher-
order-closure model study. Bound. Layer Meteor.,
7, 289–308.

Yamada, T., 1977: A numerical experiment on pollutant
dispersion in a horizontally-homogeneous atmo-
spheric boundary layer. Atmos. Environ., 11,
1015–1024.

Yamada, T., and G. L. Mellor, 1975: A simulation of the
Wangara atmospheric boundary layer data. J.

Atmos. Sci., 32, 2309–2329.

912 Journal of the Meteorological Society of Japan Vol. 87, No. 5


