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ABSTRACT

Parameterization of gravity waves due to subgrid-scale orography is now included in most existing large-
scale models of the atmosphere. Parameterization schemes, however, have so far been evaluated mainly in view
of the overall performance of the large-scale models. This may lead to an inappropriate assessment of the schemes
since errors from various sources may interact with one another. To avoid this situation, an approach is taken
in which a numerical model that explicitly resolves gravity waves is used to evaluate the performance of the
schemes. For this purpose, a mesoscale two-dimensional nonlinear anelastic nonhydrostatic model is developed
and used to numerically simulate gravity waves for a variety of orographic conditions. Regarding a subdomain
of the mesoscale model as the horizontal grid interval of a large-scale model, two vertical profiles of gravity
wave drag are compared—one for the subdomain-averaged values of the drag simulated by the mesoscale model
and the other for the drag calculated by a parameterization scheme applied to the subdomain-averaged variables.

A test parameterization scheme is constructed by adopting the essential features of the existing schemes. An
extensive evaluation of the test parameterization scheme with the aid of the dataset obtained from the mountain
wave simulations shows that the scheme does not properly treat the enhancement of drag due to low-level wave
breaking through the resonant amplification of nonhydrostatic waves. The authors show that the standard devi-
ation of orography and the tuning coefficient in the scheme alone are not sufficient for properly representing
this effect. The authors discuss the approach taken to overcome this deficiency by including additional statistical
information on subgrid-scale orography in the input to the parameterization. A revised parameterization scheme
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constructed following this approach is presented.

1. Introduction

It has been recognized that parameterization of grav-
ity waves due to subgrid-scale orography should be in-
cluded in large-scale models of the atmosphere (e.g.,
Lilly 1972). It has been shown, for example, that ex-
cessively strong westerlies may appear in the midlati-
tude Northern Hemisphere in high-resolution winter
simulations if gravity wave drag due to subgrid-scale
orography is neglected. Currently, gravity wave param-
eterization schemes primarily based on the linear hy-
drostatic mountain wave theory together with the sat-
uration hypothesis (Lindzen 1981) are widely used.
[See Gates (1992) for a list of selected large-scale
models that include gravity wave parameterization
schemes.]

Table 1 compares orographic gravity wave parame-
terization schemes used mainly for the stratosphere and
the troposphere. Boer et al. (1984) were the first to
implement a gravity wave drag parameterization
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scheme in a large-scale model of the lower atmosphere.
Chouinard et al. (1986) subsequently presented a
scheme in which the (inverse ) Froude number, ' 2 mea-
sure of nonlinearity of orographic gravity waves, is
used to determine the vertical distribution of drag. Pal-
mer et al. (1986) and McFarlane (1987 ) independently
developed schemes that utilize the saturation hypothe-
sis to formulate the breaking of gravity waves. Schemes
similar to those of Palmer et al. (e.g., Miller and Palmer
1986; Miller et al. 1989; Helfand et al. 1987; Iwasaki
et al. 1989; Broccoli and Manabe 1992 ) and McFarlane
(McFarlane et al. 1987) have been used in many other
studies.

It is believed that the major mountain ranges simply
act as barriers to the flow and do not significantly con-
tribute to the mean surface drag. Considering this pos-
sibility of flow blocking as well as numerical stability,
Palmer et al. (1986) posed an upper limit on the stan-
dard deviation (SD) of orography for the reference-
level drag (see Table 1). Miller and Palmer (1986),
McFarlane (1987), and McFarlane et al. (1987) used

' Fr = NR/U. (N is the Brunt—Viisili frequency, h is the mountain
height, and U is the horizontal wind.)
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more refined criteria for limiting SD, while Stern et al.
(1987) limited the magnitude of a tuning coefficient in
the parameterization scheme. Pierrchumbert (1986)
proposed a flux function that gives a smooth transition
between the blocking situation—for the flow with a
large Froude number—and the nonblocking situa-
tion—for the flow with a small Froude number. Pierre-
humbert’s flux function has also been used in other
studies (e.g., Stern et al. 1987; Stern and Pierrehumbert
1988; Alpert et al. 1988). For an easy comparison, the
expressions for the treatment of the blocking effect are
reproduced in Table 2. '

In addition to the inclusion of the blocking effect,
there have been numerous efforts to improve the pa-
rameterization of subgrid-scale orographic gravity
waves (Table 1). Miller and Palmer (1986) and Miller
et al. (1989) introduced directionally dependent sub-
grid-scale orographic variance. Stern and Pierrehum-
bert (1988) proposed a scheme that includes the effect
of the curvature of vertical wind profile. Surgi (1989)
constructed a moist gravity wave drag scheme through
the use of a moist Brunt—Viisilad frequency (see also
Durran and Klemp 1982a).

Further, Bannon and Yuhas (1990) considered oro-
graphic spectral distributions to represent complex ter-
rain instead of subgrid-scale orographic variance.
Schoeberl (1988 ) discussed that supersaturation (Lind-
zen 1988) occurs as a result of the localization of wave
breaking (see also Walterscheid and Schubert 1990)
and decreases associated momentum deposition. Kim
and Mahrt (1992) generalized the supersaturation hy-
pothesis by including the vertical variation of the mean
flow. Bacmeister (1993) explicitly included the effect
of orographic anisotropy. Laprise (1993) investigated
the validity of the WKBJ approximation in view of the
internal reflections and transient effect.

Another important effort to improve the parameter-
ization is made through the inclusion of the effect due
to wave breaking at low levels. As discussed earlier by
Peltier and Clark (1979), low-level wave breaking oc-
curring in the downstream region may induce a critical
layer below which the wave energy is trapped and, con-
sequently, the drag is enhanced through resonant am-
plification of nonhydrostatic waves. This effect of low-
level wave breaking has been neglected in most large-
scale models, but its importance is being acknowledged
(details will be discussed in section 6).

To date, gravity wave parameterization schemes
have been evaluated mainly by comparing results pre-
dicted by large-scale models with observations, focus-
ing on the overall improvement of simulated fields. In
those results, however, errors from a variety of sources
may interact with one another. To avoid this situation,
we follow an approach in which parameterization
schemes for subgrid-scale orographic gravity waves are
evaluated using a mesoscale model that can explicitly
simulate gravity waves (Kim and Arakawa 1991):
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TABLE 2. Treatment of blocking effects for the parameterization
of orographic gravity wave drag. The term SD/?Ri. is the solution of
(4.6) with Ri,, = Ri., where the subscript ¢ denotes the critical value.
See Table 1 for complete schemes.

Method Formula Users

Limit on SD Min(SD, 400 m) Palmer et al. (1986)
Miller et al. (1989)
Helfand et al.

(1987)

[Min(|SD|?, |SD|?Ri,)}'"* Miller and Palmer

(1986)

McFarlane (1987)

McFarlane et al.
(1987)

Iwasaki et al.
(1989)

Stern et al. (1987)

«Min(2SD, Fr.U/N)

Limit on k Min(Ax, 3U/N)]"!

(=m/Ax)

Pierrehumbert
(1986)

Stern et al. (1987)

Stern and
Pierrehumbert
(1988)

Alpert et al. (1988)

Asymptotic flux
function

GFn = pr i1

(i) Regard a subdomain of the gravity wave model
as the horizontal grid interval of a large-scale model.

(ii) Use a parameterization scheme to calculate the
vertical profile of gravity wave drag from the subdo-
main-averaged variables.

(iii) Compare the resulting drag profile with the
profile of the subdomain-averaged values of the drag
simulated by the gravity wave model.

The primary objective of this paper is to investi-
gate the importance of low-level wave breaking and
associated drag enhancement in parameterization of
subgrid-scale orographic gravity waves. Section 2 in-

troduces the gravity wave model. Section 3 presents

numerical simulations of mountain waves with the
gravity wave model for various orographic condi-
tions. Section 4 discusses the procedures we use in
developing an improved orographic gravity wave pa-
rameterization. We first construct a test parameter-
ization scheme based on the existing schemes and
evaluate the scheme using the dataset obtained from
the mountain wave simulations. We then introduce
our scheme, which is revised from the test scheme,
and evaluate the revised scheme again using the da-
taset obtained from the simulations. Section 5 gives
a summary of this work. Section 6 discusses the re-
sults. Appendix A describes some details of the nu-
merical model, and appendix B defines additional or-
ographic statistical measures of orography.
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2. Mesoscale gravity wave model
a. Basic framework

The model is based on the nonhydrostatic anelastic
system of equations:

o 9
aC J(C/po, ¥) + b, 8 + Fg L;(‘;, (2.1)
DL 16,4y + Fu - Lo, (2.2)
ot po
03] 1 8
a—" + o 5y (o) = (2.3)
X Po

where x and z are the horizontal and vertical compo-
nents of Cartesian coordinates, J is the Jacobian oper-
ator on the x—z plane, ¢ is the streamfunction for the
mass flux, p is the density, 8 is the potential tempera-
ture, and the subscript *‘0’’ denotes zonally uniform
reference states. The vorticity { and the x and z com-
ponents of the wind, # and w, are given by
(v e Loy 10k

’ po 8z’ po Ox
The terms Fr and F, represent the effects of turbulence
expressed as

(2.4)

F __0_2u" l/_ﬁlg .
& Ox? i 6xp062p0ww
0 0190
+ — "o o - " n’ 25
0z 0 8zpoazp0uw (25)
and
1 1/8 9]
F = — —_— " II+_ ”n_n s 2'6
¢ C,,wop()(axp“ 6pws> (2.6)

where double overbars and double primes represent the
ensemble mean of the three-dimensional turbulence
and deviation from the ensemble mean, respectively;
s = Cmy, + gz is the dry static energy, m

= (po/ ps)R’ % is the reference Exner function, p, is a
characterlstlc surface pressure, R is the gas constant for
dry air, and C, is the specific heat of dry air at constant
pressure. The coefficients, L; and L,, are for a thin
wave-absorbing sponge layer, which is placed imme-
diately below the upper boundary? (see Kim et al.
1993).

