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Abstract

The article contains an analysis of the processes of mixing in a turbulent
atmosphere, based on systematic application of the methods of the theory of
similitude. Empirical data on the distribution of wind velocity under various
conditions of temperature stratification are generalized and a method is pro-
posed for computing the austausch characteristics on the basis of measuring
wind velocity and temperature gradient.

Introduction

The questions of the physics of the surface layer have occupied a considerable
place in meteorological investigations during the past 10-15 years. The laws
of the processes in the surface layer are of interest not only to agrometeo-
rology, which studies the effect of a “meteorological medium” on the growth
of vegetation, but they also have a general geophysical significance, since the
dynamic interaction of the atmosphere and the substrate, the “feeding” of the
atmosphere by moisture and heat, is realized through the surface layer.

A large amount of research in the field of surface-layer physics has been
done at the Main Geophysical Observatory; the works of S.A. Sapozhnikova [1],
D.L. Laikhtman and A.F. Chudnovskii [2], M.I. Budyko [3] and M.P. Timofeev
[4] are well known to Soviet meteorologists.

This research has provided valuable observational data on the distribution
of wind, temperature and humidity in the surface layer, and a number of
specific propositions have been drawn up on the methodology for computing
turbulent austausch characteristics (Budyko, Laikhtman).

In this regard there are still a number of debatable questions in the theory
of surface-layer mixing. The simplest system of the “logarithmic boundary
layer”, borrowed from technical aerodynamics, describes quite well the phe-
nomena in a neutrally-stratified atmosphere, and is supported by much empir-
ical data. However, this system is insufficient for describing processes in the
real atmosphere where the temperature inhomogeneity is an essential factor
influencing the development of turbulence. This latter fact (the temperature
inhomogeneity) determines the specific nature of the problem of atmospheric
turbulence as applied to surface-layer physics.

The works of Laikhtman [5] and Budyko [3], as well as those of a number
of foreign researchers (Sverdrup, Rossby, Montgomery; see, e.g. [6]) have been
devoted to computing the influence of temperature stratification on turbulent
exchange. The individual results of these works contradict one another; in
many respects the physical sense of the initial hypotheses is not clear. Thus,
e.g. Budyko proposes that the atmospheric stratification be considered within
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the framework of the simplest system of the logarithmic boundary layer, for-
mally replacing the Karman “universal constant” by a variable parameter,
a function of stratification. In Budyko’s system the basic characteristic of
the substrate, roughness, is also a function of meteorological conditions. The
purely formal nature of those relations is one of the shortcomings of Budyko’s
system. It should also be noted that the observed profiles of wind distribution
with height regularly deviate from the logarithmic law during stratification
conditions which differ from neutral equilibrium.

Laikhtman proposes a more complete method of approximating wind and
temperature profiles (an exponontial law with a variable exponent), which
makes it possible to discern the nature of deviations from the logarithmic law
under various conditions of atmospheric stratification. However, Laikhtman’s
system contains too many free parameters which have to be determined in
each individual case. This creates difficulties familiar in determining these
parameters from empirical data and decreases the computational accuracy.

These critical remarks by no means are meant to detract from the value
of the results obtained by Budyko and Laikhtman when solving individual
problems; however, they indicate the necessity of devoloping the theory further
and making the initial physical hypotheses more exact.

When analyzing the highly complex phenomena of surface-layer turbulence,
where the temperature factors play an essential role, it is expedient to use the
methods of the theory of similitude which are widely used in applied aerody-
namics and thermal physics, and are the generally-accepted method of inves-
tigation in this area.

In 1943, A.M. Obukhov attempted to apply methods of the theory of simil-
itude to problems of surface-layer physics [7]. The results obtained in this work
were subsequently developed by A.S. Monin [8]. The theory developed in [7]
and [8] evidently gives a satisfactory qualitative description of the processes.

Furthermore, the data used in [7] to determine the numerical parmeters
in the proposed system were not sufficiently reliable (the critical Richardson
number was mistakenly assumed to be 1/11, on the basis of Sverdrup’s data),
which made it impossible to make direct use of the formulas obtained in this
work in actual computations.

The present work gives an analysis of the processes of turbulent mixing in
the surface layer of the atmosphere on the basis of a systematic application
of the methods of the theory of similitude, and the values of the numerical
parameters are more exactly defined by using a sufficiently large amount of
empirical data on gradient observations, obtained from the expeditions of the
Main Geophysical Observatory and the Geophysical Institute of the Academy
of Sciences of the USSR. On this basis, working formulas were obtained for
computing the basic characteristics of the surface layer, viz., turbulent heat
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transfer, friction, the austausch coefficient, and moisture flux, from gradient
measurement data. The computational method is illustrated by specific ex-
amples.

1 The logarithmic boundary layer

When analyzing the processes in the surface layer of the atmosphere on a
theoretical basis, we will proceed from the generally accepted system of a flow
over an infinite, rough surface whose horizontal properties are assumed to be
quite uniform horizontally. The averaged characteristics of the flow in this
system are a function only of the vertical coordinate z. The most important
characteristics are the momentum, heat, and humidity fluxes.

The momentum flux can be treated as turbulent friction stress. Instead of
turbulent friction

τ = −ρu′w′ (1)

where u′ and w′ are the fluctuations of the horizontal and vertical wind velocity
components, ρ is air density, and the bar indicates averaging, it is convenient
to examine the dynamic velocity

v∗ =
√

τ

ρ
(2)

Within the confines of the surface layer, τ and the turbulent heat flux q
can be considered to be practically independent of height z.

The condition that fluxes τ and q are constant (within the given tolerance)
can serve to determine the actual concept of the surface layer. Let us attempt
to give an approximate estimate of the height of the surface layer on the basis
of possible changes in τ . We will proceed from the averaged equations of
hydrodynamics in a Coriolis force field. The corresponding equation for the x-
ooordinate (wind-velocity direction at the earth’s surface) in a quasistationary
case has the following forms

∂u′w′

∂z
= −1

ρ

∂p

∂x
+ ` v (3)

where ∂p/∂x is the pressure gradient, ` the Coriolis parameter and v the
compontent of averaged wind velocity along the y-axis.