> The system (2.1) and (2.2) with the sponge layer implemented is
expressed as

[l 1 g o6 a,

= JUpo, ¥) + F, £ _
=TGP O Fot o o T+ 5, <15
a0 1 a, _
i P J@6, ) + Fy — ] +by(:(lule,

where a; (>0) and b; are functions of vertical grid interval Az, zonal
wavenumber « (>0), and mean zonal wind .
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The upper-boundary condition requires predicting
zonally averaged zonal wind at the boundary. The pre-
diction is through

ou 190

£y 20 02 (pou'w"),
where the single overbar and single prime denote the
zonal mean and the deviation from the zonal mean,
respectively. The lateral boundaries of the model are
periodic for all variables. The lower boundary of the
model consists of rectangular blocks, while the upper
boundary is a rigid horizontal surface. The lower-
boundary condition with bottom topography is incor-
porated following Roache (1972) and Pihos and Wur-
tele (1981).

(2.7)

b. Turbulence parameterization

For the parameterization of the turbulence, we
use a combination of the level 1 closure and a prog-
nostic _equation for the turbulent kinetic energy,
9= (u")?1], taken from the level 21/, closure model
of Mellor and Yamada (1982).

The turbulent kinetic energy equation is written as

5 99*\ 08 (5  0q

2 e | X

=/ v+ (3 Mo Ox )-i-é)z(3q)\l Oz
i O

—— Ou o q’
+u'u o 90 we + Al}, (2.8)

where (A, A;) = (0.23, 16.6)], and [, is the master
turbulence length scale. Following Mellor and Yamada

(1982), we express the parameterized turbulence
fluxes as

u  Ow z ow
u"W” — _qll(a_ a) R W"W” o q? — qul a_z .
I)I/_q_2__2l@ "0"__1@
S T L W 25
— 00
W = —ql 7, (2.9)
0z

where (I, L) = (0.92, 0.74)1,,, while surface turbu-
lence fluxes are calculated by the bulk aerodynamic
method. We can rewrite (2.8) by using (2.9) as

Bq s 5 3q a 5 8q

l 2q°
——2Ri>—"g—,

L A (210

+ 2ql, |Def|2<1



u'w w0 ww
A C,v w C,v
ﬁi_” e’ uu
AZ U m— 0 u
ww' ww
v ﬁ;:” w0 ww
C,v w -G,y
<< AX >

FiG. 1. The distribution of variables on a vertical C grid.
Double bars denote ensemble means of the turbulence.

where
Ou  Ow\? Ou\? Ow\?
2 . | Y2 i B il -
o= (e 5) +2| (5) + (5) ]
899
. 6, 0z
Ri = |D°ef|2. (2.11)

The fourth term in the right-hand side of (2.10) is set
to zero if negative. Appendix A describes how we de-
termine [,,.

¢. Numerical methods

To solve for streamfunction from vorticity, (2.4) can
be combined to give an elliptic equation; that is, {
= (1/po)0%/0x? + (8/02)[(1/po)O/87]. In solv-
ing this equation for ¢, formally different conditions
are applied at the lower and upper boundaries. At the
lower boundary, a Dirichlet condition (¢ = 0) is used.
At the upper boundary, a Neumann condition (9¢/dz
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= —poit) is applied to the zonal mean part of the
streamfunction ¢ and a Dirichlet condition (¢’ = 0) is
applied to the deviation part ’. Details are given in
Kim (1992) and Kim et al. (1993).

In the model, we use a staggered C grid applied to a
vertical plane (Fig. 1). For the simulations referred to
in section 3a of this paper the grid is stretched vertically
following Wilhelmson and Chen (1982), increasing
the resolution for the lower part of the model domain.
We use the Arakawa Jacobian ( Arakawa 1966 ) for vor-
ticity advection and Takacs’ scheme (Takacs 1985) for
potential temperature advection and the second-order
Adams-Bashforth scheme for time differencing. De-
tails are given in Kim (1992), a summary of which is
found in Kim et al. (1993) except for the turbulence
terms. The second-order Adams—Bashforth scheme is
also used to update vorticity and potential temperature
through the turbulence terms F; and F, given by (2.5)
and (2.6), respectively. To update turbulent kinetic en-
ergy g, the backward scheme is used for the dissipa-
tion term and partially for the diffusion term in (2.10),
while the forward (Euler) scheme is used for the re-
maining terms.

3. Numerical simulation of mountain waves

a. Comparison of model simulations with analytic
solutions

In order to compare model results with correspond-
ing analytic solutions, we use the analyses by Wurtele
et al. (1987) for a linear case and Huppert and Miles
(1969) for nonlinear cases.

1) COMPARISON WITH THE ANALYSIS BY WURTELE
ET AL. (1987)

Waurtele et al. (1987) presented an analytic solution
of a two-dimensional linearized stationary Boussinesq
system of equations applied to stratified flow in the
troposphere, with constant mean vertical wind shear
and stability, over a witch of Agnesi terrain.

TABLE 3. Environmental conditions for mountain wave simulations, WSK for a flow over a bell-shaped (witch of Agnesi) barrier by
Waurtele et al. (1987), HM# for flows over semielliptical barriers by Huppert and Miles (1969), and ME# for flows over barrier case ME.

Height B-V frequency Mean wind Wind shear [s™'] Richardson number Froude number
[m] s~ ims™'] AUIAz Ri = N/(AUIAzZ? Fr = Nh/U

Case h N U

WSK 100 0.01 10 @ surface 0.0025 16 0.10
HMI 1000 0.01 20 0.0 e 0.50
HM2 1000 0.01 i 10.75 0.0 o 0.93
HM3 1000 0.01 . 6.66 0.0 o 1.50
ME 1500 0.01 10 0.0 o 1.50
ME2 1500 0.015 15 0.0 o 1.50
ME3 1500 0.02 20 0.0 © 1.50
ME4 1500 0.005 7.5 0.0 o 1.00
MES5 1500 0.01 15 0.0 o 1.00
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FiG. 2. Vertical velocity fields for case WSK (a) calculated from
the linear analysis by Wurtele et al. (1987) and (b) numerically sim-
ulated from the Boussinesq version of our model (at 9600 s of model
time). For the simulation, Ax = 1250 m and A¢ = 5 sec. Note, Az
is stretched so that it is 100 and 1330 m for the lowest and highest
layers, respectively. The computational domain is 150 km wide and
45.94 km high. The contour interval is 0.2 m s~', and the heavy
contours denote zero lines. (a) The analytic solution represents only
a downstream pattern where only the resonant wave remains, while
(b) the simulation represents both upstream and downstream patterns.

The analytic solution by Wurtele et al. (1987) and
the results from a numerical simulation using the Bous-
sinesq version of our model applied to this case (case
WSK, see Table 3) are shown, respectively, in Figs.
2a,b. The turbulence parameterization is shut off in this
simulation. From the Froude number at the surface (Fr
= (.1), which characterizes mountain waves in view
of nonlinearity of the waves, we find that nonlinear
effect is not important for this case. Nonhydrostaticity
is important, however, due to the vertical wind shear
imposed. Although the numerical model used is non-
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linear and time dependent, its solution is expected to
agree with the analytic solution approximately after it
becomes quasi-stationary since nonlinearity is small in
this case. Both the analytic solution and simulation
show resonantly trapped lee waves propagating down-
stream. The two resonant waves of different amplitudes
(one trapped in the troposphere, the other extended into
the stratosphere) are well simulated by our numerical
model, showing good qualitative agreement with the
analytic solution.

2) COMPARISON WITH THE ANALYSES BY HUPPERT
AND MILES (1969)

Huppert and Miles (1969) obtained solutions of
stratified Boussinesq flows with constant N and U over
two-dimensional barriers of semielliptical cross sec-
tions. We choose three cases from Huppert and Miles
(1969) with two different eccentricities of semiellip-
tical barriers.

Figure 3 shows analytic solutions obtained by Hup-
pert and Miles (1969) and numerical simulations from
the Boussinesq version of our model for cases HM1
and HM2 (see Table 3). Turbulence is now turned on
with no surface fluxes. These cases have the same static
stability and barrier. Due to the difference in the mean
wind speed, however, the flow characteristics are quite
different from each other. Nonlinear effect for case
HM1 is small (Fr = 0.5), and thus, wave steepening
is not expected (see Figs. 3a,b). On the other hand,
nonlinear effect for case HM2 is relatively large (Fr
= 0.93). Thus, wave steepening is simulated (see Figs.
3c,d). The analytic solution for case HM2 is a linear
solution for which two regions of wave steepening are

—_—
et

T i~ E ___’//"/——\\
O =V ——r———
—__/‘—\ \/\
f ‘\’/—‘~
s ——————
=——— i EBEBEQmmmm———
===
P ————— N . Na——————
B 15 20 25 30 35

T —Ei——— —
e B

15 20 25 30 35
DISTANCE (km)

FiG. 3. Streamfunction for flow over a semielliptical barrier. (a) A
Boussinesq analytic solution of Huppert and Miles (1969) and (b) a
numerical simulation (at 3000 s) from the Boussinesq version of our
anelastic model for case HM1 with Fr (=Nh/U) = 0.5. For this sim-
ulation, Ax = 300 m, Az = 250 m, and At = 5 sec. The computa-
tional domain is 75.3 km wide and 35 km high. Panels (c) and (d)
are same as (a) and (b) but for case HM2 with Fr = 0.93.
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FiG. 4. Streamfunction for flow over a semielliptical barrier for
case HM3 with Fr = 1.5 from (a) a Boussinesq analytic solution of
Huppert and Miles (1969) and (b) a numerical simulation (at 3000 s)
from the Boussinesq version of our anelastic model. For this simu-
lation, Ax = 150 m, Az = 250 m, and At = 5 sec. The computational
domain is 37.65 km wide and 35 km high.

both assumed to be stationary. In the simulation, a quasi
stationary state is approximately reached, first at low
levels before the nonlinear effect becomes dominant
and later at upper levels, as also shown by Sharman et
al. (1988).

Figure 4 shows an analytic solution obtained by
Huppert and Miles (1969) and a numerical simulation
from the Boussinesq version of the model for case
HM3. Nonlinear effect plays a dominant role for this
case (Fr = 1.5). In the simulation, there is a blocked
region of upstream flow due to the steep slope of the
block barrier. Also in the simulation, we see a down-
stream region of isolated flow that seems to be related
to a flow separation between the vertically propagating
and resonant modes (as discussed by Clark and Peltier
1984). Overall patterns are, however, in good agree-
ment.

(a)

LA | i
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b. Simulations with various orography

We performed numerical simulations for various
shapes and sizes of mountains. To consider irregulari-
ties of real mountains, we designed 35 barriers repre-
sented by rectangular blocks to form the lower bound-
ary of the model (see Fig. 5).

1) UPSTREAM FLOW AND MODEL PARAMETERS FOR
THE SIMULATIONS

The density and the potential temperature at the sur-
face are 1.225 kg m™> and 288.15 K, respectively. A
constant Brunt— Viisild frequency N = 0.01 s ' and a
density-scale height S~' = 9000 m are used to define
the reference states. The mean zonal wind is initialized
by U = 10 m s ™', The horizontal and vertical grid sizes
are 1000 and 500 m, respectively. The integration time
interval At is 10 sec. The model domain covers 200
km horizontally and 35 km vertically. Turbulence is
turned on with no surface fluxes. The value of the mas-
ter turbulence length scale is about 78 m for the chosen
spatial resolutions (see appendix A). The three levels
below the top of the model include the sponge designed
by Kim et al. (1993).

2) CHARACTERISTICS OF THE SIMULATED FIELDS

We show examples of simulations performed with
the same flow parameters but with different barriers.
Shown are the snapshots taken when the waves are con-
sidered to reach quasi-stationary state. Since waves are
slightly transient, we choose the time when the zonally
averaged momentum flux at the level immediately
above the barrier reaches its first extremum.

(b)

MH —L—

(c)

MA | SA | l

LB & n

MBS W M SB S N

N oF S .

MC L M T se Ty

LD T LL. :

MD—" Y MK L'
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LE — '~ Mer——

ME —— —_ ML Sy

WF = = INT Ty

MM

SF[—_I
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Lol_n__rJ_L—‘rL\_rnt_‘
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LG ——" "
IHe—r—""—"___

FI1G. 5. Barrier cases of various shapes and sizes for (a) large (LX), (b) medium-sized (MX), and (c) small (§X) barriers. Cases
LM, LO, MK, and SG are asymmetric barriers with gentle upslope and steep downslope to generate strongly nonlinear waves
(e.g., Lilly and Klemp 1979). Cases LN and MJ are mirror images of cases LM and MK, respectively.
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Wave breaking occurs when Fr is greater than its cross-mountain flow inducing a nonlinear critical layer
critical value (Fr. = 1 in this study, see Fig. 6). The as shown by thick solid contours for the zonal velocity
region of wave breaking is well characterized by local fields. The overall look of the simulated flows with
steepening of the potential temperature fields. Usually, low-level wave breaking (e.g., case LO) seems to re-
this region is associated with a local reversal of the semble that of the hydraulic theory, which has been
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F1G. 6. Simulated mountain waves for cases (a) LO (Fr = 1.5), (b) MJ (Fr = 1.5), and
(c) SD (Fr = 1.0). From left, fields of the potential temperature 6 (K), zonal velocity u
(m s™'), and horizontal domain average of vertical momentum flux (drag) * (N m~?) are
shown. The reference level is shown by the thin horizontal line in the drag profile. Ignore
the drag profile below the reference level.
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successfully applied to explaining large-amplitude
mountain waves (Smith 1985; Durran 1986; Durran
and Klemp 1987). Vertically propagating waves may
be reflected from the wave-breaking region and reso-
nantly amplified, enhancing the divergence of vertical
momentum flux as discussed by Peltier and Clark
(1979, 1983) and Clark and Peltier (1984).

It is also noted that upstream flow blocking, which
is characterized by a stagnant upstream low-level flow,
occurs when Fr is relatively large (see the zonal ve-
locity fields). Another stagnant region is found near
the surface far downstream off the barriers (e.g., case
M1J), which may be associated with a hydraulic jump.

4. Parameterization of orographic gravity waves

a. Assessment of a test parameterization scheme for
orographic gravity wave drag

1) A TEST PARAMETERIZATION SCHEME

We construct a test parameterization scheme by
adopting some essential features of the existing
schemes. The reference-level drag is determined using
the formulation by Pierrehumbert (1986), while the
vertical distribution of drag is obtained following the
algorithm by Miller and Palmer (1986), which incor-
porates the wave saturation hypothesis by Lindzen
(1981) and the Eliassen—Palm theorem (Eliassen and
Palm 1960). An outline of the test scheme is given in
Table 1 together with those of selected existing
schemes.

The reference-level drag is commonly expressed
(e.g., Palmer et al. 1986) as

To = kpoNoUoph?,

where the subscript ‘‘0’’ stands for the reference level,
k is a tunable coefficient; U, and N, are the low-level
wind component in the direction of reference-level drag
and the low-level Brunt—Viisild frequency, respec-
tively; and A is a height proportional to the standard
deviation of sub-grid-scale orographic height. For the
treatment of nonlinear effect resulting from a large
Froude number at the reference level, Fr, (=N,SD/
Uo), Pierrehumbert (1986) expressed the reference-
level drag, instead of (4.1), as

4.1)

o= m poUs
0 Ax No
where m (<Ax/L,,, Ax is the grid interval and L,, is

the mountain width) is the number of (sub-grid-scale)
mountains in a grid interval and

G, (4.2)?

3 Similar to (4.1) with SD < 400 m (Palmer et al. 1986) in terms
of the magnitude of 7,, but provides smoother transition between
blocking and nonblocking flows. [For small Fr,, (4.2) reduces to
(4.1) with m/Ax = k.]
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Fr

G —_—
Fr3 + a*

Ginax (4.3)
Here, G,.. is a nondimensional saturation flux (set to
1 in this study as is usually done) and a is a function
of the mountain-aspect ratio* (also set to 1).

The drag above the reference level can be expressed
similarly to (4.1) as

m
Ax

where h, is the displacement wave amplitude. In.the
absence of wave breaking, the displacement amplitude
for the ith layer can be expressed using the drag for the
layer immediately below. Thus, assuming 7; = 7.,
(4.4) is rewritten as

T = — pNUh?, (4.4)

2 Ax Ti+1
Rl = = —*L

) m p;N;U; )

The minimum Richardson number or local wave-mod-
ified Richardson number, which determines the onset
of wave breaking, is expressed in terms of Ri and Fr,
(=Nh,/U) based on zonal mean N2 and U:

Ri(1 — Fry)
(1 +VRi-Fr)?