Let us integrate both sides of the equation with respect to height within
the limits of a layer of thickness H and estimate the right-hand side:

τ(0)− τ(H)
ρ

=
∫ H

0

∣∣∣∣1ρ ∂p

∂x
− ` v

∣∣∣∣ dz <

∫ H

0

1
ρ

∣∣∣∣ ∂p

∂x

∣∣∣∣ dz (4)
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The discarding of term ` v leads to a strengthening of the inequality, since
the Coriolis force partially compensates the effect of the pressure gradient.
Introducing the dynamic velocity v∗ and the geostrophic wind velocity vg =
(1/ρ`) |∂p/∂x|, we can write the resultant inequality in the following form:

v2
∗(0)− v2

∗(H) < H`vg (5)

Let us define H such that the relative change of v2
∗ in a layer of thickness H

does not exceed the tolerance a, i.e.,

v2
∗(0)− v2

∗(H)
v2
∗(0)

≤ a (6)

On the strength of inequality (5) it suffices that

H <
av2

∗(0)
`vg

(7)

in order that (6) be fulfilled. The ratio of friction velocity to geostrophic wind
velocity can be estimated to be of the order of 0.05:

v∗
vg
∼ 0.05

from which it follows that

H ≤ 2.5× 10−3a
vg

`

When vg ∼ 10 m/sec and ` = 10−4 sec−1 we get

H ∼ a× 250 m

With a tolerance a = 20% we get the estimate of the height of the surface
layer which we seek:

H = 50m.

Within the limits of this layer, v∗ can be considered practically constant and
the effect of the Coriolis force (rotation of wind with height) can be neglected.
The estimate obtained agrees quite well with observations.

Under conditions of neutral stratification the processes of turbulent mixing
in the surface layer can be described by the logarithmic model of the boundary
layer. The corresponding laws have been studied in detail in experimental
aerodynamics, and are widely used in meteorology.

Let us recall the derivation of the logarithmic law of wind distribution
on the basis of the hypothesis of similarity. Let us assume that for values
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of z � h1, where h1 is the height of the grass (the characteristic scale of
the micro-inhomogeneities of the substrate), the statistical characteristics for
relative movements in a stream are invariant with respect to the similarity
transformation

x′ = kx, y′ = ky, z′ = kz, t′ = kt.

In these transformations the half-space z > 0 transforms into itself, while the
equations of motion remain unchanged. This condition is the theoretical basis
for the assumed hypothesis of similitude. Let us also note that the natural
scale of velocity v∗ =

√
τ/ρ remains invariant with respect to the indicated

transformations. Let us examine the stationary regime and establish a ratio of
the difference of the averaged velocities at two levels z2 and z1 to the dynamic
velocity v∗. The corresponding non-dimensional magnitude is a function of z1

and z2 and, on the strength of the assumption of self similitude of the flow,
can be a function only of the ratio z2/z1:

v(z2)− v(z1)
v∗

= f (z2/z1) (8)

Let us determine the form of function f(ζ). Evidently for all three heights
z3 > z2 > z1

u(z3)− u(z1) = u(z3)− u(z2) + u(z2)− u(z1) (9)

and along with this,
z3

z1
=

z3

z2

z2

z1
(10)

From this it follows that function f satisfies the functional equation

f (ζ1 ζ2) = f (ζ1) + f (ζ2)
(ζ1 = z2/z1, ζ2 = z3/z2) (11)

The logarithmic function f(ζ) = C lnζ is the only solution of this functional
equation. Assuming C = 1/κ, we get

v(z2)− v(z1)
v∗

=
1
κ

ln
z2

z1
(12)

where κ is the well-known Karman constant. According to empirical data,
κ ≈ 0.4. Equation (12) can be written in the usual differential form, examining
the infinitely close values z2 and z1:

dv

dz
=

v∗
κz

(13)
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Equations (12) and (13) do not contain charateristics of a particular substrate
but can pertain to any substrate, if the condition z1, z2 >> h1 is satisfied.1

Then, too, formula (13) specifies only changes in mean wind velocity with
height. The properties of the substrate must be considered in order to deter-
mine the absolute value of v(z).

Now let us assume that observations of wind velocity are conducted at a
definite height H above some definite substrate. Let us assume that we can
conduct independent measurements of the turbulent friction and, accordingly,
in each individual case we can determine v =

√
τ/ρ. The value v∗ can be

determined, e.g. from thermo-anemometer meter observations of fluctuations
u′ and w′, or directly on the basis of measurement of the drag intensity at the
earth’s surface. This latter method is used in practice when studying turbulent
motion in tubes. Sheppard [9] attemptod to use the dynamometer method of
measuring τ under atmospheric conditions.

A comparison of a number of observations of v(H) and τ allows us to
determine the relationship between these magnitudes. Aerodynamic experi-
ments teach us that with large Reynolds’ nunbers and surface “roughness” the
dependence of τ on v is of a quadratic nature, from which it follows that

v∗ = γ(H) v(H) (14)

where γ(H) is a non-dimensional coefficient which is a function of the proper-
ties of the substrate. At a fixed height H the “drag coefficient” γ(H) can serve
as an objective characteristic of the properties of the substrate with respect
to its dynamic influence on the flow. However, use of γ(H) has the disadvan-
tage that a specific observation height must be selected. The dependence of
γ(H) on the observation height H can be easily established by substituting
v(H) = v∗/γ(H) in formula (12). For any two heights H1,H2 >> h1 we will
have

1
γ(H2)

− 1
γ(H1)

=
1
κ

ln
H2

H1
(15)

From (15) it follows that, in particular, γ(H) decreases with height. Taking
the antilogarithms and combining the magnitides which contain H1 and H2

respectively, we get

H1 e−κ/γ(H1) = H2 e−κ/γ(H2) = ho (16)

i.e., a magnitude which is not a function of height. Thus the magnitude ho,
which has length, is determined only by the properties of the substrate; it is

1Determination of the values of height z in formula (13) involves a certain arbitrariness in the
choice of the starting point for the computation (within the limits of the height of the grass h1).
However, when z � h1, this indefiniteness is of no importance.
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called “dynamic roughess”. Let us express the drag coefficient γ(z) in terms
of ho:

γ(z) =
κ

ln z
ho

(17)

whence on the basis of (14) we get the desired wind velocity distribution:

v(z) =
v∗
κ

ln
z

ho
(18)

The method given above for introducing the concept of roughness of the
substrate has the advantage that it depends exclusively on the properties of
the flow at rather great heights, where there are sufficient grounds for using
the universal laws of developed turbulence. In most cases, however, we have
no means for making direct measurements of τ (and, accordingly, γ(H)), and
in this regard, when making practical determinations of the characteristics of
dynamic roughness, we must use the properties of the wind profile which can be
determined directly from observations. When dealing with a mature vegetation
cover, additional difficulties arise in connection with choosing the reference
height for specifying z. A number of authors (Paeschke [10] Konstantinov
[11]) recommend the use of a certain arbitrary level z1 for the start of height
computations; this level lies between the soil and the top of the grass h1. This
level can be called the height of the displacement layer.