Wave breaking occurs when Ri,, < Ri, (=0.25). Then
Lindzen’s wave saturation hypothesis resets the dis-
placement amplitude A, to that corresponding to Ri,
= (.25. Substituting Ri,, = 0.25 in (4.6), we obtain the
critical h, (or h.) expressed in terms of the mean values
of U, N, and Ri:

h U{2(2 ! )1/2 (2 ! )} 4.7)
== +=] —-(2+—=);. 4

N VRi VRi

We determine the vertical profile of the orographic
Reynolds stress (or drag) as follows. (i) Calculate 7
from (4.2). (ii) Compute h, from (4.5). (iii) Check
the stability by using A, in (4.6). If Ri,, < Ri,, obtain
7 from (4.4) by using . computed from (4.7); other-
wise 7 is unchanged. (iv) Repeat steps (ii) and (iii) at
the next level unless either 7 approaches zero or the
model top is reached.

(4.5)

Ri, = (4.6)

2) ASSESSMENT OF PARAMETERIZATION SCHEMES
USING THE DATASET OBTAINED FROM MOUNTAIN
WAVE SIMULATIONS .

When extracting statistics from the dataset obtained
from the mountain wave simulations, we take the tem-
poral average of the fields for the interval of 1 h cen-
tered at the time of the first extremum of the zonally

* AR = h/a, the ratio of the height to the half-width of the moun-
tain.
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averaged momentum flux at the reference level. This
process is expected to eliminate short-term transience.

We note that an improper estimation of low-level
drag may lead to under- or overestimation of the inten-
sity of upper-level drag divergence. In some large-scale
models, the reference level is raised very high, well
above the lower troposphere, to avoid the difficulty in
parameterizing low-level drag and concentrate on pa-
rameterizing upper-level drag. Moreover, some use ar-
bitrarily increased values of SD for tuning 7,. We try
to reproduce these situations of the existing parameter-
ization schemes in our experiments.

We carry out a series of experiments by applying our
test parameterization scheme to the dataset. We create
situations with low-level wave breaking, such as case
ME (Fr = 1.5) shown in Fig. 7. We choose m = 2.5
as the basic value following Pierrehumbert’s (1986)
criteria applied to this case (i.e., m < Ax/L,, = 50 km/
20 km). The calculated value of £k (=m/Ax) is 5
X 1075 m™!, which has the same order of magnitude
as the value 2.5 X 10™> m™! used by Palmer et al.
(1986) and many others.

Figure 8 compares, for subdomain W (from x = 25 to
75 km), the drag profiles explicitly simulated by the nu-
merical gravity wave model (solid line) and those ob-
tained from the test parameterization scheme (dashed
line) for certain choices of m (equivalently, k), the ref-
erence level, and SD. First of all, we find that increasing
m helps improve the reference-level drag (compare the
top panels of Fig. 8). This is no longer true, however, for
the drag divergence at low levels, which is important for
the parameterization. Except near the top, the scheme
does not detect any wave dissipation for this case. Second,
we find that varying the height of the reference level, with
m fixed, does not significantly change both the intensity
of the drag and its divergence (compare the middle panels
with Fig. 8b). Next, with m and the height of the refer-
ence level fixed, increasing SD improves the result to
some extent (compare the bottom panels with Fig. 8a).
Drag divergence at low levels, however, is still very
weak—even with the largest value® of SD we tested as
shown in Fig. 8i. Moreover, it is difficult to determine the
necessary amount of increase in SD.

We also perform tuning experiments with some stan-
dard existing schemes, such as those by Palmer et al.
(1986), Miller and Palmer (1986), and McFarlane
(1987), which are outlined in Table 1 (see also Table 2).
Figure 9 shows the results for case ME with the scheme
of Palmer et al. (1986), which is comparable to Fig. 8
except that Figs. 9g—i are the results without the limit on
SD (i.e., SD < 400 m) but with different m. Figure 10
shows the results with Miller and Palmer’s scheme (pan-
els a—f) and those with McFarlane’s formulation to treat

® Note that the effect of increasing SD in (4.2) is a fraction of that
with (4.1) due to the asymptotic nature of function G.
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Fic. 7. Simulated potential temperature for case ME. The domain
is divided into three subdomains for application of parameterization
schemes: W (x = 25-75 km, solid lines), U (30-55 km, short dashed
lines), and D (45-70 km, long dashed lines).

the blocking effect (panels g—i). Comparison of these
figures with Fig. 8 (panels a—f) shows that the test
scheme (a hybrid scheme) performs similarly to these
schemes, at least for case ME. The performance of the
test scheme is particularly similar to that of Palmer et al.,
which is widely used in large-scale models. We thus con-
tinue to use our test scheme as the base scheme in this
study.

Despite tuning as shown above for case ME, the low-
level drag divergence is either not produced or seri-
ously underestimated by the test parameterization
scheme. Through experiments with other cases, we
found that this is a general tendency. Figures 9g—i dem-
onstrate that relaxing the limit on SD enhances the
magnitude of the reference-level drag but does not nec-
essarily enhance the divergence at low levels. Since
low-level wave breaking occurs mainly in downstream
regions, we perform a more detailed analysis to see
more local behavior of the test scheme. We consider
two more subdomains (see Fig. 7)¢, U (from x = 30
to 55 km) and D (from 45 to 70 km), as well as sub-
domain W used earlier. In determining a single statis-
tical value of k, which is needed in applying the
scheme, we first consider the three barrier widths (L,
M, and §; see Fig. 5) together with the three subdo-
mains defined above. We then take the average of m
for the three barrier widths for each subdomain (see
Table 4). We adjust m in such a way that k (=m/Ax)
has a fixed value regardless of the subdomains, as in
most existing parameterization schemes. The resulting

¢ When the interval for which the horizontal average is taken is not a
multiple of the wavelengths of the waves, wiggles appear in the profiles
of momentum flux. This phenomenon will become more noticeable as
the horizontal grid size of large-scale models becomes shorter since the
Eliassen—Palm theorem tends to become less applicable. To reduce un-
desired effects of this situation, it may be useful to horizontally smooth
the output from a parameterization scheme over a few grid intervals.
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TABLE 4. Determination of the number of sub-grid-scale mountains
m following Pierrehumbert (1986) for barrier widths L, M, and S, and
for subdomains W, U, and D.

Barrier size L M S
Subdomain w U/D w U/D w U/D
Ax [km] 50 25 50 25 50 25
L, [km} 30 20 20 15 10 10

m = Ax/L,, 1.67 1.25 2.50 1.67 5.00 2.50

kis 7.2 X 10> m™', and the corresponding m is 3.6
and 1.8 for W and U/D, respectively.

Figure 11 compares the results of applying the scheme
to case ME. The upper three panels are the results with
the original values of SD and m calculated above. The
overall difference between the profiles of model-simu-
lated drag and scheme-parameterized drag is largest for
subdomain D at low levels, indicating that low-level wave
breaking occurring in the downstream region is not well
parameterized. The middle panels of Fig. 11 show the
results with the doubled values of SD. We see that the
increase of SD significantly improves the result for the
subdomain U/ but not much for the subdomain D. The
lower panels of Fig. 11, which are the results with a 10-
times larger SD, show that further increase of SD can
result in overestimation of the drag and its divergence for
subdomain U; whereas, it improves the result for sub-
domain D. We found similar results with other cases.

Based on our experiments and analyses, we sum-
marize the weakness of the test parameterization
scheme as follows:

® The parameter m (or equivalently the coefficient
k) and SD are generally not sufficient to tune the mag-
nitude of the reference-level drag and the drag diver-
gence at low levels.

¢ The parameterization at low levels can be im-
proved by tuning SD for regions without breaking
waves and not for regions with breaking waves.

In conclusion, our results suggest that the effect of low-
level wave breaking—that is, enhancement of low-
level drag—is not properly included in the test scheme.
We believe that this situation is more or less common
among the existing schemes.

In terms of SD, which is the only statistical information
other than k regarding the orography in the test scheme,
subdomains U and D are indistinguishable because they
contain the antisymmetric portions of the barrier (see Fig.
7). Consequently, even with the same barrier in the do-
main, the validity of the scheme depends on the choice
of the grid location relative to the barrier. To distinguish
between these cases, we believe that additional statistical
information on orography other than the standard devia-
tion is needed. This motivates us to move our attention
to more detailed information on orography, that is, higher
moments of orographic statistics.
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3) THE SCORER PARAMETER AND THE NONLINEAR
DRAG ENHANCEMENT

The Scorer parameter’ determines the vertical wave-
number of waves. Weissbluth and Cotton (1989) re-
lated locally large values of the Scorer parameter
(Scorer 1949), which are due to local flow decelera-
tion, to wave breaking. Durran (1986, 1990) discussed
the development of large-amplitude mountain waves
and the corresponding increase of the chances for wave
breaking due to Scorer parameter layering, in which
the variables of a layered atmosphere are structured in
such a way that the Scorer parameter changes with
height. Iwasaki et al. (1989) pointed out the potential
usefulness of including the vertical profile of the Scorer
parameter in parameterizing short nonhydrostatic
waves that are accompanied by a large amount of ver-
tical momentum transfer.

We find that there is a rapid drop of the Scorer pa-
rameter near the reference level for subdomain D (see
Fig. 12). This is associated with a local nonlinear crit-
ical layer formed near the reference level within this
subdomain. Nonhydrostatic gravity waves can then be
resonantly amplified near the reference level, enhanc-
ing low-level drag and its divergence as discussed in
section 3b. In fact, comparison of Figs. 11 and 12 sug-
gests that the low-level drag divergence is closely re-
lated to the decrease of the Scorer parameter with
height. We believe that this resemblance between the
vertical drag divergence and the Scorer parameter de-
crease, which is also common in other wave-breaking
cases we have studied, can be used in the parameter-
ization. The region of low-level wave breaking, how-
ever, generally occupies only a portion of the grid in-
terval of large-scale models. Thus, it is difficult to de-
tect the existence of a local nonlinear critical layer
induced by the waves from the grid-scale variables.
Therefore, we follow an indirect way in which we in-
troduce additional statistical measures of sub-grid-scale
orography that are directly related to the existence of
the nonlinear critical layer.

b. Revision of the test parameterization scheme

1) THE FROUDE NUMBER AND THE SCORER
PARAMETER FOR THE PARAMETERIZATION

One of the distinguishing features among the exist-
ing parameterization schemes is the method of treating

. the upstream flow blocking phenomenon. Some of the

criteria for the flow blocking use ad hoc cutoff limits
on SD, while some use the relationship between SD, N
and U, or their combination in terms of the Froude

7 For our anelastic system, it is defined as I = NYU? — S¥4 — y/
U, where the buoyancy N, the heterogeneity S, and the vertical wind
curvature y are defined by N? = (glp)(dbldz), S = —d Inpy(2)/dz,
and ¥ = —po(d/dz)(C/po) = poldldz)[(1/pe)(dU/dz)], respectively.
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FiG. 12. Comparison of the profiles of the Scorer parameter for the three subdomains.

number (Fr = N*SD/U) as given in Table 2. These
criteria, however, affect not only the upstream region
but also the downstream region if the two regions are
not treated separately. The downstream region, which
is accompanied not by flow blocking but by low-level
wave breaking, is improperly governed by the flow-
blocking criteria, which are originally designed to treat
the upstream region only.

We investigate how the Froude number at the reference
level, Fry, can represent the effect of low-level wave
breaking by analyzing the dataset obtained from the grav-
ity wave model. We consider subdomains U and D for
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FIG. 13. Scatter plots of the deviation of the Scorer parameter (A%)
at the reference level from that at 2.5 km above vs the Froude number
at the reference level (Fry) for subdomain U (denoted by open circles
and dashed line) and subdomain D (denoted by dots and solid line)
shown in Fig. 7. For each subdomain, statistics are obtained from 35
mountain wave simulations.

the upstream and downstream regions (Fig. 7). We use
the deviation of the Scorer parameter at the reference level
from that of the vertical environment (2.5 km above the
reference level) as a measure of the magnitude of drag
enhancement due to low-level wave breaking. Figure 13
shows that Fr, is relatively well correlated with the de-
viation Al? for each subdomain. When the two subdo-
mains are combined, however, Al? cannot be uniquely
determined from Fry only. That is, the (domain averaged)
Froude number alone, which measures the nonlinearity
of averaged flow, is not effective in representing low-level
wave breaking that occurs due to strong local nonlinearity
of flow. We thus devise a better parameter to represent
A’ than Fr, alone by introducing additional statistical
measures of orography and combining them.

2) ADDITIONAL STATISTICAL MEASURES OF
OROGRAPHY

Besides the mean (4) and SD of orographic height,
we devised the orographic asymmetry and convexity
parameters (abbreviated as OA and OC, respectively),
which statistically determine, respectively, how
skewed (asymmetric) and how protruded (sharp) the
sub-grid-scale orography is for a grid interval of a
large-scale model. Figure 14 schematically illustrates
the definitions of OA and OC, and Fig. 15 shows the
values of OA and OC for case ME (see appendix B for
details).

The value of OA takes into account the relative
asymmetry of orography with respect to the center of
the domain under consideration; OC is designed as a
parameter for multiple irregular barriers, which reduces
to mountain aspect ratio (AR) for single symmetric
barriers (see Fig. 16). From the values of SD, OA, and
OC for this case, we see that OA serves as a measure
for distinguishing between subdomains U and D.

3) THE REVISED SCHEME
We formulate the reference-level drag as

(4.8)
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FiG. 14. Iilustration of (a) Orographic Asymmetry and (b) Oro-
graphic Convexity defined in appendix B. In case of an isolated single
symmetric barrier, OA is positive (negative) if the barrier is located
toward the upwind (downwind) direction and is zero if the barrier is
located in the center of a domain. Sharper (duller) barrier yields a
larger (smaller) value of OC.

where E, m’, and G’ are an enhancement factor, the
*‘number of mountains,’’ and a flux function to be spec-
ified, respectively. Here, primes denote revised expres-
sions to be distinguished from those of the test scheme,
given by (4.2)—-(4.5), hereafter called the original
scheme. The drag above the reference level is identical
in form to (4.4) except that m is replaced by m'.

We define m' and E in such a way that they depend
on the geometry and location of the subgrid-scale orog-
raphy through OA and the nonlinearity of flow above
the orography through Fr. We include OC in the sat-
uration flux G’ in such a way that G’ is proportional
to OC (to be discussed later). The forms of E, m’, and
G' we have chosen are

E(OA, Fry) = (OA + 2)°; & = CgFry/Fr., (4.9)

m'(OA, L,) = C,Ax(1 + Y, L,/Ax)°**',  (4.10)

Fr

G'(OC, Frc,) = “m N
0

a*=C,0C™, (4.11)

where Frq (==1) is the critical Froude number, L, is the
width of a horizontal cross section of orography at the

W (OA=0, OC=2.74)

' _ U (DA=-0.84, OC=1.60) > o
f e ¢ D (OA=0.84, 0C=1.60) 4 !
1
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FIG. 15. Configuration of case ME represented by rectangular
blocks and corresponding values of OA and OC for the three sub-
domains. Bold type numbers denote the horizontal grid index. The
orographic statistics depend upon the relative location of the barrier
in the domain as well as the sizes of the barrier and domain.
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the barrier intersects. The correlation between AR and OC is 0.9.

critical height defined by\hc = FroUy/Ny = SD* Fre/
Fry (see Fig. 17), 2, L,AAx (=L,) is the fractional
width covered by the subgrid-scale orography higher
than A for a domain with the interval Ax, and Cg, C,,,
and C are constants to belspecified.

We set 6 as proportional to Fr, to avoid excessive
enhancement of the reference-level drag when the flow
is not strongly nonlinear. The factor OA for m’ is used
in such a way that the magnitude of the enhancement

z [m]

Ly= S Lp/Ax
1500} X= &x-h
1000} hc=600
SO0F

A

A T :
>« iet—>
Lhy hy

AX

FiG. 17. Determination of L, (the fractional area covered by the
critical sub-grid-scale orography) depending upon the nonlinearity of
the flow for case LM. Smaller 4, represents stronger nonlinear flow
with larger Fr,.
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depends on the location of the barrier. Note that large
m (in the original scheme) does not necessarily pro-
mote wave breaking at low levels® (see Figs. 9g—i).
Therefore, we introduce the additional factor E, which
enhances only the reference-level drag, while through
parameter m’ we control both the drag at the reference
level and its divergence above the reference level.

In this study, we set C; = 0.8,C,,=3.3 X 10> m™!,
and C; = 0.5. With typical values of parameters,® E
= land m' = 1 (no enhancement) for typical upstream
configuration, while for typical downstream configu-
ration they give E = 3 and m' = 4. (This magnitude
of the enhancement is comparable to that of strongly
nonlinear mountain waves based on numerical simu-
lations.) An advantage of using m’ and E can be seen
in Fig. 18, which shows that A/® is now almost
uniquely determined from m' and E. This is in contrast
to Fig. 13, in which Fr, is used instead, indicating that
m' and E can better parameterize the effect of resonant
nonhydrostatic waves than Fr, alone.

From a series of experiments, we found that the mag-
nitude of drag divergence tends to be underestimated
by the revised scheme in low-level downstream regions
with wave breaking. Therefore, at low levels when OA
> 0 (i.e., in the ‘‘downstream’’ region) we tentatively
replace the saturation hypothesis by the following for-
mula based on the ratio of the Scorer parameter:

2

i - li
T =M1n[C,2—,1] s

Ti+1 i+l

(4.12)

below 10 km, where C, = 1 and I? is calculated from
the input to the scheme.