The concept of “displacement height” z1 can be introduced into the gen-
eral system as follows. Equation (13) describes an asymptotic relationship
valid when z >> h1, and in this region it is insensitive to slight changes in
the reference point of z (within the limits of the grass heighth1). Let us now
examine the range of values of z which, although they exceed h1, are never-
theless comparable with it, so the ratio h1/z can be treated as a first-order
value. To be specific, we will compute z from ground level. In this case, a
numerical correction factor f(h1/z) should be introduced into formula (13);
this describes the deviation from the automodular regime, connected with the
direct effect of the grass:

dv

dz
=

v∗
κz

f

(
h1

z

)
(19)

Evidently, when z →∞, formula (19) should convert into (13), from which it
follows that f(0) = 1. Expanding function f in series, we get

dv

dz
=

v∗
κz

[
1 + α(h1/z) + β(h1/z)2 + . . .

]
(20)

Let us now introduce a new starting point for computations of z, assuming
z = z′ + z1, where z′ is comparable with h1, and rewrite the equation with
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respect to the new variable:

d v

dz′
=

v∗
κz′

[
1 +

(
α− z1

h1

)
(h1/z′) + β′(h1/z′)2 + ...

]
(21)

Let us select z1 such that in equation (21) the first-order term reverts to zero.
With a corresponding choice of z1 with an accuracy up to the second-order
terms, we get

d v

dz
=

v∗
κ(z − z1)

(22)

Thus, the height of the displacement layer can be defined as the height of some
arbitrary level of computation, using which we get the best approximation of
the wind profile by the logarithmic law in a layer situated above the grass
layer. Let us note that the physical determination given above of dynamic
roughness ho is insensitive to a substitution of z − z1 for z (Since H >> h1);
however, in the final formula for the wind velocity profile we should calculate
the height from the level of the displacement layer, i.e., replace z by z − z1:

v(z) =
v∗
κ

ln
z − z1

ho
(23)

The characteristics of the substrate, z1 and ho can be determined empiri-
cally on the basis of measurements of wind profile in the layer above the grass
level, under conditions close to equilibrium. To increase the computational
accuracy we should use data averaged for a group of analogous cases.

Let us use, as an example, values of z1 and ho according to Paeschke’s work
[10] (table 1):

Table 1
Characteristics of the substrate

z1, cm ho, cm
Snow surface 3 0.5
Airport 10 2.5
Sugar beet plantation 45 6.6
Wheat field 130 5

Some data on the question of choosing the initial level z1 can be found in
an article by A. R. Konstantinov [11]. It is worth noting that the dynamic
roughness of a wheat field is less than that of a sugar beet plantation, although
the grass is three times higher in the first case. In the case of a low grass stand
(steppe) the value of z1 does not play an essential role, and when computing
ho and v∗ from observations made at heights of more than 1 meter, we can
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consider formally that z1 = 0, i.e., we can compute the height directly from
the ground.

In further sections of this work, when considering the effects of stratifica-
tion, we will assume that height is calculated from some arbitrary level (“the
displacement layer”), not specifically mentioned, while the dynamic roughness
length ho will be computed by some given characteristic of the substrate which
is independent of meteorological conditions.

2 Basic characteristics of the turbulent re-

gime in a medium with non-uniform tem-

perature

One of the most important practical characteristics of the turbulent regime in
the surface layer of the atmosphere is the vertical turbulent heat flux:

q = cpρ w′T ′ (24)

where cp is the specific heat of the air at constant pressure, ρ is density, w′ and
T ′ are, respectively, the fluctuations of the vertical wind velocity component
and of temperature, caused by the turbulence ‘elements’ passing a given point,
and the bar indicates averaging. The magnitude of q is the average amount
of heat carried by turbulent fluctuations across a unit area per unit time. We
have sufficient grounds for considering that for all intents and purposes the
turbulent heat flux q in the surface layer under stationary conditions is not a
function of height2. Instead of q we may use the “temperature flux”

q

cpρ
= w′T ′ (25)

The magnitude of the turbulent heat flux q can be determined directly
experimentally, on the basis of electronic measurements of the fluctuations of
temperature T ′ and of the vertical wind velocity w′. Modern technology has
shown that such measurements are possible, in principle [12, 13]. Nevertheless,
in practice one must still use indirect methods to determine q, based on sim-
pler gradient methods. To interpret these measurements correctly, one must
investigate the connection between the characteristics of turbulence q and v∗

2Here we are digressing from an examination of radiational energy fluxes. Strictly speaking, the
total flux q + q1 is not a function of height; here q1 is the radiation flux. Then, too, in the surface
layer, changes in the radiation flux q1 can hardly be considered essential. This question, however
should be the subject of special investigations.

10



and the distribution of mean wind speed and temperature. When solving this
problem we will follow the methods of the theory of similitude and attempt to
establish a system with a minimum number of parameters which describe the
turbulent regime in an inhomogeneous temperature medium.

The inhomogeneities of the temperature field, being of a systematic nature
(change of mean temperature with height), exert a definite influence on the
general turbulent regime (the effect of Archimedian forces). Provided that the
temperature fluctuations are slight compared with the mean temperature of
the layer To, the equations for the dynamics of an inhomogeneous temperature
medium can be written in the following form:

du

dt
= −1

ρ

∂p1

∂x

dv

dt
= −1

ρ

∂p1

∂y

dw

dt
= −1

ρ

∂p1

∂z
+

g

To
T1 (26)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

dT1

dt
= 0

In this system p1 and T1 indicate deviations from the standard values.
The simplifications made when deriving the system of equations are: ne-

glect of the Coriolis force and the radiation influx of heat, and also the lin-
earization of the standard statistical distribution of pressure and temperature.
This latter indicates that change in density due to pressure changes are ne-
glected, and it assumes that the deviation of density and temperature from the
standard values are proportional (L. D. Landau and E.M. Lifshitz [14, chapter
5]). These simplifications, used in the convection theory, allow us to describe
the Archimedean force by the term (g/To) T1. Thus, the equation contains
a dimensional constant g/To, which we should consider in the future when
establishing the criteria of similitude.

Let us note that we cannot linearize the equations of velocity variations,
since in this case turbulence would be lost. In addition, in the equations,
the terms containing viscosity and heat conductivity would be omitted3. It
is natural to assume that changes in mean velocity and temperature with

3Under conditions of a developed turbulent regime, these terms must be considered only when
investigating the very fine details of the microstructure of the wind and temperature fields. The
vertical transport of momentum and heat is caused by the inhomogeneities of some “mean scale”,
for which the direct influence of viscosity and heat conductivity are rather slight.
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height can be expressed by coordinate z, parameter g/To, and the “external
parameters” v∗ and q while the corresponding equations can be written in
non-dimensional form, since they do not contain other dimensional constants.
This proposition is the basic hypothesis of the theory of similitude, formulated
in the first section of the present work, generalized for the case of a medium
with a non-uniform temperature.

The similarity hypothesis which we have adopted agrees with equations
(26) and is equivalant to the proposition that the sytem of equations (26)
together with the conditions

w′ T ′ =
q

cpρ
= const

(27)
−ρ u′ w′ = τ = const

are an analogue of the boundary conditions and define the statistical charac-
teristics of the turbulent regime unequivocally. Thus, the three parameters
g/To, v∗ and q/cpρ can be considered the definitive characteristics of the tur-
bulence of the surface layer (in the layer above the top of the grass). From
these parameters we can establish unequivocally (with an accuracy of the nu-
merical coefficients) the scale of length L and temperature T∗, which can be
written in the following form:

L = − v3
∗

κ g
To

q
cpρ

, T∗ = − 1
κu∗

q

cpρ
(28)

It is natural to use dynamic velocity v∗ as the characteristic velocity scale.
The minus sign and the Karman constant κ are introduced for the sake of
convenience. The signs of L and T∗ are determined by the nature or the
stratification. With stable stratification the turbulent heat flux is directed
downward, q < 0, and correspondingly L > 0 and T∗ > 0. With unstable
stratification on the other hand, q > 0, L < 0 and T∗ < 0. Thus, we must
visualize two qualitatively different regimes, corresponding to the cases q < 0
and q > 0. These regimes should unite as conditions of neutral stratification
(q = 0) are approached.

Let us examine the non-dimensional magnitudes
(

κz
v∗

dv
dz

)
and

(
z
T∗

dT
dz

)
(from now on, the bar which indicates averaging will be omitted). These non-
dimensional characteristics of the averaged field of velocities and temperatures
should be definite functions of the “external parameters” and of coordinate
z. The only non-dimensional combination which we can make from q/cpρ, v∗,
g/To and z is z/L, from which it follows that

κz

v∗

dv

dz
= ϕ1

( z

L

)
(29)
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z

T∗

dT

dz
= ϕ2

( z

L

)
(30)

or

dv

dz
=

v∗
κz

ϕ1

( z

L

)
(29′)

and

dT

dz
=

T∗
z

ϕ2

( z

L

)
(30′)

where T∗ and L are determined by formula (28).
Let us introduce the concept of the austausch coefficient. Let us assume

formally that

τ = ρ K
dv

dz
(31)

q = −cpρ KT
dT

dz

and call the dynamic austausch coefficient and the coefficient of turbulent heat
conductivity K and KT respectively. Introducing the magnitudes v∗ =

√
τ/ρ

and T∗ = − 1
κv∗

q
cpρ in place of τ and q, and using equations (29) aid (30), we

get
K =

κ v∗ z

ϕ1

(
z
L

) , KT =
κ v∗ z

ϕ2

(
z
L

) (32)

Now let us examine the hypothesis, shared by a majority of meteorologists,
that within the limits of meteorological observations we can consider that
K = KT

4 from which it follows that

ϕ1

( z

L

)
= ϕ2

( z

L

)
= ϕ

( z

L

)
(33)

The similitude of the temperature and wind profiles follows directly from the
accepted hypothesis that K = KT . Dividing (30) by (29) we get

dT

dv
= − q

cpτ
=

κT∗
v∗

(34)

4Generally speaking K > KT since the effect of pressure fluctuations, as well as mixing can be
expressed in a momentum exchange. However, as of now we have no convincing evidence that this
difference is essential. The theory developed in the present work can be generalized for the case
K/KT = a 6= 1* if we replace T by T/a in all instances.
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and, accordingly, for any heights H1 and H2

T (H2)− T (H1) =
κT∗
v∗

[v(H2)− v(H1)] (35)

Thus, the ratio of the difference of mean temperature at two levels H1 and
H2 to the difference in velocities at the same heights does not depend on the
choice of heights H1 and H2, but is determined entirely by external conditions
- the ratio of the turbulent heat flux q to the turbulent drag resistance τ .

Let us now show that the non-dimensional factor ϕ(z/L), where L =
−v3

∗/
(
κ g

To

q
cpρ

)
, is directly connected with the Richardson number at any given

level. Substituting the values dv/dz and dT/dz, determined from formulas (29)
and (30), in the expression for the Richardson number5

Ri = − g

To

(
dT
dz

)(
dv
dz

)2 (36)

we get

Ri = −gκ2

To

T∗z

v2
∗ ϕ
(

z
L

) (37)

or, using the definition of the scale of L by (28)

Ri =
z

L
× 1

ϕ
(

z
L

) (38)

from which it follows that the dependence of the Richardson number on height
is defined by a single parameter—the scale L.