4) ASSESSMENT OF THE REVISED PARAMETERIZATION
SCHEME FOR DOMAINS CONTAINING A SINGLE
SIMPLY SHAPED BARRIER

We again analyze case ME (Fig. 7). Figure 19 com-
pares the drag profiles obtained from the gravity wave
model (solid line) with those parameterized by the
original scheme (long dashed line) and by the revised
scheme (short dashed line). We compare the results
for subdomains U and D. For subdomain U, the value
of Ek' (=Em'/Ax = 3.8 X 1073 m™!) is smaller than
k(=7.2x107° m™"), while G’ (=0.66) is larger than
G (=0.37). The two schemes provide similar magni-
tudes of the reference-level drag (Fk'G'/kG = 0.94).
The revised scheme, however, produces drag diver-
gence at low levels. For subdomain D, Ek' (=1.3
X 107 m™')is much larger than k (=7.2 X 105 m™"),
while G’ (=0.67) is moderately larger than G (=0.39).

8 An increase of m results in an increase of 7. This increase of T,
however, results in a decrease of h; and thus an increase of Ri,. As
a consequence, wave breaking is less likely to occur with larger m.

*—1<sOA=<1;0<sL,<1;C,Ax=1andé = 1.
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As a result, the revised scheme produces an improved
profile through significant enhancement of the refer-
ence-level drag (Ek'G'/kG = 3.02) and the vertical
drag divergence at low levels. These results demon-
strate that £ and m’ selectively control the magnitude
of the drag for the subdomain including the down-
stream regions, while G’ tends to almost equally en-
hance the drag regardless of the subdomains for this
case.

From these and other experiments, we found that
both the original and revised parameterization schemes
tend to perform reasonably well for subdomain U (rep-
resented by negative OA) where an active wave-break-
ing region is not included. On the other hand, they per-
form relatively poorly for subdomain D (represented
by positive OA) where an active wave-breaking region
is included. The revised scheme, however, generally
succeeds in producing low-level drag divergence. As
far as the drag divergence or convergence is concerned,
errors of the revised scheme are almost entirely con-
fined in the convergence layers for case ME (see sub-
domain D in Fig. 19), indicating difficulties in treating
such layers (see also section 4c).

For the series of mountain wave simulations per-
formed in this study, we used N =0.01 s 'and U = 10
m s~' to represent the lower troposphere. The Froude
numbers for the three different mountain heights cho-
sen in these simulations (i.e., 500 m, 1000 m, 1500 m)
are 0.5, 1.0, and 1.5, which are below, at, and above
the critical value (1.0) for wave breaking, respectively.
To show how parameterization schemes perform for
other flow conditions, we investigated an additional set
of simulations for case ME (see Figs. 20b—e) repre-
senting different atmospheric structures given in Table
3. (Fr = 1.0 for these cases so that wave breaking
occurs.) The simulated fields for cases ME2, ME3,
MEA4, and MES are qualitatively similar to one another
and to that of case ME in that there is low-level wave
breaking. (Some differences found in the downstream
regions of cases ME4 and MES5 from other cases are
caused by trapping of lee waves in low-level down-
stream regions propagating downstream due to non-
hydrostaticity associated with smaller nondimensional
halfwidth.'®) The upper four panels of Fig. 21 show
the parameterized results, which are qualitatively sim-
ilar to those of case ME (shown in Fig. 19) despite the
differences in the atmospheric structures. These results
indicate that Fr is the leading factor in determining the
characteristics of mountain waves, as far as mountains
with a fixed shape are concerned. In addition, we con-
sidered a typical midlatitude winter condition (see Fig.
20f, case ME6) taken from McFarlane (1987, see his
Fig. 2). Despite the presence of the vertical wind shear
in the troposphere, wave breaking still occurs in the

b = NalU.
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FiG. 18. As in Fig. 13 but for (a) m’ and (b) E instead of Fr,. Also shown is (c) for m'E.

downstream region although the depth of the wave
breaking region is relatively shallow. The result with the
schemes (Fig. 21e) shows the performance of the
schemes at low levels similar to other cases.

5) ASSESSMENT OF THE REVISED SCHEME FOR
DOMAINS CONTAINING BARRIERS WITH VARIOUS
SHAPES

Although Fr more or less determines the character-
istics of mountain waves for mountains with a fixed
shape, the effect of mountain shape remains to be ex-
amined. We thus consider barriers of various shapes.
First, as shown in Fig. 22, we choose extreme situations
of case SA as a block barrier (or high plateau), case
MI as a flat barrier (or low plateau), and case LK as a
barrier with a peak to a plateau—which was considered
a difficult case by Stern and Pierrehumbert (1988).
Figure 22 displays parameterized drag profiles for these
cases. Case SA (Fig. 22a) reveals almost complete up-

stream flow blocking and strong downstream wave
breaking at low levels (Fr = 1.5). Although case SA
has a barrier with deep vertical slopes, the revised
scheme produces the divergence at low levels (Fig.
23a), whereas the original scheme fails to do so. Case
MI (Fig. 22b) shows basically linear waves (Fr = 0.5)
without wave breaking, and both schemes correctly
produce no drag divergence or weak divergence due to
dissipation of waves (Fig. 23b). The small peak in case
LK (Fig. 22c) changes the flow to a weakly nonlinear
flow (Fr = 1.0), and the revised scheme successfully
produces the drag divergence at low levels (Fig. 23c).

Second, we choose cases LM and LN (Figs. 24a,b),
which share the same values of SD and OC but have
OA with opposite sign for subdomain W."" Case LM

"SD = 500 m, OC = 2.2, and OA = F 0.11 for cases LM and
LN, respectively.
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F1G. 19. Comparison of the drag profiles obtained from the gravity wave model (solid line) with those from

EK'GY(KG) = 0.94

EKGY(kG) = 3.02

the original parameterization scheme (long dashed line) and the revised parameterization scheme (short dashed

line) for the three subdomains of case ME shown in Fig.

explained in the text.

includes stronger wave breaking and vertically propa-
gating waves mainly in the downstream region, while
case LN includes vertically propagating waves almost
directly above the barrier. When zonally averaged, case
LN appeared to be more strongly nonlinear in view of
the zonally averaged drag profile obtained from the
gravity wave model (not shown). This case was con-
sidered more strongly nonlinear also by the revised
scheme, mainly through (positively ) large OA. The re-
vised scheme generally responded more sensitively to
the regions of drag divergence than the original scheme
[the results are given in Kim (1992)].

Third, we compare cases ME, MM, and ML (see
Figs. 7 and 24c,d) as cases with different shapes of
barriers in terms of the number of ridges (1, 2, and 4,
respectively). These cases generate different waves. In
terms of the orographic statistics, however, the three
cases are indistinguishable'? for suybdomain W. The

2SD = 500.4 m, OA = 0, OC = 2.74.

7. The orographic statistics and related parameters are

only parameter that distinguishes between the three
cases is Fr, but it differs significantly'® only between
cases ME or MM and ML. It appears that better statis-
tical measures or even higher moments of orographic
statistics are needed to distinguish among these cases.
A question then arises regarding the effect of valleys
in cases MM and ML.

Emeis (1990) and Grisogono et al. (1993) consid-
ered that gravity waves generated by two two-dimen-
sional bell-shaped ridges may interfere constructively
or destructively with each other. Tampieri and Hunt
(1985) noted that, depending upon the distance be-
tween the ridges and Fr, the flow in the valley between
two ridges may become stagnant and thus separated
from the flow above the valley, or the flow in the valley
may be ventilated. It is thus possible that a series of
closely spaced barriers behave like a single wide bar-
rier. One such example is case ML shown in Fig. 24d

B Fri® = 0.73, Fri™ = 0.74, Fri™ = 1.04.
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(vs case MB, Fig. 24f). Except for the small difference
of the flow immediately above the barrier due to the
weak penetration of the flow into the valley in case ML,
the overall wave patterns are similar. As a counterex-
ample, we also compare case MM (Fig. 24c) with case
MC (Fig. 24e). These two cases seem to generate qual-
itatively similar waves at low levels, but case MM gen-
erates stronger waves due to the relatively strong pen-
etration of the flow into the valley.

To see how these results affect the performance of
the parameterization schemes, we compared the param-
eterized results for cases ME, MM, and ML (Kim
1992). The results show that the revised scheme gen-
erally produces stronger wave breaking for subdomain
D at low levels than the original scheme. Moreover, we
compared case MM with case MC, and case ML with
case MB in terms of the orographic statistics and found
that the difference in OC may serve as an additional
measure* for distinguishing among barriers incorpo-
rating the ‘‘valley effect’’; that is, the presence of val-
leys in a mountainous region increases the drag. This
problem may be associated with the ‘‘envelope orog-
raphy’’ that enhances large-scale orography by ‘‘filling
up’’ the valleys. To determine how effectively valleys

' Larger OC corresponds to larger G’ resulting in larger 74. We
use OC to parameterize this relationship between G and 74 by assum-
ing a simple linear relationship between G and OC."

in mountainous regions affect the performance of pa-
rameterization schemes, however, more extensive in-
vestigation will have to be performed with a three-di-
mensional model.