Comparing formula (32) for the austausch coefficient with the expression
for the Richardson number, we get an important relationship between the
austausch coefficient, the scale L and the Richardson number:

K = κv∗LRi (39)

Let us explain the physical the meaning of the L scale. Under any condi-
tions of stratification we have

dv

dz
=

v∗
κz

ϕ
( z

L

)
(40)

5It follows that T should indicate potential temperature, since T does not change with vertical
shifts of the turbulent elements (the state of the latter can be considered adiabatic). In the surface
layer the numerical values of potential and molecular temperature are very close. With the large
temperature gradients usually observed in the surface layer, the difference between the gradients
of potential and molecular temperature are inconsequential; however, in states close to isothermy,
this difference is significant.
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Let us fix the value z and decrease magnitude q indefinitely, approaching
the conditions of neutral stratification, which correspond to infinite growth
of the scale L (with respect to absolute magnitude). Obviously, within this
range, we should obtain formula (22), from which it follows that

ϕ(0) = 1

Under given external conditions characterized by magnitudes v∗ and q, and
the corresponding magnitude of L, in the range of values of z which are quite
small compared to L, ϕ(z/L) will be quite close to unity. This indicates that
austausch conditions with z � L differ little from austausch conditions in a
neutrally stratified atmosphere and, accordingly, turbulence is caused mainly
by purely dynamic factors. Thus, the scale L, first introduced by Obukbov [7],
is an important physical characteristic of the state of the surface layer and can
be called the height of the sub-layer of dynamic turbulence. On the strength
of the fact that ϕ(0) = 1 and formula (38), when z → 0, we get

1
L

=
(

∂ Ri
∂ z

)
z=0

(41)

This formula can serve as the basis for determining the scale L from empirical
data (from the wind and temperature profiles).

The function ϕ(z/L) should, in the general case, be determined from the
aggregate of empirical data. It should be noted that the data available at
present are insufficient to determine function ϕ reliably in a sufficiently wide
range of changes of the argument z/L. However, a number of important prob-
lems can be solved for the case z/L < 1, where we can limit ourselves to
the first terms of function ϕ expanded in series. This case requires special
examination.

3 Determination of the turbulent charac-

teristics from data on gradient measurements

In the case |z/L| < 1 we can limit ourselves to the first terms of the function
ϕ(z/L) expanded in a power series, and write

ϕ = 1 + β
z

L
(42)

where β is some universal constant which can be determined on the basis of
empirical data. From formulas (29), (30) and (42), by integrating with respect
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to z, we get

v(z) =
v∗
κ

[
ln

z

ho
+ β

z

L

]
(43)

T (z)− T (ho) = T∗

[
ln

z

ho
+ β

z

L

]
Here we have replaced the term β[(z − ho)/L] by β(z/L), with the intention
of using fornula (43) only when z � ho.

Let us note that analogous formulas can be used to describe the profiles
of the concentration of any passive substance in the surface layer of the at-
mosphere. For example, with a stationary turbulent regime with no phase
transformation of the humidity in the atmosphere, the vertical moisture flux
(“rate of evaporation”) E = ρ w′Q′ (Q is specific humidity) can be considered
independent of height and, analogously to (30), we can set

dQ

dz
=

q∗
z

ϕ
( z

L

)
, Q∗ = − 1

κv∗

E

ρ
, (44)

whence

Q(z)−Q(ho) = Q

[
ln

z

ho
+ β

z

L

]
(45)

Finally, the expression for the. austausch coefficient K = κv∗LRi, following
equation (38) and using the approximation (42), becomes

K(z) =
κ v∗ z

1 + β z
L

(46)

With neutral stratification (|L| =∞) we get, from (43), the usual logarith-
mic formulas for wind and temperature distribution with height. Non-neutral
stratification is described in (43) by the component β(z/L) and leads to a
systematic deviation from the logarithmic law. With unstable stratification
(L < 0), intense turbulent mixing leads to equalization of wind velocity in
different layers of the atmosphere, so that the wind velocity should increase
with height more slowly than in the case of neutral stratification, i.e., β(z/L)
should be less than zero. Accordingly, β > 0.

Formulas (43) for v(z) and T (z) are in good qualitative (and, with correct
selection of the parameters, also quantitative) agreement with the observed
profiles of wind velocity and temperature in the surface layer. Actual measure-
ments confirm the presence and nature of regular deviations of the logarithmic
law in the wind and temperature distribution with height, indicated by formu-
las (43). This can be seen, e.g., from the data of Table 2, which shows wind
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Figure 1: Nature of the wind and temperature profiles

profiles averaged by groups with an identical stability parameter S = g
To

∆T
v2

(taken from data of the Main Geophysical Observatory expedition of 1945 [15],
1947 [16] and 1950 [17] and the expedition of the Geophysical Institute of the
Academy of Sciences of the USSR in 1951 [18]. The form of profiles v(z) and
T (z), in agreement with formulas (43), is given in Figure 1. Figures 2 and 3
give the averaged profiles of wind velocity and temperature obtained by the
1951 expedition of the Geophysical Institute of the Academy of Sciences of the
USSR.6

Halstead (19) proposed that the influence of stratification be computed by
introducing correction factors into the logarithmic formulae, analogous to (43),
but without analyzing the coefficients from the point of view of the theory of
similitude.

Approximating the measured wind and temperature profiles by formulas

6The straight dashed lines in figures 1, 2 and 3 correspond to the logarithmic profile. The
numbers -1, -2, . . . +3 correspond to the identification number of the group of profiles in Table 2.
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Figure 2: Averaged wind profiles from observational data.

(43), we can determine the turbulence characteristics from gradient measure-
ment data. In practice, during such an approximation we must first determine
the reference level for computing height z1—the thickness of the displacement
layer. The magnitude z1 can be determined experimentally, so that on the
graph with the logarithmic scale the wind profile, corresponding to cases of
equilibrium stratification (i.e., actually, to cases of isothermy) would be de-
picted by straight lines with respect to height. Extrapolating the resulting
rectilinear wind profile graph to zero velocity, we get the value of the rough-
ness height ho.

The magnitude ho and the parameters v∗/κ and β/L which enter into
formulas (43) can be most accurataly determined by using the least-squares
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Figure 3: Averaged temperature profiles from observational data.

method to process the wind profile measured at the same station, generally
speaking, under various conditions of stratificatlon. Thus, assuming

vi(z) = Ai(γ + log z) + Ciz

where i is the number of a profile, and selecting Ai, γ and Ci because of the
requirement that the sum of the squares of the deviations be minimum,

∆2 =
∑
i,k

[Ai(γ + logzk) + Cizk − vi(zk)]2 (47)

we get for each profile

v∗
κ

=
Ai

ln 10
,

β

L
=

Ci

Ai
ln 10

and we get a common roughness height ho = 10γ for all profiles.
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Having determined β/L for each profile by the indicated method, knowing
ho, and computing the value of the stability parameter S = g

To

T (z1)−T (z3)
v2(z2)

(where e.g., z1 = 0.5, m z2 = 1 m, z3 = 2 m), we can determine β using the
formula

S =
1
β

β

L

ln z1/z3(
ln z2

ho

)2

1 + β
L

z1−z3
ln z1/z3(

1 + β
L

z2
ln z2/ho

)2

 =
1
β

Φ
(

β

L

)
(48)

which follows from [43]. The number β can be determined as the regression
coefficient of values of Φ(β/L), computed from the previously calculated β/L,
for the computed values of S. The regression coefficient β, computed from
the data of the four expeditions listed in Table 2, is 0.62; the accuracy in
determining β in this case is probably not better than 10%. A determination
of β from the data of just one Main Geophysical Observatory expedition [16]
yielded a value of 0.57.

Using formulas (43) we can compute the drag velocity v∗, as well as the
turbulence characteristic which has the most practical value, i.e. the heat flux
q, using the results of wind velocity and temperature measurements at only
two heights. For example, let z1 = H/2, z2 = H, z3 = 2H and let us assume
the values T1 = T (z1), T3 = T (z3) and v2 = v(z2) m/sec have been measured.
Then from (43) we get

v∗ =
κv2

ln z2
ho

(
1 + β

ln
z2
ho

H
L

) = − 0.19
log ho

H

v2(
1− 0.26

log ho
H

H
L

) m/sec

(49)

q = − cp ρ κ v2 (T3 − T1)

ln z3
z1

(
1 + β z3−z1

H ln
z3
z1

H
L

) = −0.58
v2(T3 − T1)
1 + 0.65 H

L

Cal/cm2/min

Here we used the value κ = 0.43 for the von Karman constant. The magnitude
of H/L is determined from the relationship (48), which assumes the form

L

H
=

0.26
log ho

H

+
1

2B

1 +

√√√√1 + 4B

(
0.65 +

0.26
log ho

H

) (50)

where B = .107 H (log zo/H)2
(
(T3 − T1)/v2

2

)
and H and v2 are expressed in

meters and m/sec, respectively.
The influence of stratification on the magnitudes v∗ and q is expressed by

the appearance of the components with H/L in the denominators of formulas
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(49). As a rule, the correction for stratification appears to be slight (H/L ∼
10−1), which is natural, since turbulence in the lower part of the surface layer
is determined essentially by the dynamic factors.

Formulas (49) and (50) can be useful when mass-processing the gradient
measurement data. They assume a relatively simple form in situations where
ho and H are fixed. For example, when ho = 1 cm and H = 1 m, we have

B = 0.43
T3 − T1

v2
2

; L = −0.13 +
1

2B

(
1 +

√
1 + 2.1B

)
m

(51)

v∗ =
0.095 v2

1 + 0.13
L

m
sec

; q = 0.58
v∗(T1 − T3)

1 + 0.65
L

cal
cm2min

Examples of computation of the turbulent heat flux q (from data of the
Geophysical Institute of the Academy of Sciences expedition of the USSR of
1951) are given in [18]. Computations using specific data show that the scale
of L is usually of the order of 10 m, and approaches 3-4 m only in speoific
cases with great instability or abrupt inversions. In cases close to isothermy,
L reaches values of several tens of meters. The drag velocity v∗ is about 8% of
the wind velocity at 8 m with unstable stratification, and about 5% with with
stable stratification. In the summer in Kazakhstan the turbulent heat flux q
reaches 0.25-0.35 cal/cm2 min on hot sunny days, while it is of the order of
0.06 cal/cm2 min at night.

Considering that some researchers use the formulae proposed by Budyko
[3] and Laikhtman [5] when determining the turbulence characteristics from
gradient measurement data, let us derive the relationship between the scale
of L and thebasic parameters of theBuyko and Laikhtman formulas. Budyko
approximates the wind profiles by the logarithmic law

v(z) =
v∗
κm

ln
mz

ho
(52)

where m is a parameter which is a function of atmospheric stratification
(with neutral stratification, m reverts to unity). Equating the expressions
for v(z2)/v(z1), computed from the formulae (43) and (52), we get the ratio

β

L
=

lnm ln z2
z1

z1 ln z2
ho
− z2 ln z1

ho
+ (z1 − z2) ln m

(53)

Taking the limit where z2 → z1 = H, we get

β
H

L
=

lnm

1− lnm + ln ho
H

(54)
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D.L. Laikhtman approximates the wind profile by the power law

v(z) = v(z1)
zδ − hδ

o

zδ
1 − hδ

o

(55)

where δ is a parameter which is a function of atmospheric stratification (with
neutral stratification, δ reverts to zero). Equating the expression for v(z2)/v(z1),
computed from formulae (43) and (55), we get the relationship

β

L
=

(zδ
2 − hδ

o) ln z1
ho
− (zδ

1 − hδ
o) ln z2

ho

z2 (zδ
1 − hδ

o)− z1 (zδ
2 − hδ

o)
(56)

Taking the limit as z2 → z1 = H we get

β
H

L
=

δ ln H
ho
−
[
1−

(
ho
H

)δ]
1− δ −

(
ho
H

)δ (57)

Taking advantage of the fact that the value of δ is insignificantly small, and
expanding the right side of (57) in series according to the δ-exponents, we get
the approximation

β
H

L
≈ −δ

2
ln2 ho

H

1 + ln H
ho

(58)

4 Asymptotic formulas for the universal func-

tion

From formulas (30) and (40) it follows that in a stationary turbulent surface
layer, the wind an temperature profiles can be described using one universal
function of z/L. Thus, integrating (30) with respect to z and setting f(ξ) =∫ ξ ϕ(ξ)dξ

ξ we obtain

v(z) =
v∗
κ

[
f
( z

L

)
− f

(
ho

L

)]
(59)

T (z) = T (ho) + T∗

[
f
( z

L

)
− f

(
ho

L

)]
In the present section we will investigate the form of the universal function

f(z/L) taken as a whole.
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Since ϕ(ξ) → 1 when ξ → 0 with small z/L the function f(z/L) is of an
asymptotically logarithmic nature

f
( z

L

)
≈ ln

∣∣∣ z
L

∣∣∣+ const. when
∣∣∣ z
L

∣∣∣� 1 (60)

With large z/L the asymptotic behavior of function f(z/L) will differ in cases
of unstable (L < 0) or stable (L > 0) stratificatlon, since in these cases there
are actually two qualitatively different regimes of turbulent motions.