6) STATISTICAL ASSESSMENT OF THE REVISED
SCHEME

Finally, we collect statistics from a series of exper-
iments performed with the dataset. Figures 25a,b show
the correlation between 7, obtained from the gravity
wave model and from the original parameterization
scheme and the correlation between 7, obtained from
the gravity wave model and from the revised parame-
terization scheme, respectively.'®

We also examined the drag divergences at low levels
(not shown). We found that the correlation between
the model-simulated drag divergence and the parame-
terized divergence obtained from the revised scheme
(0.4) is higher than the corresponding correlation with

1> We designed the revised scheme in such a way that the drag and
its divergence are allowed to be underestimated for some cases but
not overestimated. Figure 25 shows that the revised scheme systemat-
ically underestimates the reference-level drag. One may suggest to
systematically increase the magnitude of the reference-level drag, but
this tends to produce excessively large drag divergence at high levels
when the scheme fails to produce adequate drag divergence at low
levels (e.g., Figs. 10c,i).
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FiG. 22. As in Fig. 7 but for cases (a) SA, (b) M, and (c) LK.

the original scheme (0.2). Furthermore, we calculated
the root-mean-square (rms) error of the acceleration
due to the drag divergences from the statistics. We
found the rms difference between the model-simulated
acceleration and that from the original scheme, and the
corresponding rms difference using the revised scheme
are 530 and 373 m s ' day ~', respectively. These sta-
tistics show that the performance of the revised scheme
is, in a statistical sense, superior to that of the original
scheme.

7) SUMMARY OF THE CHARACTERISTICS OF THE
REVISED SCHEME

Based on our experiments and analyses, we sum-
marize the characteristics of the revised scheme as fol-
lows:
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¢ The magnitude of the reference-level drag is de-
termined by the statistics of sub-grid-scale orography
in a grid interval and by the characteristics of the flow.

¢ Together with the Froude number, the additional
statistical measures of orography, that is, Orographic
Asymmetry and Convexity, are used to represent the
effect of low-level wave breaking and the valley effect,
respectively.

In conclusion, our results suggest that the effect of
low-level wave breaking, that is, enhancement of low-
level drag, is more adequately represented in the re-
vised scheme through the selective enhancement of the
reference-level drag with the aid of the additional sta-
tistical measures of orography.

c. Some considerations on the implementation of
gravity wave parameterization schemes into large-
scale models

Most of the existing parameterization schemes are
based mainly on two-dimensional linear stationary hy-
drostatic mountain wave theory. In this section, we dis-
cuss problems that arise from such simplifications (in-
cluding those unique to our revised scheme) for more
general situations in large-scale models.

1) MAINTENANCE OF AN INVARIANCE PROPERTY OF
PARAMETERIZED DRAG WITH RESPECT TO THE
CHOICE OF GRID

In this paper, we evaluated parameterization
schemes for a single domain that corresponds to a grid
interval of large-scale models, while neglecting the up-

. stream and/or downstream influence from nearby grid

intervals. Due to the introduction of OA in the revised
scheme, the parameterized drag depends on the loca-
tion of the grid relative to orography. Since the revised
scheme enhances the reference-level drag mainly
through OA, the total drag is different for subdomains
U and D of case ME (Fig. 7). In the continuous system,
on the other hand, the total drag should be invariant.
Thus, the selective enhancement of the drag by the re-
vised scheme is done at the cost of violating the invar-
iance property.

We may improve this situation, however, by consid-
ering a range of OA for sub-grid-scale orography in
each grid interval. Assuming that the probability dis-
tribution of OA is uniform in that range, we calculate
the expected value of the parameterized drag for each
grid. This method includes both the upstream and
downstream situations as extreme cases and thus is ex-
pected to reduce any systematic errors due to the vio-
lation of the invariance. Comparison of the results ob-
tained from the two versions of the revised scheme
showed qualitatively similar results for subdomain W,
although the invariant version produced somewhat
poorer results for subdomains D and U as anticipated
(Kim 1992).
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2) PROPAGATION OF NONHYDROSTATIC WAVES TO
NONOROGRAPHIC GRID INTERVALS

Another problem, which is related to the one
above, is that parameterization schemes have been
applied only to grid intervals containing sub-grid-
scale orography (i.e., with nonzero SD). The flow in
grid intervals with zero SD but just downstream of
substantial sub-grid-scale orography may, however,
experience considerable wave dissipation of nonhy-
drostatic waves propagated from the upstream grid
interval. If it is necessary to include this effect in the
parameterization, one possible way of coping with
this situation is to extend the grid interval to include
upstream mountains.

3) EFFECT OF MULTIPLE BARRIERS

Some barriers we considered in this study are clus-
ters of closely arranged barriers for which the valley
effect may be important, as discussed in section 4b. In
real situations, however, we may have multiple barriers
separated far from one another in one grid interval. In
this case, we need to also consider the upstream and
downstream influences of each barrier on other barri-
ers. The question we first raise is whether our oro-
graphic statistics can properly handle this configuration
of barriers. The general statistical parameters SD and
OC can be applied to any irregular barriers. However,
OA is designed originally for a single barrier. We thus
performed a simple qualitative analysis of the upslope
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and downslope influences with configurations consist-
ing of one or two barriers (described in Kim 1992).
Our preliminary investigation suggests OA still roughly
represents the combined upstream and downstream ef-
fects with double barriers. The inclusion of the effect
of multiple barriers in the parameterization is, however,
one of the remaining problems of the parameterization.

4) PARAMETERIZATION OF DRAG CONVERGENCE

In both observations and simulations of mountain
waves, there are regions of vertical convergence (or
decrease in magnitude) in vertical momentum or drag
profiles—as well as regions of vertical divergence. The
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current status of orographic gravity wave drag param-
eterization, however, does not provide the means for
treating regions of drag convergence. [This was also
pointed out by Durran (1991).] One drawback due to
this limit is that, even when the reference-level drag is
accurately determined by the parameterization, the
magnitude of the drag is often underestimated at upper
levels. This is also one of the unsolved problems of the
parameterization.

5) LIMITATION OF TWO-DIMENSIONAL MODELS

A very, in fact the most, important concern is the use
of 2D models in studying parameterization of oro-
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Fic. 25. Scatter plots of the reference-level drag (7,) simulated by the mesoscale gravity wave
model vs (a) the reference-level drag parameterized by the original scheme and (b) that by the revised
scheme. Statistics are obtained from 105 cases (3 subdomains X 35 simulations).
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graphic gravity waves. Three-dimensional effects can
drastically change the propagation characteristics of
waves through increased dispersion. Smith (1989, see
references therein) showed from 3D simulations that
the horizontal mountain aspect ratio (r) —or the ori-
entation of sub-grid-scale ridges—plays an important
role in determining the onset of wave breaking, which
might be happening excessively in the 2D simulations
in which inherently large r is assumed.

The 3D effect has been taken into account for the
parameterization of drag in the implementation stage
by considering anisotropic orographic variance (e.g.,
Miller et al. 1989). Varying the critical Froude number
for wave breaking as a function of r may be another
way (see also a related study by Miranda and James
1992). We can also reduce the minimum Richardson
number (4.6) by considering the enhancement of the
vertical wind shear in a 3D wave system as discussed
by Palmer et al. (1986). In our revised scheme, we
calculate OA as an orientation-dependent measure par-
tially incorporating the anisotropy of orography. The
3D effect of the waves is, however, not fully taken into
account by these methods, and thus the inclusion of this
effect in the parameterization remains as one of the
challenging problems.

5. Summary

Parameterization of gravity waves due to sub-grid-
scale orography is one of the crucial elements of most
large-scale models of the atmosphere. Orographic grav-
ity wave parameterization schemes for large-scale
models of the atmosphere have been evaluated to date
mainly on merits of overall improvement of simulated
large-scale fields. Since this practice fails to take into
account possible cancellation of errors from a variety
of other sources, we used a mesoscale gravity wave
model for evaluating parameterization schemes. In sec-
tion 2, we introduced a numerical two-dimensional
nonlinear anelastic nonhydrostatic mesoscale model,
which we developed for simulating gravity waves over
orography represented by rectangular blocks designed
to simulate irregularities of real mountains. In section
3, we presented numerical simulations of mountain
waves. We compared our model simulations with the
corresponding analytic solutions of stratified flow over
orography. We then performed simulations over vari-
ous orography. We discussed some characteristics of
simulated results in view of some important aspects of
mountain waves such as wave breaking, resonant am-
plification of waves, and flow blocking.