To analyze the case of unstable stratification, first let us examine the limit-
ing case of purely thermal turbulence (with no wind). In this case, due to the
lack of an averaged wind, the friction stress, on average will be zero (v∗ = 0),
while the turbulence regime is characterized by only the parameters q and g/To

(the turbulence receives its energy exclusively from the Instability energy, and
therefore is a function only of the degree of instability, characterized by the
heat flux q > 0 and of the magnitude of the Archimedean forces, characterized
by the parameter g/To).

We cannot form a length scale from the parameters q and g/To; therefore,
the regime of purely thermal turbulence is automodular∗∗, i.e. all its charac-
teristics are combinations of q, g/To and z. From dimensional considerations
we get

T (z) = T∞ +
C

κ4/3

(
q

cp ρ

)2/3(gz

To

)−1/3

(61)

where C is the non-dimensional (universal) constant, the factor κ−4/3 is intro-
duced for convenience, and T∞ is a constant which has a temperature dimen-
sion.

From (61) it is evident that with an increase in height the distribution of
temperature approaches isothermy8 This is natural, since in the case of un-
stable stratification at great heights, large turbulent elements develop (whose
dimensions are limited only by the distance to the earth’s surface), bringing
about very intense mixing of the air, which leads to an equalization of the
temperature profile.

From (61) it follows that the austausch coefficient

K = − q

cpρ
dT
dz

=
3
C

(
q

cpρ

)1/3( g

To

)1/3

(κz)4/3 (62)

increases rapidly with height, which is explained by the augmentation of the

∗∗Editorial note: This word is translated by LSG as “self patterning” (with quote marks).
8In (61) we are speaking of the approach to “potential isothermy” with an increase in height

(see footnote 5).
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turbulent elements with an increase in height and simultaneous increase in the
intensity of the fluctuations.9

Formally, formula (61) can be written

T (z)− T (ho)
T∗

= C
( z

L

)−1/3
− C

(
ho

L

)−1/3

(63)

so that in the case of purely thermal turbulence, the universal function f(z/L)
(determined to within an additive constant) has the form f(z/L) = C (z/L)−1/3

+ const.
The case of purely thermal turbulence can be derived from the general case

of unstable stratification by passage to the limit with v∗ → 0. Here L → 0
and z/L → ∞. Therefore the asymptotic behavior of the universal function
f(z/L) is determined by the relationship

f(z/L) ∼ C (z/L)−1/3 + const. when z/L� −1 (64)

This result indicates that at great heights z � L (in the surface layer) the
turbulent regime, in the case of unstable stratification, is determined mainly
by thermal factors (the wind profile is smoothed, and turbulence receives its
energy mainly from the energy of turbulent instability, not from the energy of
the average motion).

An explanation of the asymptotic behavior of the function f(z/L) when
z � L in the case of stable stratification, requires that we introduce additional
concepts. Turbulence decays in the limiting case of abrupt inversion with a
vanishingly weak wind. The existence of large turbulent elements becomes
impossible in the case of stable stratification (since they must expend too
much energy on opposing the Archimedean forces), and turbulence can exist
only in the form of small eddies. Large waves cannot lose stability, which is
natural from the point of view of the theory of stability. In this case turbulent
exchange between different atmospheric layers is hampered and turbulence
takes on a local character; at rather high altitudes z � L (or, to put it
another way, with strong stability, that is with small L > 0) the turbulence
characteristics evidently cannot be functions of the distance z to the substrate.
This pertains, in particular, to the mixing coefficient K and, accordingly, also
to the Richardson number Ri.

Thus, we may consider that in the case of stable stratification with an
increase in height z, (or, with an increase in stability, i.e., a decrease in L) the

9The concepts here presented on the regime of purely thermal turbulence agree with the system
proposed by A. A. Skvortsov [20], with the sole difference that Skvortsov introduces a concept of
the discrete spectrum of the scales of turbulent structures, while in the system presented here, the
spectrum of the scales is assumed to be continuous.
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coefficient of mixing K and the Richardson number Ri tend toward certain
constant values. This is natural, since with an increase in stability, K evidently
cannot increase, while Ri cannot decrease. Accordingly, there is a (universal)
value R of the Richardson number, which is such that when z/L� 1,

Ri ∼ R = const., K ∼ κv∗LR (65)

The limiting value of R evidently cannot be greater than the critical value
Ricr, but since, asymptotically, K 6= 0, i.e., turbulence does not completely
degenerate, R should be less than Ricr. The limiting value obtained will be
called the stationary Richardson number.

From (65) it follows that when z/L� 1, f ′(ξ) ≈ 1/R, or

f(
z

L
) ≈ 1

R

z

L
+ const. (66)

Then we have
v(z) ∼ − 1

R

g

To

q

cpρ

z

v2
∗

+ const. (67)

T (z) ∼ 1
R

g

To

(
q

cpρ

)2 z

v4
∗

+ const. (68)

Our formulas (60), (64) and (66) show the behavior of function f(ξ) when
|ξ| � 1, ξ � −1 and ξ � 1, respectively.

For an empirical determination of the universal function f(ξ) in a suffi-
ciently broad range of changes in the parameter ξ, using the data of the four
expeditions, given in table 2, and determining v∗ and L (when β = 0.6) for
each wind profile, we construct the empirical universal function

κ

v∗

[
v(z)− v

(
|L|
2

)]
= f

( z

L

)
− f(±1

2
)

where the plus sign corresponds to stable stratification and the minus sign to
unstable stratification.

The empirical points obtained are plotted on the graph in Figure 4. The
graph gives convincing evidence of the suitability of the hypotheses of simili-
tude used in the present work; these hypotheses reduce to the existence of a
single universal function f(z/L). The empirical points lie along smooth curves
with a very small scatter, despite the inaccuracies of the wind measurements
and the computation of L and v∗ by the approximation methods shown above.
Some scatter of the points is noted only in highly stable cases. The drawing
shows the limiting behavior of the curve quite well for the case of high stability
(approaching a linear profile) and high instability (approaching a constant).
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Table 2
Wind profiles determined from data grouped according to stability parameter

Main Geophysical Observatory Expedition 1945; zo = 0.2 cm.

Code
No.

No. of
Pro-
files

100 S Wind velocity (m/s) at the height (m) v∗
κ

S
L L

0.2 0.5 1.0 2.0 5.0 10.8

-2 18 -3.47 0.55 0.74 0.94 1.21 1.72 2.40 0.13 0.94 0.68
-1 6 -0.52 1.21 1.49 1.76 2.10 2.78 3.80 0.25 0.57 1.0
0 30 0.25 2.41 2.90 3.25 3.60 4.10 4.56 0.50 0.01 46.2
1 21 0.56 1.69 2.00 2.24 2.43 2.68 2.85 0.36 -0.07 -8.2
2 10 1.49 1.32 1.58 1.70 1.82 1.97 2.02 0.27 -0.11 -5.6

Main Geophysical Observatory Expedition 1947; zo = 0.5 cm.

Code
No.

No. of
Pro-
files

100 S Wind velocity (m/s) at the height (m) v∗
κ

S
L L

0.5 1.0 2.0 5.0 9.0 14.5

-4 8 -5.73 0.74 0.91 1.08 1.40 1.61 1.86 0.16 0.23 2.6
-3 13 -0.91 1.09 1.32 1.48 1.76 1.88 2.08 0.25 0.04 16.2
-2 9 -.37 1.24 1.50 1.67 1.93 2.03 2.03 0.28 0.002 300.0
-1 13 -0.18 1.68 2.00 2.22 2.57 2.73 2.92 0.37 0.01 -54.5
0 22 0 1.90 2.24 2.51 2.84 2.95 3.26 0.42 -0.02 -30.0
1 37 0.09 3.36 3.93 4.41 4.88 5.15 5.57 0.75 -0.65 -11.1
2 41 0.26 2.66 3.15 3.50 3.80 3.98 4.18 0.60 -0.07 -9.1
3 38 0.44 2.44 2.91 3.18 3.54 3.63 3.84 0.56 -0.07 -8.8
4 19 0.57 2.24 2.61 2.85 3.12 3.16 3.36 0.50 -0.08 -7.0
5 24 0.74 2.02 2.35 2.60 2.81 2.82 3.00 0.45 -0.08 -6.4
6 14 0.55 1.85 2.13 2.34 2.56 2.60 2.75 0.41 -0.09 -6.8
7 9 1.47 1.32 1.53 1.64 1.83 1.80 1.89 0.29 -0.11 -5.7
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Main Geophysical Observatory Expedition 1950; zo = 0.8 cm.

Code
No.

No. of
Pro-
files

100 S Wind velocity (m/s) at the height (m) v∗
κ

S
L L

0.5 1.0 2.0 4.0 8.0 15.0

-6 19 -8.42 0.54 0.65 0.80 1.00 1.31 1.80 0.12 0.46 1.3
-5 9 -1.92 0.89 1.04 1.22 1.50 1.94 2.50 0.20 0.29 2.1
-4 16 -1.18 1.05 1.25 1.45 1.76 2.16 2.58 0.25 0.18 3.3
-3 15 -0.46 1.52 1.79 2.04 2.34 2.74 3.25 0.36 0.09 6.4
-2 17 -0.24 1.80 2.12 2.42 2.76 3.19 3.66 0.43 0.06 10.3
-1 14 -0.13 2.02 2.38 2.70 3.06 3.50 4.00 0.49 0.04 14.3
0 25 -0.03 2.76 3.21 3.69 4.14 4.59 5.00 0.66 -0.01 -66.7
1 27 -0.09 3.35 3.90 4.48 5.00 5.52 6.08 0.75 -0.01 -66.7
2 25 0.14 2.48 2.90 3.33 3.94 4.10 4.40 0.60 -0.03 -20.0
3 29 0.22 2.40 2.80 3.20 3.55 3.88 4.15 0.58 -0.04 -17.1
4 26 0.26 2.46 2.86 3.25 3.60 3.88 4.10 0.60 -0.05 -11.5
5 26 0.29 2.40 2.75 3.10 3.45 3.80 4.10 0.57 -0.03 -12.4
6 32 0.36 2.28 2.50 2.84 3.16 3.46 3.42 0.52 -0.04 -15.0
7 116 0.46 2.04 2.38 2.69 2.98 3.20 3.40 0.50 -0.05 -11.5
8 18 0.66 1.68 1.94 2.19 2.40 2.62 2.80 0.41 -0.05 -12.5
9 22 0.25 1.44 1.65 1.88 2.04 2.20 2.34 0.35 -0.06 -10.2
10 15 1.22 1.25 1.44 1.61 1.76 1.90 2.00 0.30 -0.06 -9.2
11 19 1.83 1.00 1.14 1.30 1.43 1.53 1.56 1.56 -0.08 -7.7
12 15 4.06 0.73 0.84 0.94 1.02 1.08 1.10 1.18 -0.09 -6.4

Geophysical Institute of the Academy of Sciences Expedition 1951; zo = 1.0 cm.

Code
No.

No. of
Pro-
files

100 S Wind velocity (m/s) at the height (m) v∗
κ

S
L L

0.5 1.0 2.0 4.0 8.0 15.0

-2 6 -.64 1.32 1.65 1.91 2.31 2.93 3.91 0.33 0.32 1.8
-1 11 -.21 1.83 2.14 2.55 3.05 3.71 4.62 0.45 0.20 3.0
0 10 0.02 2.97 3.53 4.04 4.72 5.20 5.86 0.76 0.02 24.0
1 7 0.17 4.01 4.64 5.25 5.80 6.41 6.88 1.01 -0.03 -18.2
2 19 0.36 3.09 3.60 4.04 4.45 4.77 5.07 0.79 -0.06 -10.3
3 8 0.81 2.23 2.55 2.86 3.10 3.28 3.45 0.56 -0.08 -7.6
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Figure 4: Distribution of wind velocity in non-dimensional coordinates
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