In section 4, we constructed a test parameterization
scheme by adopting some essential features of the ex-
isting schemes. We extensively evaluated the scheme
using the dataset obtained from mountain wave simu-
lations. Through a series of experiments, we found that
the test scheme tends to poorly reproduce the effect of
low-level wave breaking accompanied by resonant am-
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plification of nonhydrostatic waves. The standard de-
viation of orographic height, which is the main statis-
tical information regarding sub-grid-scale orography in
the scheme together with the tuning coefficient, seems
insufficient to properly parameterize this effect. We
showed results suggesting that the vertical decrease of
the Scorer parameter near the reference level is closely
related to the vertical divergence of drag at low levels
when wave breaking occurs, which can thus be used in
the parameterization.

Also in section 4, in order to overcome the weakness
of the test scheme we introduced the additional statis-
tical measures of orography—the orographic asym-
metry and convexity—as additional information on
sub-grid-scale orography. Using the additional mea-
sures, we devised new parameters that are better related
to the vertical variation of the Scorer parameter, which
we regard as a measure of the nonlinear drag enhance-
ment at low levels, than the Froude number. We revised
the test scheme using the new parameters and exten-
sively evaluated the revised scheme using the same da-
taset used for evaluating the test scheme. We obtained
significantly improved results demonstrating the use-
fulness of the additional statistical measures of orog-
raphy for improving the parameterization by better rep-
resenting the effect of low-level wave breaking. We
briefly investigated complexities caused by the valley
effect and argued that the additional measures may also
be useful for taking the valley effect into account in the
parameterization. We also discussed some concerns in
implementing parameterization schemes in large-scale
models.

6. Discussion

Observations show that gravity waves break not only
in the lower stratosphere but also in the lower tropo-
sphere. Wave breaking at low levels is the rule rather
than exception over relatively broad and high moun-
tains for typical atmospheric conditions ( Pierrehumbert
1986). The nature of low-level wave breaking is highly
transient, but its magnitude is significant. Observations
show that the surface drag can be significantly en-
hanced due to low-level wave breaking (e.g., Smith
1978). Based on numerical simulations of nonlinear
mountain waves, Peltier and Clark (1986) noted that
excessive momentum flux over the amount required for
the saturation is not necessarily deposited into the mean
flow at breaking levels but may be directed downward,
thereby increasing drag at low levels. Bacmeister and
Schoeberl (1989) also showed through numerical sim-
ulations that a large divergence of momentum flux oc-
curs not only at wave breaking levels but also below
the lowest overturning region.

The effect of nonlinear drag enhancement due to
low-level wave breaking and its potential importance
for the parameterization of orographic gravity waves
have been discussed by many authors (e.g., Chouinard
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et al. 1986; Palmer et al. 1986; Pierrechumbert 1986;
Peltier and Clark 1986; McFarlane et al. 1987; Miller
et al. 1989; Bacmeister 1993 ) but usually not explicitly
incorporated into parameterization schemes. A notable
exception is Miller et al. (1989), who relaxed the cutoff
limit for SD (see Table 2) to generate ‘‘substantial low-
level wave breaking’’ (see their Fig. 15b). Besides,
although not implemented in a large-scale model, Pier-
rehumbert (1986) designed an alternate flux function
for strongly nonlinear flow in an attempt to parameter-
ize this effect of low-level wave breaking, that is, to
enhance drag divergence at low levels. [See Pierre-
humbert’s (1986) expression for 7, in the bracket in
Table 1 or his equation (3.10).] Moreover, simple drag
profiles, which monotonically decrease with height,
have been tested and/or implemented in some models
(e.g., Pierrehumbert 1986; Stern et al. 1987; Stern and
Pierrehumbert 1988; Laursen and Eliasen 1989; Broc-
coli and Manabe 1992). The parameterization may
then be improved through intensifying drag divergence
at low levels (as well as at upper levels), compared
with the parameterization based on the saturation hy-
pothesis, if the reference level is placed at a sufficiently
low level where low-level wave breaking occurs.

We argue, however, based on our mesoscale simu-
lations that these methods may not systematically dis-
tinguish between wave breaking and nonbreaking sit-
uations at low levels, the former of which can signifi-
cantly enhance the magnitude of drag. In this study, we
have shown results suggesting that the nonlinear drag
enhancement due to low-level wave breaking is not
properly included if the parameterization is based
mainly on Fr only (see Fig. 13). In contrast to Fr, the
new measures m' and E (Fig. 18) statistically better
represent the drag enhancement. Consequently, the ref-
erence-level drag (see Fig. 25) and its vertical distri-
bution (see section 4b) are, in general, better parame-
terized by the revised scheme.

Most existing schemes do not seem to systematically
distinguish between two physical mechanisms for low-
level drag with opposite impact; the decrease of drag
due to upstream flow blocking and the enhancement of
drag due to downstream wave breaking. It seems that
a balance between these two opposite effects deter-
mines the magnitude of the reference-level drag. The
revised scheme presented in this paper provides a way
of resolving this problem by distinguishing these two,

considering the upstream and downstream effects on

the drag; that is, decreasing the drag in the upstream
region and enhancing the drag in the downstream re-
gion. This study is, however, conducted with the frame-
work of two-dimensional numerical simulations, and
thus an adjustment of parameters may be necessary in
its application to a 3D large-scale model.

There still remain many uncertainties and deficien-
cies concerning the basic assumptions in parameteriz-
ing gravity waves. In this study, we have shown our
efforts to include the effect of low-level wave breaking.
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[See Kim and Arakawa (1994 ) for a preliminary result
from a diagnostic application of the revised scheme to
global monthly mean data.] Other examples of physical
processes not incorporated in the parameterization, to
our knowledge, are wave transience (e.g., Dunkerton
1981; Clark and Farley 1984; Peltier and Scinocca
1990 and references therein; Laprise 1993; Lott and
Teitelbaum 1993), surface friction (e.g., Richard et al.
1989), radiation and clouds (e.g., Weissbluth and Cot-
ton 1989; Durran and Klemp 1982b, 1983), effect of
multiple waves or superposition of waves (e.g., Fritts
1985; Schoeberl 1985), and nonlinearity (e.g., Weiss-
bluth and Cotton 1989; Smith 1993 and the references
therein). It may be necessary to include these processes
in future parameterizations of gravity wave drag.
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APPENDIX A

Determination of the Master Turbulence
Length Scale

For mountain wave simulations, the first-order tur-
bulence closure scheme by Lilly (1962) is often used:

Ky = (kA)?| Def|(1 — Ri)'?,

where A = (AxAz)V? and k = 0.21.
If the last two terms in (2.10) balance with each
other, on the other hand, we obtain the relation

Ri<l, (A1)

1/2
g = (M1)"?| Def| (1 - %Ri) ,  (A2)
1

where (1, L, A)) = (A}, A;, B))1,, = (0.92,0.74, 16.6)
X 1, (from Mellor and Yamada 1982).

To determine /,,, we use the formal analogy between
(A.1) and (A.2) with Ky, ~ gl,. We then let (kA)?
~ (M), for Ri =~ 0, yielding the following ex-
pression:

L, = k(AxAZ)2AT3*BTV4, (A3)
With the values given above, we obtain [, ~ 0.11
X (AxAz)'2. For the resolutions used for most of
the simulations performed in this study; that is, Ax
= 1000 m and Az = 500 m, we find /,, ~ 78 m.
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TaBLE B1. Orographic statistics for case ME with Az = 500 m,
shown in Fig. 15.

Subdomain w U D
range 25 ~ 75 km 30 ~ 55 km 45 ~ 70 km
X [km] 51.5 44.0 59.0
Mode [km] 51.5 50.1 529
a, [km] 144 72 7.2
h [km] 360.0 600.0 600.0
oy, (SD) [km] 500.4 565.7 565.7
N, 50 25 25
N 20 15 15
Nr 36 30 30
OA 0.00 -0.84 0.84
oC 2.74 1.60 1.60
APPENDIX B

Additional Statistical Measures of Orography

We define the Orographic Asymmetry and Convex-
ity for a grid interval Ax of a large-scale model (Kim
and Arakawa 1991) as

Orographic Asymmetry (OA)

_ X — Mode
= ___—a'x :
Np
21 Xin;
_— J= .
Mode = TT— N
Ny
S (i~ h)*

Orographic Convexity (OC) = £=*

W, (B.1)

where the overbars represent the horizontal average over
the grid interval; Ny, Ny, and N, denote the total number
of blocks in the barrier, the number of bottom blocks in
the barrier, and the number of grid intervals for the large-
scale domain being considered, respectively; n; is the
number of blocks in the jth column of the large-scale
domain so that 2=, n; = Nr; and o, and o, (=SD) are
the standard deviations of the horizontal distance and
the orographic height, respectively, defined by

N, o\
(x5 —x)?
Py [ i ——
X Nx ’
N, o\
S (b~ kY
oy = j—ZI—I—VX—' (B.2)

The values of these definitions and orographic sta-
tistics for case ME (Fig. 15) are tabulated in Table B1.
For more cases see Kim (1992).
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